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We report a fully microscopic theory for the transconductivity, or, equivalently, the momentum
transfer rate, of Coulomb coupled electron systems. We use the Kubo linear-response formalism
and our main formal result expresses the transconductivity in terms of two Buctuation diagrams,
which are topologically related but not equivalent to the Aslamazov-Larkin diagrams known from
superconductivity. Results reported elsewhere are shown to be special cases of our general expression;
specifically, we recover the Boltzmann equation result in the semiclassical clean limit and the memory
function results for dirty systems with constant impurity scattering rates. Furthermore, we show
that for energy-dependent relaxation times, the final result is not expressible in terms of standard
density-response functions. Other results include (i) at T = 0, the frequency dependence of the
transfer rate is found to be proportional to 0 and 0 for frequencies below and above the impurity
scattering rate, respectively, and (ii) the weak localization correction to the transconductivity is
given y bo-„L~ b~„L+ bo-~'.

I. INTRODUCTION

Consider two systems containing mobile charge carriers
so close to each other that the charges in the two respec-
tive subsystems experience the Coulomb forces originat-
ing from the other subsystem and yet far enough away
&om each other that direct charge transfer between the
two subsystems is not possible. Experimental realiza-
tions of such systems are, for example, Coulomb coupled
double-quantum-well systems, ' arrangements where a
three-dimensional system is close to a two-dimensional
system, or two nearby quantum wires. A scattering
event between a carrier in the system and a carrier in
another system leads to momentum transfer between the
two subsystems. Thus, if a current is driven through
one of the systems (henceforth the driven system is de-
noted as layer 1), then an induced current is dragged in
the other subsystem (layer 2). Alternatively, if no cur-
rent is allowed to flow in layer 2, a voltage is induced.
Due to momentum conservation the two particle number
currents flow in the same direction. Since the mecha-
nism for the Coulomb drag is carrier-carrier scattering
the drag current is proportional to the square of the ef-
fective interaction between the subsystems. The avail-
able phase space for electron-electron scattering tends to
zero at low temperatures and consequently one expects
Coulomb drag to decrease with decreasing temperature.
At low temperatures, the two Pauli factors entering the
carrier-carrier scattering rate lead to a T2 dependence
and this behavior is approximately seen in experiments.
Note, however, that there are small but important devia-
tions &om the simple T2 law; these deviations have been
the topic of much recent interest. '4'

The possibility for Coulomb drag was realized already

long ago ' and the recent experimental advances have
brought about a flurry of theoretical works. A number
of different theoretical approaches have been proposed.
These include (i) calculations based on the Boltzmann
equation, ' (ii) the memory function approach of Ref. 9,
and (iii) the momentum balance equation method. 4

In this paper, we calculate the Coulomb drag between
two systems using a fully microscopic theory based on a
linear-response formula. The central object to be evalu-
ated is the retarded current-current correlation function;
since the two currents involved refer to the the two dif-
ferent subsystems, we call the result of this calculation
transconductivity. The motivation underlying our work
is that all previously proposed approaches lack the rigor
that can be achieved with a formal linear-response cal-
culation. The present method allows us to identify the
Feynman diagrams that contribute to the transconduc-
tivity. Instead of the normal conductivity bubble, we find
that one must evaluate a fluctuation diagram, which is
similar but not identical to the Aslamazov-Larkin di-
agrams known &om superconductivity or the diagrams
encountered in connection with the microscopic theory
of van der Waals interactions. ' Thus all the methods
developed within the diagrammatic perturbation theory
are readily applicable and one can systematically study
the effects of higher-order-scattering processes, such as
vertex corrections or weak localization, electron-phonon
interactions, or the effect of magnetic fields.

Apart &om the general formulation for calculating
transconductivities, we obtain the following explicit re-
sults. In the limit of weak impurity scattering we show
that the linear-response result reduces to the expression
obtained with the Boltzmann equation. In this limit,
for energy-independent scattering times, this result de-
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pends on the susceptibility functions of the individual
subsystems, as obtained in previous works, ' whereas
for energy-dependent scattering times, the susceptibility
functions must be generalized, as shown by two of us
utilizing the Boltzmann equation.

We also study the corrections to the Boltzmann equa-
tion formula in the case of stronger impurity scattering,
i.e., accounting for vertex corrections. We also consider
weak localization corrections to the transconductivity.
All these efFects are calculated at finite temperature, but
for zero external &equency. At T = 0 finite &equency
calculations become feasible and we present a general
proof that the drag current vanishes in the dc limit at
zero temperature for an open system. Recently, Rojo
and Mahan used a ground-state energy argument to
calculate the drag current and found a nonzero result at
zero temperature. This seems to contradict our results;
however, there is an important distinction: the calcula-
tion of Ref. 14 applies for closed systems, e.g. , coupled
mesoscopic rings.

This paper is organized as follows. Section II outlines
the derivation of the general expression for transconduc-
tivity. Section III is devoted to impurity scattering: first,
we show how the well-known Boltzmann result follows
&om the general formulation and then, we establish a
connection to the memory function formulation of Ref.
9. This section concludes with a discussion of energy-
dependent scattering rates and weak localization efFects.
Section IV presents result for T = 0 at finite &equency.
Finally, a number of technical details can be found in the
Appendixes.

II. GENERAL FORMULA
FOR THE TRANSCONDUCTIVITY

layers, i.e.,

m]
P21 =

2 )n1e F1 +21

(BP2/Ot)g, s
)

+1

2

~;,~(~-~';n) = '„'ll,-,.'(~-~';n)

b(a —~')b';, h pp;(a),
mO

(4)

where (throughout we use 5 = 1)

= —'e(t —t)(l, ( t), ( t)j). (5)

Here (ij) indicate the subsystem, (o.P) in the super-
scripts label the Cartesian coordinates, p;(m) is the par-
ticle density in subsystem i, and j(m, t) is the particle
current operator. We have assumed that the subsystems
are translationally invariant. Our task consists of calcu-
lating the transconductivity o.21 .

We employ the imaginary-time formalism to evaluate
the retarded current-current correlation function, start-
ing with the (imaginary-)time-ordered correlation func-
tion

where m is the efr'ective mass, n is the carrier density,

p is the momentum per particle, (Bp/Ot)g, s is the mo-
mentum transfer due to interlayer interactions, and the
overline denotes an ensemble average.

The Kubo formula expresses the conductivity ten-
sor in terms of the retarded current-current correlation
function

The previous works have related Coulomb drag to the
transresistivity p21,. our calculation, which is based on a
Kubo formula, leads to the transconductivity o.21. These
are defined as

=E2
p21

—— with J2 ——0)
J1
J2

0-21 —— with E2 ——0, (1b)

where E; and J; are, respectively, the electric field and
the current density in layer i. These two quantities are
related via

P21 =
0 11O22 ~12O21

In (2) the diagonal o's are the individual subsystem con-
ductivities and we note that the transconductivity is
always much smaller than intralayer conductivity, be-
cause it is caused by a screened interaction between spa-
tially separated systems (e.g. , the data of Ref. 1 give
o2j /o qq 10 ). The transresistivity p2q is a more phys-
ically relevant quantity than o21 in a drag-rate measure-
ment because p21 is directly related to the rate of mo-
mentum transfer from particles in layer 1 to layer 2, &21
without reference to the scattering rates of the individual

II2i (~ —' ~ —~') = —(T-bF(~ ~)j2 (~' ~'))) (6)

The retarded function then follows as

112&~"(a —m'; 0) = lim 112((m —m', iO„),
iA„~A+zb

where

P
II2~(m —m'; iA„)= d~ e'"" Ii„~(~—m'; ~),

0

11»~(~ —~';~) = —) .-'"- ll»'(~ —~' n„),

and P = 1/kIBT. The calculation proceeds by expanding
the transconductivity in powers of the interaction be-
tween the subsystems. The interaction Hamiltonian is
given by

~12 — d&1 d P2 p1 +1 U12 +1 +2 p2 +2

Here U12 is the bare Coulomb interaction between the
systems. We note that other interaction processes, which
couple the charge carriers in the two subsystems, can be
treated similarly. An important example is the virtual-
phonon-mediated interaction, which may play a role in
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the low-temperature behavior of the momentum transfer
rate. ~'4

The w dependence of the current operators in (5) is
determined by the full Hamiltonian H = Hi +H2+ Hg2)
where H; are the subsystem Hamiltonians. In order to
develop a perturbation expansion, we must isolate the
Hq2 dependence. Following the standard many-body
prescription, we transform into the interaction repre-
sentation and obtain

II-~( )
(T-$S(&)&1(& &)i2 (&' ~')))

(S(P))

where the carets indicate Chat the time dependence is
now governed by the individual subsystem Hamiltonians
and the operator S(P) is

the first-order transconductivity for any system, once the
subsystem conductivities 0,; are known. From (15) we
also infer that the first-order transconductivity vanishes
in the dc limit.

B. Quadratic expansion

To evaluate II2~ to second order in Hq2, we substitute
the third term of (13) on the right-hand side of (11) and
find that the current-current correlation function is given
by

ll„'(~ —~', ~ —r') ~2l

cL'Ty &2 GP y Gv'2 ALT ~ df'2

S(p) = T exp — d~1H12(~1) (12) X U12(rl r2) U12(r1 r2)

x E1 (K'r, v'1%1, r1 r2) A2 (K r
& &2&1) &2&2) ~

As usual, only connected diagrams need to be included.
It is now straightforward to expand S(P) in powers of
Hg2,

S(P) = 1 —T d~1H, 2(~, )
to

P P
+ T~ d—w1 dT2812(71)H12(T2) + .

0 0

The zeroth-order term leads to a vanishing contribution
to the transconductivity because the two current opera-
tors are decoupled and hence commute. In the following
sections we discuss the higher-order terms.

(R7, x 7, x 7 ) = —(T~(g (x7 )p~(x 'r )p~(x 'r ))).
(17)

Just as in the preceding subsection, we factorized the
time-ordered expectation value involving two current and
four density operators; this step is justi6ed because the
two subsystems are decoupled after the formal expansion
in Hq2. Due to the assumed translational invariance L
depends on only two coordinate differences. %'e de6ne
the Fourier transform A(q, q', ur, u') via (v = the voluxne)

6(a~, x'~', x"~")

A. Linear expansion

The linear-order term in H~2 leads to the correlation
function

&~m)&~n

iq] (a—~")+iqg (+' —") —i~ {7—7")—~~ {~'—~")

X A(q1 + q2 ~ q2', 'old~ + l(d~) Ltd~) .

P
47 i Gf'ylTg T~ gg K, 7 py z'y

~ 7y
0

Xv»(» —»)(T-(~2(r2»)» (*' ~')))

Use of the continuity equation iOp+ V .j = 0 allows us
to eliminate the number density operator and to express
the density-current correlators in terms of the subsys-
tem conductivities. After some simplification we find
(for a translationally invariant impurity averaged sys-
tem where impurity scattering in the two subsystems is
uncorrelated )

02((q, O)~'l = . ) o2$(q, O) q~ V12(q) q o.,~1(q, O)."",
,8

This expression is exact and it can be used to calculate

The final expression for II21~(Q, iO ) ~2l then takes the
form

11-„~(g;O„)~'l = --- ) —) V„(q)V;,(g + q)
&~n

xb, 1(Q + q, q;iO„+i~„,i~„)
XA~2( —Q —q, —q; iO —iver„,—iur ). —

(i9)

The diagram corresponding to the second-order result
Eq. (19) is shown in Fig. 1. We also display the first-
order term discussed above.

Consider next the i~ summations. The function
A(z + iO„,z) has branch cuts in the complex z plane
at Im(iO + z)=0 or Im(z)=0 and is analytic elsewhere
(see Appendix A). We can therefore perform their sum
as a contour integral. When we extract the retarded part



14 764 FLENSBERG, HU, JAUHO, AND KINARET 52

according to Eq. (7), we obtain the result

1
S(O) = —) bi(iA + i(u„,i(u )

~~n

x K2 (—'LB —i&, —141 ) ~
~

—:Si(O) + S2(A), (20a)

U~2 q 0 nJ3

q
—OO

x Ai (g, q; ~ + ib, ur —ib)

xX~2(—q, —q; —~ —ib, —(u + ib) . (22)

CL(d

Si(Q) = P . [n~(~+ 0) —n~(u))]
2%i

x Ai(+, —)A2( —,+), (20b)

The actual evaluation of this expression at various levels
of approximation forms the main task of this paper. In
the case of electron-hole systems the overall sign of (22)
must be changed.

CL(d

S2(n) = P . [nay(co)ai(+, +)A2( —,—)2%i

( + ~)& (—-)& (+ +)1 (20 )

where n~(~) is the Bose function. We have suppressed
the Cartesian indices and the momentum labels, since
they can be gleaned from Eq. (19), and have used the
notation

Ai(+, +) = A(ZA~ + ZCd~ M 0 + (d+Zb; NtJ~ M hi+2b),

(21a)

A2(+, +) = A( —iB„—i~„m—0 —(ukib

i(u„m——(u+ib) . (21b)

{Q,IQ„),I I

'
- {Q,IQ„)

, Ill!!~Illl, )
' 'iI%1

(Q, i Q„)
~ t ~ 5 ~ ~

The functions 4;(+,+) and 4;(—,—) vanish identically
in the dc limit, which is proven in Appendix B.

Consider next the dc response 0 —+ 0 of a uniform
system (Q = 0). The dc limit of Si(A) is simple to
evaluate because the difference of the two Bose functions
combined the prefactor 0 just gives c) n~(~). Thus
the dc transconductivity reduces to (reintroducing ti)

C. Higher-order terms

The S-matrix expansion (13) can be used to gener-
ate higher-order terms. To proceed systematically one
must apply the techniques of the many-body formalism.
As usual, the most important processes should be identi-
fied and the corresponding diagrams be summed to infi-
nite order. This procedure may then lead to an integral
equation for the effective interaction, e.g. , in the ladder
approximation one obtains the Bethe-Salpeter equation.
We do not pursue this line of argument further in this
paper, but note that a particularly useful resummation
can be obtained, if one includes the "bubble" diagrams
(see Fig. 2), which leads to an effective screened inter-
action Vi2(q, u) = Ui2(q)/ei2(q, ur), where the dielectric
function is given by

&12(qi ~) [1 Ui(q)X1(q) ~)][1 U2(q)X2(q& ~)]

—Ui2(q)'yi(q, ~)y2(q, ~), (23)

where the y's are the usual polarization functions and
the U s are the intrasystem Coulomb interactions. The
Vi2(q, ~) can be used in placed of Ui2(q) in the above
expressions for the transconductivity Eqs. (15) and (22)
with no additional difBculty. Making this substitution
corresponds diagrammatically to using a random-phase
approximation (RPA) screened interaction between the
triangles in Fig. 1(b). Most previous works on
drag problems have used (23) (or simplified versions of
it).

(b)

(Q, iQg
~ ~ ~ ~ s~o ~ ~ ~ ~ ~ ~

(Q, iQg
~ e~a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1 2 1 2 1

+
2 2 1 1

Q

(Q+ q, iQn+i~
2 2 2 2 2

+
2 2 2 1

~ ~

I 2

FIG. 1. Diagrams corresponding to the current-current cor-
relation function to (a) first and (b) second order in the inter-
layer Coulomb interaction. The shaded triangles correspond
to the A's given in Eqs. (17) and (18), the dashed lines to the
interaction, the dotted lines to the external current operators,
and the arrowheads to the direction of momentum and energy
transfer.

FIG. 2. Diagrams that lead to the screened interlayer in-
teraction within the random phase approximation. The "bub-
bles" are the bare polarizabilities of the subsystems, the thin
wavy lines are the bare interactions, the thick lines are the
screened interactions, and numbers indicate the subsystem.
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III. IMPURITY' SCATTERING

In the preceding section we showed that the transcon-
ductivity can be expressed in terms of the general three-
body correlation function L. We will next consider a spe-
ci6c example in order to calculate this three-body func-
tion, namely, noninteracting electrons scattering against
random impurities. The Hamiltonian representing impu-
rity scattering is quadratic and hence Wick's theorem is
applicable, which means that the expectation value can
be factorized into pairwise contractions, i.e., expressed in
terms of Green functions. Impurity averaging, which is
now implicit in the expectation value, reintroduces cor-
relations between the particles, which implies that one
must introduce vertex functions. However, we do not al-
low impurity correlations between the two subsystems,
i.e., we assume that (AiA2);~~ = (Ai);~~(A2);~p.
The particular choice for the impurity self-energy used in
the calculation of the impurity averaged Green function
fixes the choice of the vertex function; in what follows
we use the self-consistent Born approximation for the
self-energy and the corresponding vertex function con-
sists either of the ladder diagrams (Sec. III C) or of the
maximally crossed diagrams (Sec. IIID). The form for
impurity 4 giving the dominant contribution is shown
in Fig. 3. We consider only uniform systems and set
the external wave vector to zero Q = 0. We also de-
note fermionic complex frequencies by ik in contrast
to bosonic &equencies i~ and the external &equency O.
Thus we have

(q, q;io„+in,i~„)
) —) k [K(k, q, ik, iA„,iur„)

2 1
mv P

+K(k, —q, ik, i0„,—(iur„+iA„))],
(24)

where

(q, i (o„)
e m~m w s

(b) x~~

(Q,i&.)
~ ~ ~ $~$ ~ ~ ~ ~ ~

(q+Q, i(o„+iQ„)
W

FIG. 3. Function E for the case in which vertex correc-
tions are included at each of the individual charge and cur-
rent vertices. (a) shows the decomposition of A into di-
agrams with clockwise- and. counterclockwise-moving Green
functions, with the gray shaded areas indicating vertex cor-
rections. (b) shows one of these diagrams in greater detail.
Here A: p is the current vertex, the I' is the charge vertex, the
dashed line is incoming momentum and frequency, the dotted
lines are the interaction Viq(q, u), and the solid lines with ar-
rows are the Green function. Normal momentum and energy
conservation rules apply at the vertices.

K(k, q, ik, iO„,i(u„)= G(k, ik )p(k, k;ik, ik + iO„)G(k,ik + iO„)
xI'(k, k+ q;ik +iA„,ik +iur„+iA„)G(k+q, ik +iO„+i(u„)
xI'(k+ q, k;ik +iur„+iB„,ik ) . (25)

The factor 2 in Eq. (24) comes from the spin sum. In
Eq. (25), k p/m is the current (vector) vertex function
and I' is the charge (scalar) vertex function. In labeling
the variables in the vertex functions, we use the conven-
tion that the incoming momentum (frequency) is the first
variable and the outgoing momentum (frequency) is the
second variable. The second term in the square brack-
ets in (24) corresponds to reversing the order of the two
Ui2 lines; see Fig. 3. Equations (24) and (25) need to
be analytically continued to the real axis, after which
they can be used as a starting point for evaluating the
transconductance in the weak and strong scattering lim-
its, respectively. It should be noted that Eq. (25) does
not include all possible diagrams. An example of a dia-
gram not included is shown in Fig. 4(c).

A. Analytic continuation

The summation over the fermion &equencies ik fol-
lows the standard prescription: the discrete sum is
replaced by a contour integration P g,& f(ik~)
—(2vri) i $dzn~(z) f(z). To evaluate the contour inte-
gral, one must pay attention to the branch cuts of the
integrand and in the case of Eq. (24) these occur at
Im[z] = 0, —0,—0 —~ (first term) and at = Im[z] =
0, —0,u (second term). After performing the contour
integration, we must further set iO +i~ M 0+u+ib,
iA -+ 0+ ih, and in~ -+ w —ib [see Eq. (22)]. After
some tedious but straightforward algebra one finds
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2
(q, 0+ id+ ib, id —ib) = ) ny(e)k (K(k, q, e, 0, (d) + K(k, —q, e, 0, —(id+ 0))),vm ~ 27lx

(26)

where

K(k, q, e, 0, (u) = G (k, e + 0)I'++ (k, k + q, e + 0, e + u) + 0)G"(k + q, e + (u + 0)
X(I++(k+ q 1c, E+ (d + 0, E)G (k e)p++(k, k; e e+ 0)
—I+ (k+ q, k, t+ id + 0, e)G (k, e)p +(1c k;e, e+ 0))
+G (k + q, e + ~d) I' (k + q, k, e + id, e —0)G (k, e —0)
x(p (k, k;e —0, e)G'(k, e)1' (k, k+q, e, e+~d)

(k, k;e —0, e)G (k, e)I' (k, k+q, e, t+~))
+G (k, e —0 —id)p +(k, k; e —0 —(d, e —id)G (k) e —3d)

x(I++(k k+ q t —id, C)G (k+ q, e)1+ (1c+ q, k, t, t —0 —id)

—I'+ (k, k+ q, e —~, e)G (Ie+ q, e)I' (k+q, k, e, e —0 —~d)) . (27)

Here the subscripts +6 indicate the signs of the (infinitesimal) imaginary parts of the vertex functions' frequency
arguments. This result is still quite general and can be evaluated within difFerent levels of approximation, of which
we shall illustrate three special cases.

B. Boltzmann limit (~w ) 1 and/or Dq~v ) 1)

In the weak scattering limit, we can neglect the charge vertex corrections, since I' difFers &om unity only in a small
region, where vw and Dq w are small. Here v is the lifetime due to impurity scattering and D is the difFusion constant.
In the dc and weak-scattering (or "Boltzmann") limit, b,g becomes

2 ~ d6
A&(q, q;u+ib, id —ib) = ) . nz(t)k (K&(k, q, e, 0 = O, u)) + K~(k, —q, t, 0 = 0, —ur)),

mv ~ 2xz
(28)

where

K~(k, q, e)0 = 0, &d) = G (k, e)G (k+q, e+id)[G (k, )pe+(k+, k;e, e) —G (k)t)p +(k, k;e)e)
+G (1c + q, e + id)G (k, e) [p +(k, k; e, E)G (k, t) —p (k, k; t, t)G (1c, t)]
+G (k, e —id)p +(k k' e —id, e —id)G (k t —ld) [G (k + q e) —G (k + q t)]

+(k, k; eg, tg) (—G (k, e)G (k, e) [G (Ic + q, t + id) —G (k + q, t + (u)]

+G'(k, e —id)G (k, e —id)[G"(k+ q, e) —G (k+ q, e)]) . (29)

In writing the approximate equation, we used the fact that in the Boltzmann limit, (i) the terms of the form G G
or G G (with equal momentum and frequency arguments) are smaller by a factor of 1/ATE+ «1 than terms of the
type G"G and can hence be neglected in the present level of approximation and (ii) G"(k, id)G (k, id) = rA(k, id),
where A(k, &d) is the spectral function and 1/2w = —ImE" (k, eg). A(k, id) is sharply peaked around e = ti„and hence
the energy arguments in p + can be replaced by ep.

In the Boltzmann limit of the current vertex function p+ is well known:

p +(k, k;eg, ~l, ) = ~g, (k)
~ Ie

(30)

Using G (k, u) —G (k, w) = —iA(k, id), G"(k, id)G (k, id) = +A(k, u), and Eq. (30), Eq. (28) thus simplifies to

A~ (q~ q; 41 + zb, id —xb)
2 ~ d6) —np(e)k ~„(k)[A(k, t) {A(k —q, e —ur) + A(k+ q, a+ id) jmv ~ 271

—A(k, e + id) A(k —q, e) —A(k, t —~d) A(k + q, e)]
2 ~ d6) —[np (t + (u) —n~(e)]

mp ~ 2K

x (k + q) ~„(k+ q) —k ~„(k)A(k + q, t + cd) A(k, e) .
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The Boltzmann limit is recovered by using &ee Green
functions, which implies that the spectral functions re-
duce to b functions. We 6nd

A$ (q, q; (d+ i()), (u —ib) = ' E (q, ~),
m

where the transport polarization E is given by

Refs. 8 and 9. Since the above derivation ignores all
higher-order and/or quantum-mechanical processes, it is
not surprising that one can derive (34) directly from the
Boltzmann equation. 3 We also emphasize that in gen-
eral the drag rate, or the transresistivity, cannot be ex-
pressed in terms of the polarization function; rather, one
must use the more general object E defined above.

E (q, u)) = 2 nF(eX,+q) —np(eX, )Im
V7t~ tg+& —eg —Ld —ib

x [(k+q) ~„(k+q)—k ~„(k)].

(T2x 1 1 ) d(d P
(rll(T22 2nln2 i —~ 2'ir sinh [p(d/2]e

x
~
Vx2(q, ~) ~' Ex (q, ~)E,(q, ~). (34)

P2Z =—

Several comments are now in order. Without an
applied magnetic Geld, the transconductivity and con-
sequently also the transresistivity are diagonal in the
Cartesian coordinates and we have suppressed the (nP}
indices in (34). For constant w's transport polariza-
tion is related to the (bare) RPA polarization function
E (q, u) = q Imyo(q, u). In this limit Eq. (34) repro-
duces the standard result for transresistivity; see, e.g. ,

I

Here 7&, determines the in-plane conductivity o.;,.
e n;vt, , /m;. When (32) is inserted into the expression
for the transconductivity Eq. (22) and the screening of
the interlayer interaction is included as explained in Sec.
IIC, we obtain

C. DifFusive limit (vv & 1, Dq r & 1)

In this section we evaluate the transconductivity, in the
weak scattering limit and in the difFusive limit (Dq27. ( 1
and uw & 1), including vertex corrections. Specifically,
we consider momentum-independent relaxation times, in
which case vt, ——v, and include vertex corrections due to
ladder diagrams. Then, we have p = 1 for all + combi-
nations and the charge vertex is given by22

0[—Im(zi)Im(z2)]I' IC, Ie+ q, zz, z2) =
7 (Dq —i(zi —z2) sgn[Im(zi —z2) ]}
+8[1m(zx) Im(z2)], (35)

where 0 is the step function. It is now straightforward to
use (35) in the K function (27). Including only terms that
involve G G (with same arguments) and introducing a
short-hand notation

I'+(q, u)) = [7.(Dq2 + i(d)]

allows us to write

KL, (k, +q, e, O = 0, +(u) = G"(k, e)G (k, e) —G"(k + q, e +(u)I'+(q, ur) + G (k+ q, e +(d)I'+(q, ~)
+G"(k, e ~ (u) G (k, e y (d) G"(k + q, e)I'+ (q, (u) —G (k + q, e)I'+ (q, ur) (37)

The triangle function in the ladder approximation LI
then becomes

Ax, (q, q, (u + ib, (u —ib')

27 ) .k —[nF(e+ u)) —nF(e)]
mv ~ 2x

x 12Im I' (q, (u) G (k + q, e + ~) A(k, e)
—2Im I'+(q, ~)G (k —q, e) A(k, e + ru) j . (38)

2
Ixny(q, (u) = ——) Im . [nF(e + ~) —nF(e)]

V 27ri

xI' (q, ~)G'(kgq, e+ur)G (ke)) . Pll),

We observe that the constant-v. Boltzmann result is read-
ily recovered &oxn (38) by replacing I"s by unity. A
generalization to energy-dependent scattering rates is
straightforward, but we do not reproduce the cumber-
some results here.

The next task is to establish a connection between
the dressed polarization function y(q, &u) and the triangle
function Lg. In Appendix C we show that

A comparison of (38) and (39) reveals some similarity,
but clearly a few more steps are required. We complete
the connection by making a few observations. First, we
express the spectral functions in (38) in terms of the re-
tarded and advanced functions. The resulting integrals
can be grouped in two classes: (i) integrals involving
products of the type G G and (ii) integrals involving
products of the form G"G" or G G . We have earlier
argued that type-(ii) integrals can be neglected in com-
parison with type-(i) integrals, if the momentum and
&equency variables are equal. We now state that, in
the present weak-scattering limit, this criterion applies
also to functions with momentum variables and &equency
variables that difFer by less than Dw and w (the
diffusive limit). A proof for this statement is given in
Appendix D. Thus, keeping only the G G terms in (38)
allows us to express the quantity in curly brackets as

I' (q, ~)G' (k + q, e + (u) G (k, e) + c.c.

+ I' (q, (u)G" (k, e+ ur)G (k —q, e) + c.c.

In the above analysis the second term can be made to
coincide with the first one by shifting the summation
variable k ~ Ie + q; however, when doing this the pref-
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actor k in (38) generates an extra q . This is exactly
what is needed to give the required result,

27 g
E~(q, q, w+ib, ~ —ih) = Imp(q, (u) .

m
(40)

The above analysis shows the equivalence of the tri-
angle function and the polarization function in the small

q and u limit, con6rming the result obtained by Zheng
and MacDonald with a diferent method. As observed
by these authors, in the high-mobility samples studied
so far the replacement yo —+ y does not appear to be
important; however, in dirtier samples the consequences
of the vertex corrections (i.e. , full y) may well become
detectable.

D. Weak localization correction to Coulomb drag

In the previous sections we included the leading-order
impurity scattering diagrams, which gave us the Boltz-
mann equation result for the case of weak scattering and
showed how the bare polarization function in a certain
parameter range must be replaced by the dressed polar-
ization function. Here we develop the analysis further
and calculate the quantum correction associated with
weak localization (the basic physics of weak localization
is reviewed, e.g. , by I ee and Ramakrishnan2s). The
corrections will be of the order of 1 /( k~8) && 1, where
8 = v~w is the elastic mean &ee path.

In Fig. 4 we display the difFerent types of crossed di-
agrams that exist for the function L. The maximally
crossed one is the one shown in Fig. 4(c). This dia-
gram is, however, smaller than the one showed in Fig.
4(a), because of the restricted phase space. The two
Green functions attached to the current vertex in the

I . k'
= —) „,, G(k', 'k )G(k', 'k

k'

+iQ„)C(k,k';ik, ik + iO„), (41)

where the cooperon is given by

C(k, k;ik, ik + iO„)
1 1

2vr p~ 1 —g(k; ik, ik + iB„)' (42)

where

g(k, k';ik, ik + iA„)

diagram in Fig. 4(a) have the same arguments because
in the limit' (Q = 0, 0 = 0) the current vertex leaves the
momenta and energies of the entering and leaving Green
functions unchanged. Therefore there is the possibility of
two overlapping spectral functions giving a overall factor
of w Th. is does not happen for the diagram in Fig. 4(c).
Neither does the diagram in Fig. 4(b) lead to overlap-
ping spectral functions, except in very small regions of
q, u space, where q and u are the incoming quantities at
the charge vertices. Since we are integrating over q, ~
the (logarithmic) singularity caused by the maximally
crossed diagrams becomes regularized. In other words,
the contribution &om this diagram is small for the same
reasons that the dressing of the charge vertices, discussed
in Sec. III C, can be neglected for experimentally relevant
parameters. We therefore conclude that diagrams of the
Fig. 4(a) type dominate the quantum correction to the
drag rate.

The leading quantum correction is given as the sum
of the maximally crossed diagrams, the cooperon. The
resulting vertex function describing the weak localization
correction, p, obeys

(k, k;ik, ik + iA„)

(a) (b)
1 1—) G(p+ Q, ik +iO„)G(p,ik ), (43)2' p7 V

p

where Q = k + k'.
In order to evaluate the ( function, we make use of

the fact that the weak-localization divergence occurs for
small Q. With this in mind we replace s(k + Q) by
s(k) + v~Q cos(0). Then we can integrate over k' in Eq.
(43). For small DQ and Br we obtain

FIG. 4. DifFerent types of crossed diagrams for the trian-
gle diagram relevant for the weak localization correction to
the transconductivity. Diagrams of the type in (a) give the
leading-order contribution. Dressing the charge vertices as in
(b) gives a smaller contribution for moderately clean samples
for the same reason that allows us to neglect the vertex cor-
rections of the charge vertices, discussed in Sec. IIIC. The
diagram in (c), which cannot be included using vertex func-
tions alone, has an even smaller phase space and can hence
also be neglected.

g(k, k'; ik, ik + iO„)

0 if (k +B„)k &0
1 —~A„~~—DQ ~ if (k + A„)k ) 0,

where the diffusion constant is defined as D = v+w/2
This expression is only valid for QE & 1, therefore the
upper limit of the integral in Eq. (43) has to be cut off
by 1/l.

Next we perform the analytic continuations that are
needed for the evaluation of the function L. Since the
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analytic continuation u„-+u 6 ih' leads to ~ur„~ -+ pin,
we obtain for the ( function

0++ =0-—=0

g +(k, k';e, e ~ 0) = ( +(k, k';e —O, e)

= 1 y iver —DQ'r.

(45)

The cooperon that enters the expression for K~L,
Eq. (27), then acquires the familiar form

1 1
2~pr2 jQ + DQ2 (46)

After integration over Q we find the weak-localization
vertex function

IV. FINITE-FREQUENCY' RESPONSE AT T = 0

A. General expression

For Gnite &equencies and finite temperatures the anal-
ysis becomes considerably more complicated and for sim-
plicity we therefore restrict ourselves to study the Gnite-
&equency case at zero temperature. Furthermore, we will
consider a model where all vertex functions can be re-
placed by unity, i.e., a system with short-range impurity
potentials and a system not in the diffusive limit. The
transconductivity in terms of the time-ordered current-
current correlation function is

e0. ~(Q, 0) = —(iRe II ~'(Q, 0)
(k, k;e —A, e) = p (k, k;e, a+0) —sgn(A)lm II ~'(Q, A) ). (52)

1= A(k, e) ln(Or)
vrkp6-

—:A(k, e) rl (0)/2r.

Here g is the ratio between the quantum correction
and the classical conductivity: g (0) = ha (u)/oo.
The combinations p++~ and p are both zero. We now
get for the K function

KwL(k, q;~, A, (u) = —iq (—[A(k, e)] A(k+ q, e+ ~)

+[A(k, e —(u)] A(k+ q, e)) . (48)

The time-ordered current-current correlation function is
now written in terms of time-ordered Green functions as

II ~ '(Q = 0, Q) = —— —) Vj 2 (q, ~)Vi'2 (q, ~ + 0)
q

x A ' (q, q; 0 + (u, ur )

xA~'( —q, —q; —0 —~, —(u), (53)

where

A '(q, q;0+~, ~)

v~ Ie G Ie, cog+ —0 G Ie, ~g ——0
Using that A2 = rA/2 for large r we can express the
weak-localization correction bL~g in terms of the re-
sponse functions as

x G'(k + q, uzi + ~) + G'(k —q, cui —~) (54)

hA@'i. (q q'(u+ ib (u ib 0)

2ril 0
q Imye(q, ~)

m

(A)AB(q, q; + h, —8), (49)

It is straightforward to see that A ' (q, q;w, u) = 0,
which can be shown along the same lines as in the last
part of Appendix B. Furthermore, we can show that
A(q, q; ur, u + 0) is proportional to 0 and consequently
the transconductivity vanishes at zero &equency and zero
temperature in agreement with Eq. (22).

which immediately leads to the conclusion that to lead-
ing order the weak-localization correction to transcon-
ductance is

(5o)

Consequently, the transresistance is unagected by the
weak-localization correction because

~2i(1 + ~i + ») o

0,,(1 + rh)cr22(1 + »)

Weak localization is strongly affected by external mag-
netic 6elds. The formalism presented above can be ex-
tended to include magnetic fields; in particular, the topol-
ogy of all diagrams remains unaltered.

B. Clean system

To evaluate the zero-temperature correlation function
it is useful to decompose the time-ordered Green function
into advanced and retarded parts according to Gi (q, ur) =
8(ur)G'(q, ~) + 8(—u)G (q, u). In the case of a clean
system, the decomposition can also be carried out in
momentum space as G (q, u) = 8(~q~ —kF)G" (q, u) +
8(kF —~q[)G (q, u), which is actually more convenient
since it leaves the &equency integrals unrestricted. Con-
sequently, using the momentum space decomposition, we
can carry out the conventional pole-position analysis and
find that most of the terms arising from (53) vanish. The
remaining nonzero terms are most conveniently evaluated
using the &equency-space decomposition, which yields
for 0&0
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II '(Q = 0, 0) = ——) Vi2(q, (u)Vi2(q, ur+ O)v (k)v (p)
e s»&

x 2 G" k, ~g+ 20 G k, u)g —20

x G' (k —q, (ui —ur )G'(p, (u2 + 2 0)G (p, ~2 —
2 &)G (p —q, ~2 —~)

G"(k, ~i + 2 0)G (k, (ui —
2 0)

xG'(k —q, a~i —~)G'(p, ~z+ zA)G (p, tu2 —20)G"(p+ q, ~2+ ~)
n/2

G'(k, ~i + 2 Q)G (k, (ui —
2 0)

xG (k —q, ~i —ur)G" (p, ~2+ -', O)G (p, ~2 ——,'O)G (p+ q, ~2+ ~) (55)

Since all &equency integrations run at most over an inter-
val of length 0, the end result is proportional to 0 . We
can furthermore show that II '(Q, O) = II '(Q, —0),
so that II ' (Q, O) ~Q~ . Using the fluctuation-
dissipation theorem we find Re II" ~O~ and. Im II"
0 . Thus, to a leading order in w, the real part of the
transconductivity is proportional to 0 and its imaginary
part is proportional to sgn(A)02.

C. Disordered systems

terms that are leading order in ~ into account, we find

2r I'kp l d0
Eo(0) = —i

~ ~
[1 —cos(0)]3(2')s qv~y o 27r

x ~Vi 2(k~ /2 —2 cos(0), ~ = 0)
~

Here the remaining integral is strongly reminescent of
the ratio between a scattering time and a transport time,
the only difference being that instead of an impurity po-
tential the integrand now contains the potential due to
carriers in the other subsystem.

II'(Q, A) = Eo(Q)iOi + Ei(Q)O /r. (56)

Thus we finally have

0, iOi « 1/r
0', 1/«& iAi « e&/h (57)

The constant Eo(0) can be evaluated approximately
be keeping only the most important terms. Taking only

For disordered systems we can only use the
frequency-space decomposition and consequently the
pole-position analysis is not quite as powerful as for
clean systems. We can, however, determine the
leading corrections by regarding w as a pertur-
bation and using a Taylor expansion of the type

(~1)G (~1)G (~1 ~) Go(~1)Go(~1)Go(~1 ~) +
(i/2r) (oj/Oui) [Go(ui) Go(ui) Go(~i —w)]. After the ex-
pansion, all propagators are given by clean system Green
functions and we can easily do the integral over one of
the frequency arguments (in the example over ui). The
resulting term is identical with a term that is encoun-
tered in the evaluation of an auxiliary time-ordered func-
tion for a clean system. The auxiliary function can be
analyzed also by means of the momentum-space decom-
position (since all propagators are given by Go) and the
&equency dependence of the various terms can be ob-
tained in a manner similar to what we did in the clean
system case. Carrying out the analysis for all terms aris-
ing Rom (53), we find that the leading-order corrections
to II are of the form 0 /7 and we obtain

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a fully microscopic
theory of the Coulomb drag, based on the Kubo for-
malism. We have used the finite-temperature formal-
ism to obtain expressions for the dc drag and the zero-
temperature formalism to obtain finite-frequency results.
We have chosen to present only formal results here, de-
ferring the presentation of experimental consequences of
these results to another work.

We calculate the transconductivity o~2 using an order
by order expansion in the interlayer interaction U(q).
Assuming no correlations between the impurities between
the two layers, we find an exact relation between the first-
order result o i~& (q, w) and the subsystem conductivities.
The result also indicates that in a uniform system, the
dc transconductivity vanishes to first order.

To second order, we write a formal result for the
transconductivity o i2 in terms of the b, (q, q'; w, w') func-
tions, which are the thermal-averaged (happ) correlation
functions of the individual subsystems. In evaluating 4
under various circumstances, we find (i) for constant in-
tralayer elastic scattering rates, we duplicate in the limit
1/r -+ 0 results obtained earlier using the Boltzmann
equation and the memory functional method in the dif-
fusive limit; (ii) for energy dependent intralaye-r elastic
scattering rates, however, the q Im[y] must be replaced
by another quantity E (q, ur), which we call the trans-
port polarizability. The energy-dependent result is due
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(&om the Boltzmann equation point of view) to the fact
that the perturbed distribution function on application of
the electric 6eld for energy-dependent elastic scattering
rates is not a drifted Fermi-Dirac function. However,
intralayer electron-electron interactions tend to relax
the distribution function back to a drifted Fermi-Dirac
function and hence the larger the intralayer electron-
electron interactions are, the closer the F (q, u) will be
to q Im[yo] in Eq. (34).'s

We have calculated the weak-localization correction
to the second-order transconductivity and found that
bozo /cruz ——bo~zz /ozone + bo22~/o&2, which implies that,
to lowest order in (ky E), the transresistivity p2q is un
affected by the weak-localization corrections. The zero-
temperature formalism indicates that the dc drag van-
ishes in an open system. This result is reproduced in
the T —+ 0 of the 6nite temperature formalism, since the
8 n~(ur) term in Eq. (22) vanishes as T -+ 0 and one
can show that L is linear in u as u —+ 0. This state-
ment is valid for open systems, which are connected to
dissipative leads, and not for closed systems.

For finite &equencies we have evaluated the leading
contribution to the transconductivity at zero tempera-
ture and found that in the clean limit o.2q 0 . Includ-
ing disorder we showed that &equency in this expression
is replaced by 1/r and o2q 0/r.

The formalism that we have developed in this paper
can be applied to many difFerent physical realizations
of coupled electron systems. It is thus straightforward
to extend the calculation to include magnetic field and
work is in progress in this direction. The present for-
malism also forms a useful starting point for the study
of, e.g. , higher-order intralayer interactions, phonon me-
diated intralayer interaction, and correlations caused by
strong interlayer electron-electron interactions.
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APPENDIX A: BRANCH CUTS
FOR THE THREE-BODY CORRELATION

FUNCTION

Consider the Fourier transform in time according to
Eq. (18) (we set r" = 0 since b, is only a function of
r —r" and r' —r")

P P
E(iO +in, iu„)= dr dr'e' " +' " 6( z' zzrr')

0 0

f3

dr e' " dr'e' " (J(zr)p(z'r')p(z")) + dr'e' " (p(z'r') J(zr)p(z"))
0 0 T

(Al)

We now insert the identity 1 = P„ln)(nl, where (ln)} is a set of eigenstates for the Hamiltonian, between the
operators in Eq. (Al). After performing the two imaginary time integrals and some algebra we obtain

A(iA„+in, ku„)= eP ) (kl J(z) lm)(mlp(z') ll)(lip(z") lk) .
k,m, l

(e
—P e

—P a) + (e
—P a e P)—

~ ~

1 1

iO„+i~„+Eg —E) i0„+EA, —E

+(ml J(*)lk) (tl p(z') lm)(kl p(*")lt)

(A2)(e P«e P&a
) +— —

(e
—P&a e P& )—

~ ~ ~ ~

1 1

+ E) —EA, iO„+E —EI,

From this expression we can read of the branch cuts of
A(iA +in„,iu ), which is used when doing the Mat-
subara sum over iu in Eq. (20a).

APPENDIX B: PROOF OF 4(++) = 0

We consider the quantity

E(K, 70~ + x(d~, Rd~)

P P
dr' dr e' " e' " (T[J(r)p(m'r')p(0) ),](Bl)

0 0

where J = I dz j„(z). The Fourier of E(z', iO„+
iu„,iu„)with respect to m is E(q, q;iA +in, iw ).

We need the two combinations 4(+—) and 4(++).
It is clear that if we set iO = 0 in expression above we
lose the information necessary to evaluate 4(+—) and we
can only get 4(++) by the substitution iu ~ ~ + ib.
The dc limit of b, (++) can be safely evaluated by setting
iO = 0 before the analytic continuation. Doing that we
obtain

A(z', i~„,i~„)= P dr'e' " (T[J(r)p(z'r')p(0)]).

(B2)
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Now consider the dense. ty-density correlation function for
the case when the Hamiltonian has been enlarged by a
vector potential term

(omitting a diamagnetic term that is not important for
the present argument). If we view A& as a perturbation
we can write the charge-charge correlation function as

y~(m', v') = T exp — d&A„J„(7)

x p(a'~') p(0) (B4)

Prom this expression it is seen that the function L can
be obtained as

(, ,
)

dye(a', ~')
dA„ (B5)

k
K(k, q, ik, i~„)

m

= [G(k, ik )]' q(k; ik )G(k + q, ;k +;~„)m

OG(k, ik ) G(k + q, ik + i(u„),

Since a constant vector potential can always be removed
by a gauge transformation (this is, however, only strictly
true for a system with open boundary conditions), y~
cannot depend on A and hence we arrive at the conclusion
that 4 = 0.

As a specific example we now take the impurity aver-
aged 4(++) function in the simplifying case where we
can neglect the charge vertex corrections (i.e. , not in the
diffusive limit). Setting iO = 0 in Eq. (25), we then
have

polarizability including the vertex correction I' is given
by

y(q, i(u„)= ) ) G(k + q, 'is~ + 2ld~)
k ie„

x G(k, is )I'(q;ic„+iu„,is ). (C1)

For qvF& ( 1 and ~w ( 1, I' is given by Eq. (35).
Inserting this form of the vertex correction in Eq. (Cl),
writing the sum as a contour integral, and deforming the
contour in the standard manner yields

2
y(q, ~) = ——) . nF(c)([I' (q, (u)G" (k+ q, s)

v 2&1

—G (k+ q, s)]G (k, c —u))

+[G'(k, s) —I' (q, (u)G (k, s)]
xG"(k+ q, s+ ~)j. (C2)

In the above equation, the analytic continuation i~
u + i0+ has been taken and I'+(q, ur) is defined in Eq.
(36).

We write y = y + ys, where y (gs) excludes (in-
cludes) the vertex corrections. The term y to lowest
order in q and ~ is

(C3)

Note that y to lowest order in q and ~ is purely real.
The second part is

2 ~ dG'

y (q, ur)—:——) .nF(c) G"(k, s)G'(k+ q, s+ ur)
p 2' x

—G (k+ q, s)G (k, —s (u)

2 . ds 8[G'(k, s) —G (k, s)]
.nF s

v 27rx OE'

ck
~

2
.n'F (s) —) [G'(k, s) —G (k, s)]

2&1 p

OA

where we have used the Ward identity O~G ~(k, ik ) =
kp(k, ik )/m. Integrating by parts, we obtain

(q, q, ;iur, iv)„)

——) G(k, ik )G(k + q, ik
0 e 1 die

Bq m 271
ik

2
X&(q ~) = I (q ~) ) nF(s)

x [G' (k + q, s)G (k, s —~)
—G (k, e)G (k+ q, s+ cu)].

To lowest order in q and u, this is

19K —'Eld

Op Dq

(C4)

(C5)

+i~„)—G(k, ik )G(k —q, ik —i~ )j = 0, (B6)

which can be seen by shifting ik„and A', in the second
term.

Thus yp has an imaginary component, which, as shown in
Sec. III, is related to the 6 when qv~w & 1 and u7 & 1.

APPENDIX C: IMAGINARY PART
OF THE POLARIZABILITY
IN THE DIFFUSIVE LIMIT

In this appendix, we derive expressions for Im[y] when
qv~7 & 1 and uw & 1, i.e, in the diffusive limit. The

AP PENDIX D: JUSTIFICATION
FOR NEGLECTING G~G+ AND G~G+ TERMS

In this appendix, we show that the terms in 61. involv-
ing products G"G and G G (denoted below as 3„)can
be neglected when compared to G G" when E~w &) 1,
in the diffusive limit. Written in full, L, is
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(Dl)

Note that at ~ = 0, this term is identically zero. Expanding in powers of ~ gives

(q, q;~ + ih, ~' —ih) = ———) n~(s)k (I' (q, ur) —G (k, s)G"(k+ q, s+ ~) —G (k, &)G (k —q, & —~)
m p

+G"(k, s —m)G" (k+ q, s') + G (k, s'+ u))G (k —q, s) + c.c.}.

'T 4 ~ dE'4, (q, q;(u'+ib, ~' —ib) = Re (ul' —(q, u) ——) —np(s) k
m V 2'

8[G (k, s)G (k —q, s) —G"(k, c)G"(k+ q, s)]

——) —n&(s) k [G (k, e') G (k —q, s) —G"(k, s)G"(k + q, s)] + O(~ ).
m p

(D2)
Expanding Eq. (D2) in powers of q and assuming that the self-energy is small (since w is large) so that BG/Beg --G,
yields

b., (q, q;(u'+ib, (u' —ih) = Re (uq I' (q, (u) ——) —n~(s) [G (k, s) +G"(k, s) ] +O(q, ~ ).
m V 27l m

k

Integrals of G '"(k, s)s over k do not diverge when w ~ oo because the poles of the function are on the same half-
plane [unlike integrals over G (k, s)G"(k, s), which go as 2]. Since n+(s) is peaked around p, one can estimate the
magnitude of b, , by replacing —n&(e') —b(s —p), which gives

O'T QJ

A, (q, q';~'+ih, ~' —ih) = Re I' (q, ~)
27t

(D4)

A comparison of this with 41 given in Eq. (40) shows that b, , is smaller by a factor of I/(E~2. ).
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