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Effect of impurities on the current magnification in mesoscopic open rings
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We have considered an open system consisting of a metallic ring coupled to two electron reservoirs.
We have recently shown that in the presence of a transport current, circulating currents can Aow in such
a ring even in the absence of magnetic field. This is related to the current magnification effect in the
ring. In our present work we have studied the effect of impurity on the current magnification. We find

that the presence of impurity can enhance the current magnification in the loop significantly and thus
lead to large circulating currents in a certain range of Fermi energies. This is in contrast to the known
fact that impurities can only decrease the persistent currents in closed ring in the presence of magnetic
fiux.

I. INTRODUCTION

In the past decade physics of mesoscopic systems has
emerged as an important area of research from the point
of view of basic physics and technology. ' Mesoscopic
physics deals with the structures made of metallic or
semiconducting material on a nano meter scale. The
length scale associated with the system dimensions in
these systems are much smaller than the inelastic mean
free path or phase breaking length. In this regime, an
electron maintains particle phase coherence across the
entire sample. In general, a system with a large degree of
freedom is called mesoscopic if the length up to which
the wave function retains phase coherence (or, in general,
correlation length) exceeds the size of the system. The
main characteristics of mesoscopic systems being the
quantum coherence. These systems, which are now ac-
cessible experimentally, provide an ideal testing ground
for our quantum-mechanical models beyond the atomic
realm. These systems have revealed, several interesting
and previously unexpected quantum effects at low tem-
peratures, ' which are associated with the quantum in-
terference of electron waves, quantization of energy lev-
els, and discreteness of electronic charge.

A persistent current in small metal rings threaded by
magnetic Aux is prominent among many quantum effects
in submicrometer systems. Biittiker, Imry, and Landauer
predicted the existence of equilibrium persistent currents
in an ideal one-dimensional ring in the presence of mag-
netic flux (P). The magnetic field destroys the time-
reversal symmetry and, as a consequence, persistent
current (or ring current) fiow in the loop and is periodic
in magnetic fiux, with a period $0, $0 being elementary
fiux quantum (go=bc/e). At temperature T =0, the am-
plitude of persistent current is given by evf /L, where vf
is the Fermi velocity and L is the circumference of the
ring. For spinless electrons persistent current is diamag-
netic or paramagnetic for X odd or even, respectively.
Several recent experiments hgve provided convincing
evidence that a normal metal ring threaded by a magnetic
fIux exhibits in thermodynamic equilibrium a current

that never decays. After these experiments, the per-
sistent current is accepted as a parameter that character-
izes equilibrium state of a small metal ring. However,
there is a discrepancy up to two orders of magnitude be-
tween experimental and theoretical results in the diffusive
regime. Attempts to improve upon these results have
lead to a spur in the theoretical work on a persistent
current in isolated mesoscopic rings. Theoretical studies
have been extended to include multichannel rings, and
consider the effects of disorder, spin-orbit coupling and
electron-electron interaction. ' However, the experi-
mental results obtained in the disordered diffusive regime
have not yet been explained satisfactorily, despite the in-
tensive theoretical research. The problem of persistent
currents has also facilitated the study of some fundamen-
tal problems of statistical mechanics, most notably the
questions concerning the role of statistical ensemble. The
disordered average current is found to be vanishingly
small for moderate disorder when grand canonical en-
semble is used, whereas it is of finite amplitude within the
framework of canonical ensemble. '

In contrast to the intensity of theoretical studies for
isolated systems, the problem of persistent currents in an
open system has received less attention. ' ' Persistent
currents occur not only in isolated rings, but also in the
rings connected via leads to electron reservoirs, namely,
open systems. A simple open system is shown in Fig. 1,

FIG. 1. A metal loop connected to two-electron reservoirs,
with chemical potentials p& and p2. There is a 5 function poten-

tial impurity at the site X in the upper arm.
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wherein, the metallic loop is connected to two reservoirs
characterized by chemical potentials p& and p~, respec-
tively. Each reservoir acts as a source and sink for elec-
trons and the carriers emerging from the reservoir do not
remember their earlier history. The reservoirs absorb
carrier energy and thus provides a source of energy dissi-
pation, as well as incoherence. All the scattering process-
es in the leads including the loop are assumed to be elas-
tic. Inelastic processes occur only in the reservoirs, and
hence there is a complete spatial separation between the
elastic and the inelastic processes. Weak inelastic pro-
cesses, however, do not destroy the periodic behavior of
persistent currents as a function of magnetic fiux
Open systems provide two distinct possibilities: the first
being the equilibrium open system, when p, =p2. The
second being the case, p, &p2 when a net current fiows
across the system and this open system corresponds to a
nonequilibrium steady state. It is needless to say that
equilibrium closed and open systems correspond to
different statistical ensemble descriptions, namely, a
canonical and a grand canonical ensemble system, respec-
tively. Due to the presence of inelastic scattering (due to
reservoirs), the amplitude of persistent currents in equi-
librium open system is small as compared to the closed
systems.

In our earlier studies, we have pointed out that several
effects related to persistent currents can arise in open sys-
tems, which have no analog in closed or isolated systems.
In particular, we have shown that in the presence of mag-
netic flux, the magnitude of persistent current is sensitive
to the direction of current Row, ' unlike the physical
quantities such as conductance. Also we have discussed
the possibility of observing persistent current arising
simultaneously due to two nonclassical effects, namely,
the Aharonov-Bohm effect and quantum tunneling. ' In
our recent work, we have shown that circulating currents
can arise in the presence of a transport current, even in
the absence of magnetic field. ' ' This is purely a quan-
tum effect and is related to the property of current
magnification in the loop. This simple quantum effect
can be explained as follows. Consider a system of metal-
lic loop of circumference L coupled to two electron reser-
voirs, characterized by chemical potentials p, and pz con-
nected via ideal leads as shown in Fig. 1. The leads make
the contact with the loop at junction J, and J2. For sim-
plicity, consider a case without the 6 function impurity at
X in Fig. 1. The lengths of the upper and lower arms of
the loop are l'&+l2 and l3, respectively, such that the
length L of the circumference of the loop equals
L =l)+l2+l3. To obtain the transport current, we must
have p, &p2 (nonequilibrium situation). The transport
current will be directed from left to right or from right to
left, depending on whether p &

& p2 or p2 &p, . The
current injected' by the reservoir into the lead around
the small energy interval dE is given by
I;„=eu(dn/dE)f (E)dE, where u =irik/I is the velocity
of the carriers at the energy E, dn IdE = l/(2Mu) is the
density of states in the perfect wire, and f (E) is the Fer-
mi distribution. The total current How I in a small ener-
gy interval dE through the system is given by the current

injected into the leads by reservoirs multiplied by the
transmission probability T. This current splits into I&

and I2 in the upper and lower arms such that I =I, +I2
(current conservation). As the upper and lower arm
lengths are unequal, these two currents are different in
magnitude. When one calculates quantum mechanically
currents (Ii,I2) in the two arms, two distinct possibilities
exist. The first possibility being for a certain range of in-
cident Fermi wave vectors, the current in the two arms I,
and I2 are individually less than the total current I, such
that I=I&+I2. In such a situation, both currents in the
two arms Aow in the direction of applied field. However,
in certain energy intervals, it turns out that the current in
one arm is larger than the total current I (magnification
property). This implies that to conserve the total current
at the junctions, the current in the other arm must be
negative, i.e., the current should Aow against the applied
external field induced by the difference in the chemical
potentials. This is purely a quantum effect. In such a s&t-

uation, one can interpret that the negative current Bow-
ing in one arm continues to Qow as a circulating current
in the loop. ' ' Thus, the magnitude and direction of the
circulating current is the same as that of the negative
current. Our procedure of assigning a circulating current
is exactly the same as the procedure well known in classi-
cal LCR ac network analysis. When a parallel resonant
circuit (capacitance C connected in parallel with a com-
bination of inductance L and resistance R) is driven by
external electromotive force (generator), circulating
currents arise in the circuit at a resonant frequency.
This phenomenon is well known as current magnification.
For details we refer to Refs. 19, 20, and 22. We would
like to emphasize that in our case, for a fixed value of
Fermi energy, the circulating current changes sign as we
change the direction of the current How. ' In equilibrium
(pi =p2) we do not obtain any circulating current in the
absence of magnetic field. Only in the nonequilibrium sit-
uation (pi&p2), i.e., in the presence of a steady transport
current Aow across the system, it is possible to observe
the circulating currents.

In this paper, we study the effect of impurity on the
current magnification. We have taken the impurity po-
tential to be V(x) = V5(x), and the position of impurity is
represented by X in the upper arm of the loop. Our
motivation to study the impurity effect on current
magnification is the following. At a first glance, we
naively expect that the presence of impurity leads to in-
creased scattering and hence suppression in the current
magnification. However, we show that contrary to ex-
pectation, the current magnification can be enhanced in
the presence of impurity.

For example, consider a special case of a symmetric
loop (both the arms have equal lengths) in the absence of
the impurity potential, i.e., l

&
+ l2 = l3, then current

magnification is not possible. Because of the symmetry,
we shall have Ii =I2=I/2 and currents in two arms
Qowing in the direction of the applied field. Now putting
an impurity in one of the arms breaks this symmetry.
Thus, in general, Ii&I2 and the current magnification is
now possible at particular Fermi energies. So this simple
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picture tells us that impurities can enhance the current
magnification property. Also, it should be remembered
that if we take the extreme limit of V~ 00, the current in
the upper arm is zero (Ii =0), and I2=I I.n this limit,
there can be no circulating current. This simple case sug-
gests that the impurity potential, in general, may help the
enhancement of current magnification for particular Fer-
mi energy ranges and also can suppress the amplitude of
circulating currents at some other energy ranges. In fact,
we show in the following analysis that impurity enhances
current magnification drastically for particular values of
Fermi energies. The enhanced circulating current at
some energies can be as high as 10000 times the magni-
tude of the net current Aow in the system. In the quan-
tum case discussed here, there is no principle restricting
the upper bound of current magnification and it can be
arbitrarily large without violating the basic law of conser-
vation of the current at the junctions (Kirchoff's law). In
a closed isolated loop, in the presence of magnetic Aux P,
a persistent current carried in by single-particle energy
level e„ is given by I„=—Be„/BP, and the total current
is I=XI„f(e„),where f (e„) is the Fermi function. In
this case, the presence of impurity in the otherwise ideal
loop leads to scattering, which lifts the degeneracy of
states (level repulsion) at the values /=0, +$0/2. . . etc.
(at Brillouin-zone boundaries). This in turn fiattens the
energy curve as a function of P and as a result the ampli-

tude of persistent current always decreases with an in-
crease in the impurity strength (for details see Ref. 9).

II. THEORETICAL TREATMENT

We now consider a case of one-dimensional metal loop
of length I. coupled to two-electron reservoirs, as shown
in Fig. 1, and a current is injected into the metal loop
from the left (pi) pz). Our calculation is for a nonin-
teracting system of electrons. Except at the 5 potential
impurity (of strength V) at site X, the potential
throughout the network is zero (free electron network).
We do not assume any particular form for the scattering
matrix for the junctions J, and J2, but scattering at the
junctions follow from the first principles using quantum
mechanics. At temperature zero, the total current Row
around a small energy interval dE around E is
I=(e/2M)TdE, where T is the transmission coefficient
calculated at the energy E. It is a straight forward exer-
cise to set up a scattering problem and calculate the
transmission coefficient (T) and the current densities in
the upper (Ii) and the lower (Iz) arms. We follow our
earlier method of quantum waveguide transport on net-
works closely to calculate these quantities i7-20, 23-25 We
have imposed the Griffiths boundary condition (conserva-
tion of current) and single valuedness of the wave func-
tions at the junctions. The final analytical expressions for
the current densities are given by

dI
dE

= (e/2m') T,

T=16[V2cos~[k(l, —lz)] —2V cos[k(l, —l2)]cos[k(l, +12)]

+ V cos [k ( l i + l z ) ]+4k V cos[k ( l
&

—l2 ) ]sin[ @( 1
&
+12 ) ]—4k V cos [k ( 1

&
+ 1z ) ]sin[ @ ( l

&
+ l z ) ]

+4k sin [k((i+I&)]+4kVcos[k(li —12)]sin[k13]—4kVcos[k(l, +I&)]sin[k13]

+8k sin[k(l&+Iz)]sin[kl3]+4k sin [kl3]] /0,

dIi
dE

=(e /2M) 16k [2k —2k cos(2kl3 )+2k cos(kr) —2k cos(kL)

—V sin(kp) + V sin(kr) + V sin(ks) —V sin(kL) ] /0, (3)

= —(e/2~)16[ —2k~ —V + V cos[2kl, ]—V cos[2k1, ]cos[2kl2]+ V cos[2kl2]

+2k cos[2k(ii+ 1& )]—2k cos[kr]+2k cos[kL] —2k V sin[2kl, ]—2k V sin[2kl2]

+2k V sin [2k ( I i + l z ) ]+k V sin [kp ]—k V sin [kr ]—k V sin [ks]+k V sin [kL ] ] /0,

where
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0= [64k +4V cos [kp]+32k cos[kr]+4k cos [krj+32V cos[kp]cos[ks]

+4V2cos2[ks] —160k cos[kL] —16V cos[kp]cos[kL]
—40k cos[kr]cos[kL] —16V cos[ks]cos[kL]+100k cos [kL]

+16V cos [kL]—16kVsin[kp] —4kVcos[kr]sin[kp]+20kVcos[kL]sin[kp]+ V sin [kp]+16kVsin[kr]

+4k V cos[kr]sin[ kr] —20k V cos[kL]sin[kr] —2 V sin[kp]sin[kr]

+ V2sin2[kr j+ 16k V sin[ks]+4k V cos[kr]sin[ks]
—20kVcos[kL]sin[ks] —2V sin[kp]sin[ks]+2V sin[kr]sin[ks]+ V sin [ks] —80kVsin[kL]

+32k V cos[kp]sin [kL]—20k V cos[kr)sin[ kL]+ 32k V cos[ks]sin [kL]+36k V cos[kL ]sin[ kL ]

+10V sin[kp)sin[kL ]—10V sin[kr]sin[kL] —10V sin[ks]sin[kL]+64k sin [kL]+25V sin [kL]] . (5)

In the above equations, k=&E is the incident wave
vector, p = l

&

—l2 —I3, I.= l I + l2+ I3 7 = I I + l2 l3 and
s =I& —l2+l3. We have rescaled current densities in a
dimensionless form and henceforth, we denote
I( =2vrfi/e dI/dE), I&( =2m%/e dII IdE), and
I2(:2M/—e dI2/dE) and we have set units of A' and 2m
to be unity.

III. RESULTS AND DISCUSSIONS

In the limit V=O, our expressions agree with earlier
known results. ' ' We have studied the behavior of I&
and I2, as a function of Fermi wave vectors and identify
the wave-vector intervals, wherein either the II or I2
Aows in the negative direction for VAO. In any range of
Fermi energy if one of them (I& or I2 ) is negative, then
the magnitude of the negative current gives the circulat-
ing current. When I, is negative, the direction of circu-
lating current is anticlockwise and when I2 is negative,
then it is clockwise. A clockwise circulating current is
taken to be positive and an anticlockwise as negative ac-
cording to the usual convention followed for persistent
currents in closed rings. Having defined a circulating
current in this manner, we plot in Fig. 2 a circulating
current versus kl. for two values of the impurity potential
strength. The solid curve is for VI. =0 and the dotted
curve is for VI. = 1. In both the cases, we take
l, /L =0.3125, l2/L =0.3125, and l3/L =0.375. The
figure shows that the dotted curve is slightly shifted to-
wards a higher energy axis, with respect to the solid
curve and the first peak value of it is larger than that of
the solid curve. It shows that in the first energy range
where we obtain a circulating current, the amplitude of
the current is actually enhanced by the impurity potential
and the position of this range of Fermi energy is modified
due to the impurity. The amplitude of the first negative
peak in the circulating current decreases, and the circu-
lating current behavior in the interval of kl. between
10—15 is qualitatively modified. As discussed in our ear-
lier paper, ' the nature of the circulating current depends
on the zero-pole pair structure in the transmission ampli-
tude. The circulating current arises near the poles (or at
a real value of the pole in the complex plane) in the
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FICx. 2. Plot of circulating current versus kL for VL=0
|,'solid line) and VL = 1 (dotted line). In both the cases
ll /L =0.3125, l2/L =0.3125, and l3/L =0.375.

transmission amplitude. An imaginary value of the poles
in the complex plane determines the width of the peak.
The poles determine the resonant states of the system.
The smaller the imaginary value is the narrower the peak
is. The shift in the peak position on the real axis is attri-
buted to the fact that the position of the poles change as
we change the impurity potential. The circulating
current is also enhanced at some other Fermi energy
ranges, whereas at some others it is suppressed, because
of the impurity. This happens because of the fact that
circulating current, due to current magnification, has a
completely different origin than that of persistent
currents due to the presence of magnetic field in closed
isolated rings.

Several circulating current peaks exhibit exotic
behavior, as we keep increasing the impurity strength.
For the sake of clarity, we will consider only the behavior
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of circulating currents in the first range of kL around
which circulating current arises. In Fig. 3, we plot circu-
lating current versus kL for various values of VL in the
first energy range, which keeps changing with change in
VL. The curves a, b, c, d, and e are for VL =5, 10, 15,
20, and 25, respectively. For all the curves, we take
l, /L =0.3125, l2/L =0.3125, and l3/L =0.375. The
figure shows that initially the magnitude of the first peak
on the positive side increases monotonously and also the
peak position shifts towards higher energy with VL
However, as the magnitude of the peak value at the max-
imum increases, the width of the peak decreases. On the
other hand, the magnitude of the circulating current peak
on the negative side in this first energy range is not so
sensitive to the impurity strength VL. Initially, as VL in-
creases, it decreases slightly. This can be seen by observ-
ing the curves a, b, c, and d. For curve e this peak on the
negative side has increased slightly with respect to the
curve d. So this negative side peak exhibits a small oscil-
latory behavior with VL. However, the width of this neg-
ative peak monotonously decreases as a function of the
strength of the impurity in the given range of potential
strength considered in the figure. Needless to say that
the shape of the peaks also rejects the nature of density
of states around the position of the peak (or at reso-
nance). Enhancement of density of states around the
poles leads to large circulating currents. This can be easi-
ly verified by calculating the density of states near the
poles by using Friedel's theorem, according to which
change in density of states due to a scatterer, at a particu-
lar energy is given by 1/nd8/dE, w.here 8 is the argu-
ment of the complex transmission amplitude.

From now on we study the behavior of the maximum
value (I,„}of the first circulating current peak on the
positive side as a function of the impurity strength. The
position of the I,„on the real kL axis is given by the
real part of the pole in the transmission amplitude (or
scattering amplitude} in a complex kL plane. It is clear
from the earlier Fig. 3 that I,„ increases initially as a
function of VL. In Fig. 4, we have plotted I,„versus
VL, the values of the physical parameters li/L, 12/L,
and l3/L are the same as that used for Fig. 3. We nu-
merically evaluate I,„ofthe circulating current (at the
first peak) for a fixed value of VL and then slowly change
VL up to VL =31 in order to plot the peak value at the
maximum of circulating current versus VL. In Fig. 4, we
have not shown the behavior of I,„ in the range
VL =(28.0) to VL =(29.1) as the magnitude of the I~,„
increases rapidly and goes beyond the scale. Between a
value of VL =28 and VL =29, the I,„ is several orders
of magnitude larger than the total current I through the
sample and the corresponding widths of the peaks are ex-
tremely small. For example I,„=111.123, 175.687,
709.423, 8958.1428, and 11755 for values of VL =28.2,
28.5, 28.9, 28.99, and 29.01, respectively, and the peak
value I,„on kL axis corresponds to kL =8.3549242,
8.3633125, 8.374304, 8.37674705, and 8.377288471,
respectively. In fact, I,„diverges for VL =(29) (for this
case, corresponding kL =8.377 017 852 04). Above
VL =29, the I,„shows a drastic fall in the magnitude
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FIG. 3. Plot of circulating current versus kL for various
value of VL in the first energy range. The curves a, b, c, d, and e
are for VL=5, 10, 15, 20, and 25, respectively. For all the
curves l

&
/L =0.3125, l2/L =0.3125, and l3/L =0.375.
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FIG. 4. The figure shows the scaling of I,„with VL for
l& /L =0.3125, l2/L =0.3125, and l3/L =0.375.

and as expected it reaches the value zero in the limit
VL~~. In this limit, the current in the upper arm is
zero (Ii =0) and I2 =I and hence no circulating current
Aows. Our above observations clearly indicate that there
is no upper bound for the current magnification (same as
in the case for classical LCR networks driven by external
ac electromotive force in the limit the magnitude of
resistance R~0). For the particular case considered
here, as we increase impurity strength initially it helps
the current magnification and on reaching a critical value
(at which current magnification diverges) a further in-
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FIG. 5. The plot of the strength or magnitude of the imagi-
nary part of the first complex pole of the transmission amplitude
versus VL for l

&
/L =0.3125, l2/L =0.3125, and l3/L =0.375.

crease in the impurity strength decreases the current
magnification. Thus impurity, in general, can play a dual
role of enhancing, as well as suppressing the current
magnification effect.

To analyze in some details the divergence in current
magnification, we study the imaginary part of the pole
I (p) in the complex kL plane. In Fig. 5, we have plot-
ted the imaginary part of the pole (first pole) correspond-
ing to Fig. 4 (by analyzing the transmission amplitude in
the complex kL plane), as a function of VL. All the phys-
ical parameters are the same as that used for Fig. 4. One
can immediately notice that the imaginary part of the
pole decreases as we increase VL. This corresponds to a
situation where the current magnification increases as a
function of VL. At a value of VL =(29), an imaginary
part approaches zero. This is the same value of VL,
where the current magnification exhibits divergence. In a
sense, the divergence of current magnification occurs as
poles of a transmission amplitude in the complex plane
approaches the real axis. The lifetime of the resonant
state (corresponding to poles) is inversely proportional to
the imaginary part of the pole. The imaginary part being
zero implies that the resonant state has an infinite life-
time, and hence is a bound state. This bound state is lo-
calized across the loop and corresponds to a von Neu-
mann and signer-type bound state in continuum.
As we increase VL further, the imaginary part increases
and consequently the peak value of circulating current
decreases.

The circulating current due to current magnification
generally appears around the zeros of the transmission
coefricient, but there can be cases where this is not true,
as shown in Fig. 6. Here, we have plotted circulating
current (solid curve) and the transmission coefficient
(dashed curve) versus kL for VL =20, Ii/L=0. 3125,
l2/L =0.3125, and 13/L =0.375. In the kL range from
34 to 45, we find a large circulating current and around
this region T goes to zero nowhere, but has a minimum
(antiresonance). As mentioned in the Introduction, in the
special case of a metal loop with two equal arms and
without the presence of impurity, the currents I, and I2

1.5
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0.5
Q

0.0

—1.5
34.0

I i I I I I I i )

36.0 38.0 40.0 42.0 44.0
kL

FIG. 6. Plot of the circulating current (solid curve) and
transmission coefficient (dashed curve) versus kL for VI =20,
l& /L =0.325, l2/L =0.3125, and l3/L =0.375.

on the arms (due to symmetry reasons) are equal and
each equal half of I at all Fermi energies. So at no Fermi
energy interval we get a circulating current according to
our definition for it as stated earlier. However, a small
impurity in one of the arms breaks the above symmetry
and the currents I, and I2 are not equal. This gives rise
to the circulating current in a certain range of the Fermi
energies, and we find that as the impurity strength is in-
creased from zero, initially the circulating current ampli-
tudes in all the relevant kL intervals show a tendency to
increase.

So far we have discussed the effect of the impurity
strength on the current magnification. In the following,
we consider the effect of the impurity position on the
current magnification. For this we consider a fixed im-
purity strength and fixed upper and lower arm lengths.
In Fig. 7, we have plotted the circulating currents as a
function of kL for a fixed value of impurity strength
VL =(10) and the impurity placed at various different
positions in the upper arm. The solid curve is the case
when the impurity is placed in the middle of the upper
arm (li/L =0.3125, l2/L =0.3125, and l3/L =0.375),
whereas the dashed curve is for the impurity position
away from the center of the arm (l, /L =0.4,
12/L=0. 225, and 13/L=0. 375). We observe drastic
changes in the nature, height, and width of the circulat-
ing current peaks in the two cases. Again, this can be ex-
plained from the point of view of the shift in the pole
structure for the two different cases.

In conclusion, we have studied the effect of impurity
on the current magnification in an open metallic loop in
the presence of a transport current. In this nonequilibri-
um a steady-state circulating current arises even in the
absence of magnetic field. More importantly, we have
shown that the presence of impurity can dramatically
enhance the current magnification effect at particular
values of Fermi energies, whereas it can decrease the
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FIG. 7. Plot of circulating current versus kL for VL =(10)
and for two positions, respectively, of the impurity in the upper
arm. The solid curve is for I& /L =0.3125, l2/L =0.3125, and
l3/L =0.375. The dotted curve is for l& /L =0.4, l2/L =0.225,
and l3/L =0.375 ~

suppressed as one increases the impurity strength. Since
the underlying principle of circulating currents in open
systems in the presence of a transport current (and in the
absence of magnetic field) is different from the persistent
currents in isolated rings in the presence of magnetic Aux,
we expect that even in the presence of random impurities,
one should expect current magnification of observable
magnitudes in open systems in the presence of a transport
current. Work along these lines is in progress. The cir-
culating current changes sign if we change the direction
of the current and hence at equilibrium (@&=@2)no cir-
culating currents are possible. Since the magnetic mo-
ment of the loop is proportional to the line integral of the
current (i.e., the total current integrated over Fermi ener-
gies between pi and p2 at temperature T=O) along the
entire circumference of the loop, due to the current
magnification effect, we expect that one should observe
enhanced magnetic response around particular Fermi en-
ergy intervals. This can be achieved experimentally by
having a gate (which mimics the impurity potential) in
one of the arms and by appropriately tuning the gate
voltage and Fermi energy or (p, —p2). The experiment
will show dramatic enhancement in the magnetic
response. The effect of the magnetic field on the current
magnification will be presented in future studies.

current magnification at some other values of Fermi ener-
gies. We have shown that current magnification property
is not only sensitive to the impurity strength, but also
sensitive to its position. This is in contrast to the effect of
the presence impurity on persistent currents in closed iso-
lated metallic rings, where persistent currents are always
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