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Significance of nonorthogonality in tight-binding models
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The tight-binding Hamiltonian (TBH) presumes a basis of orthogonal Wannier states assumed to
be localized about the lattice sites. We demonstrate that when beginning with a nonorthogonal or
overlapping basis, orthogonalization introduces terms equivalent to beyond nearest-neighbor hopping
terms in the TBH. We show, using the example of graphite, that the consideration of the overlap
between nearest-neighbor orbitals leads to an improved and simplified parametrization of the TBH
band structure. In addition, localized overlap is shown to give a simple picture of the orthogonality
catastrophe.

I. INTRODUCTION

The tight-binding Hamiltonian (TBH) has the follow-
ing well known form:

H = ) eic, c, + ) V~c, c~ + H c. ,

where the creation and destruction operators act upon a
basis of orthogonal states, Wannier states, assumed to be
localized about the lattice sites. e, represents the energy
of an electron at site i, while V;~ represents the "hop-
ping" of an electron from site i to j. Over the last three
decades, this Hamiltonian has been used successfully to
describe the electronic properties of systems containing
localized electrons. In such systems, the electron hopping
term V~ is limited to hopping between near neighbors.
The parameters e, and V;~ are optimized to fit either ex-
perimental results or more sophisticated band structure
calculations.

The Wannier states form an orthogonal set and con-
stitute the inverse Fourier transform of the crystal Bloch
states. In practice, however, the Wannier states are of-
ten approximated by atomiclike Slater orbitals centered
about each lattice site. Obviously the overlap between
such orbitals located on nearest-neighbor sites is nonzero,
so that although the Slater-like orbitals form a natural
basis set, they are not orthogonal. Yet the powerful for-
malism of second quantization requires an orthogonal ba-
sis for the proper definition of fermion creation and de-
struction operators and their associated Fock space.

Recently, there have been developments in the use of
localized Hamiltonians with nonorthogonal bases to de-
scribe complex systems, such as defects and surfaces.
Verges and Yndurian found that using a nonorthog-
onal Slater-like basis set, they were able to obtain a
better band structure for silicon than using the conven-
tional TBH for the same number of parameters. Menon
and Subbaswamy have gone on to develop a transfer-
able parameter set for silicon as was done by Harrison
for TB parameters. The importance of nearest-neighbor
nonorthogonality in TB calculations of electron-phonon

interactions has been recognized since 1979 when a
nonorthogonal basis set was introduced by Varma et al.
to calculate the electron-phonon interactions in transi-
tion metals within a TB framework. In this paper, we
elucidate the connection between systems as described
by an orthogonal and a nonorthogonal basis set.

In 1950, Lowdin developed a transformation to ob-
tain a Hamiltonian H with an orthogonal basis from a
Hamiltonian 'R with a nonorthogonal basis:

I = (1+S) '~ 'R(1+ S) (2)

where

and P (r) are atomiclike orbitals located at each lattice
site.

In this paper, we compare the transformed Hamilto-
nian with the TBH. This procedure was recently car-
ried out for a one-dimensional (1D) chain by Mirabella et
al. ,

' where the I owdin transformation was used implic-
itly to examine the effect of nearest-neighbor nonorthog-
onality. They found that the first order efFect of the
overlap between atomiclike wave functions on nearest-
neighbor sites induces terms in the band structure equiv-
alent to parametrization of the TB Hamiltonian up to
second-nearest-neighbor hopping terms.

Using Lowdin's transformation, the results of Ref. 7
can be generalized to 2D and 3D lattices. We have ex-
amined the effect of a nonorthogonal basis set, with over-
lapping nearest neighbors only, upon single-particle elec-
tronic properties of square, cubic, triangular and hexag-
onal monatomic lattices. To obtain the same band struc-
ture starting from a TBH requires the inclusion of third-
nearest-neighbor hopping terms, i.e., four parameters.
Given our understanding of crystal structure in terms of
bonding between overlapping orbitals, our findings in-
dicate that a more appropriate starting point for TB
calculations is a nonorthogonal localized basis set. As
an example, we compare the popular Slonczewski and
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II. THE LOWDIN TRANSFORMATION

The eigenfunctions of a system can be written as a
linear combination of basis functions. The coeKcients of
such a linear combination of nonorthogonal basis function
must satisfy the eigenvalue equation and completeness
condition:

'Rx = (1+S)xE,
1 = xt(l + S)x,

(4)
(5)

where

&-n = (x-l&le)
S-i = (x-lxi ) —~-,i

(6)
(7)

and ~x ), ~xp) are elements of the basis, (x,), of atom-
iclike orbitals centered about the lattice sites a and P,
and 'R is the crystal Hamiltonian.

Making the substitution, x = (1 + S) ~ c, the above
equations reduce to the familiar

Weiss and McClures iP (SWMc) parametrization of the
TBH for Bernal graphite with that obtained beginning
&om a nonorthogonal basis, and show that the use of a
nonorthogonal basis leads to an improved physical appre-
ciation of the contributions to the electronic properties
of Bernal graphite.

Overlap eKects also play a vital role in determining
the many-body wave function. We consider a locally
perturbed system, such as one in which a core electron
has been excited out of the crystal, as in the x-ray edge
problem. The overlap between the perturbed and un-
perturbed valence orbitals is shown to lead to a partic-
ularly simple demonstration of Anderson's orthogonal-
ity catastrophe. In an accompanying paper, paper II, we
demonstrate the efFect of the incorporation of nonorthog-
onality into a many-body interacting system, the Hub-
bard Hamiltonian.

where

(k) ) ik. (R —RP )

exp)8

i.e. , p, (k) is a function of the wave vector dependent upon
the geometry of the lattice. Including nearest-neighbor
overlap, S, only, the Fourier transform of the overlap
matrix is

1+ S = ) [1+Sy(k)]xt„xI, . (14)

In single band lattices such as the 1D, square, cubic, and
triangular lattices, R and (1+S) commute, so that

H ='R(1+ S) (15)

Thus, the eigenvalues of the orthogonalized Hamiltonian
are given by

hp+ hip(k)
1 + Sp, (k)

(16)

One could obtain Eq. (16) by finding the eigenvalues
of Eq. (4) directly. Such a technique is employed in the
extended Huckel method. In this paper, however, we
establish the link between nonorthogonal basis calcula-
tions and TB calculations with their accompanying basis
of Wannier states. This is carried out in the following
section, where the elements of the series expansion in
Eq. (17) are equated with their counterparts in the TB
energy dispersion relations.

III. THE EFFECT OF OVERLAP
ON BAND STRUCTURE

which can be expressed as a series expansion in Sp(k):

E(k) = hp+ (hi —hpS)p, (k) —S(hi —hps)p(k)

(17)

where

Hc = Ec,
1 =c c)

H = (1+S) '~ 'R(l+ S) (io)

In Eq. (17), the energy dispersion is expressed as a
series expansion in Sp(k). Retaining only terms up to
6rst order in the overlap between nearest neighbors, S,
the series becomes

X =) hpxtx +) h, xtxp+ Hc.
Cl ~p

where hp and hi are constants with hi g 0 for n, P near-
est neighbors only.

The Fourier transform of the above Hamiltonian is

'R = ) [hp + hip(k)]xktxg, (12)

In writing down the system's Hamiltonian, we assume
that only elements connecting the nearest neighbors are
significant. The corresponding Hamiltonian is

E(k) = hp + (h] —hpS) p(k) —Sh] ~p(k) ~

In Eq. (13) it can be seen that the argument of p(k),
k (B; —R~), while a continuous function of the wave
vector also depends upon the displacement of nearest-
neighbor lattice sites. ~p(k)~ corresponds to two con-
secutive lattice displacements. In a 1D system, such as
the linear chain, the ~p, (k) ~

factor introduces terms into
the energy dispersion corresponding to second-nearest-
neighbor hopping in a TB scheme, while in 2D systems

~ p(k) ~

introduces not only second-nearest-neighbor, but
also third-nearest-neighbor terms. This is the crux of
the relationship between nonorthogonal and orthogonal
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tight-binding models. In Eq. (16), the nonorthogonal en-
ergy dispersion relation is expressed as an infinite series
expansion in the nearest-neighbor overlap. Increasing
powers of overlap correspond to ever larger lattice dis-
placement factors. The series expansion is equivalent to
a parametrized TBH, with hopping terms of decreasing
magnitude between sites further and further apart. In the
usual form of the TBH, the series is terminated after the
first few terms, an approximation to the nonorthogonal
system that is increasingly accurate, the more localized
the electrons.

This is readily illustrated by the example of the infinite
one-dimensional chain, for which with interatomic spac-
ing a, p(k) = 2 cos ka. If the only terms in the Hamilto-
nian are the overlap between nearest-neighbor atomiclike
orbitals S and the elements of the nonorthogonal Hamil-
tonian connecting the site to itself hp and its nearest
neighbor hi, then the energy dispersion to the first order
in Sis

1+8= 1

Sp*(k)
Sp, (k)

1
(22)

H = (1+8)--R(1+8)--
= '8 ——(&'8+ 'RS) + —&'R&

1 1

2 4
3+—(SS'R + '888) + .
8

(23)

(24)

Keeping terms to the first order in S, the orthogonalized

4V

where p(k) = e' ~ +~" +e'l Ie ~+A:"s)+e ~ &~ [see Fig.
2(a)j. The l.owdin transformation can be expressed as a
series expansion in 8:

E(k) = (ho —2Shi) + 2(—Sho + hi)
x cos ka —2Shq cos 2ka.

This corresponds to a parametrized TB 1D chain energy
dispersion, with hopping between next-nearest neighbors,
l.e.)

2V

S = 0. 1V

E(k) = a + 2P cos ka + 2p cos 2ka. (20)

The eKect of nonorthogonality is clearly greatest where

p(k) is a maximum, namely, at the band edges. In Fig.
1(a) it can be seen that, as was noted by Ref. 7, the
nearest-neighbor orthogonality makes the band structure
asymmetric, corresponding to the effective mass of the
electrons at the top of the band being smaller than that
of the electrons at the bottom of the band. When the
band is half filled, p(k) = 0, so the neglect of overlap
effects is valid. Figure 1(a) shows that for a small overlap,
the series expansion converges rapidly to the all orders
result.

Figure 1(b) illustrates the effect of nearest-neighbor
nonorthogonality in the square lattice. Here, the maxi-
mum value of p, (k) is twice that of the linear chain, so
that the eÃect of nonorthogonality for the same nearest-
neighbor overlap is greater. The other important feature
is that the simulation of the eKect of nearest-neighbor
nonorthogonality to first order introduces TB hopping
terms between up to the third nearest neighbors. The
correspondence between the TBH parameters and the
coeKcients for the energy dispersion in the triangular,
square, and cubic lattices with nonorthogonal bases is
contained in Appendix A.

The hexagonal lattice is more complex, being com-
posed of two interpentrating triangular sublattices. It
is convenient to define two reciprocal space states, cor-
responding to the Fourier sum over each sublattice. In
this representation, the Hamiltonian and overlap matri-
ces are, respectively,

—2V
—vr /a

8V

\

\

4V

0

I

0.00

wave vector

S = 01V

wave vector

/
/

/
/

/y
/

//
/

hp

hip*(k)
hip(k)

hp
(21) FIG. 1. Band structure to the 0th, 1st, and all orders in

overlap for a (a) 1D chain and (b) square lattice.
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Hamiltonian H is

hp —Shr
I
p, (k) I' (hr —Shp) p(k)

(hr —Sho) p, *(k) ho —Shi p(k) I' (25)

The TBH for the hexagonal lattice, including nearest-
and next-nearest-neighbor hopping terms Vp and Vj, is

+ v, lit (k)
Vp p* (k)

Vp p(k)
( )

~ + Vr[ls (k)l' —3j

A comparison of Eqs. (25) and (26) shows that the inclu-
sion of next-nearest neighbor hopping terms in the TBH
model of the hexagonal lattice corresponds to modeling
nearest-neighbor overlap to the first order. The structure
of the hexagonal lattice means that upon displacement by
two lattice sites, one arrives at the next-nearest neighbor
of the initial lattice site. The energy dispersion to first
order in nearest-neighbor nonorthogonality is

FIG. 2. (a) The hexagonal lattice, (b) SWMc parameters
for Bernal graphite.

M

wave vector
FIG. 3. Band structure for hexagonal lat tice:

S=O, S=005.

0 hpP(k) 2hr v

hpp*(k) 0 0

2hiv 0 0
0 0 hop(k)

0
0

(28)
hpp, '(k)

0

hollows of the hexagons of the adjacent layers, unlike the
"A" sites, which bond weakly with the "A" sites in the
neighboring planes above and below. The bands about
the Fermi level in graphite arise from 2p orbitals par-
ticipating in vr bonding within the layer plane and weak
bonding between adjacent layers. The overlap with the
intraplane hybridized sp2 bonded bands is small. We
now describe the electronic structure of Bernal graphite
beginning from a nonorthogonal basis where the only sig-
nificant overlap is between in plane and interplane near-
est neighbors, Sp and 8i. The only nonzero elements of
the Hamiltonian are taken to be hp, the matrix element
between nearest neighbors in the layer plane, and hi, the
matrix element between the nearest neighbor on adjacent
planes. The respective Hamiltonian and overlap matrices
are

E(k) = hp —hlslp(k)l'+ (hr —sho)lp(k)l, (27)

from which it can be seen that the band minimum and
maximum are very sensitive to the overlap. This is illus-
trated in Fig. 3, with hp = 0 and hi = Vp.

1+8=
1

Spy*(k)
28i V

0

BpP(k) 28' v

1 0
0 1
0 BpP, (k)

0
0

Bpy, *(k)
1

A. Bernal graphite

In Bernal graphite, the layers are stacked alternately
AB'AB. The eKect is that the "B"sites are seated in the

I

where v = cos k c, and 8p and 8~ are the overlap inte-
grals between in plane and interplane nearest neighbors,
respectively. The following orthogonalized Hamiltonian
is obtained upon performing a Lowdin transformation
and retaining only terms to first order in the overlaps sp
and 8i.

—(sphplpl + 48lhrv )
Lpga
2h, gv

—(Brhp + sphr)vP

hP JM 2hiv
—BphplPI2 —(Brho + Bohr)vP,

—(Blho + sphl )vp —(Bph~p I@I + 48] hl v )
0 hpP

—(Brhp + Bohr)vP
0

hP JM

—Boholgl'

(30)
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Table I contains values of the band structure in
graphite obtained from angle-resolved photoemission
spectroscopy experiments. We have fitted our nonorthog-
onality parameters hp, h~, 8p, and sq to a conduction
band I' point of 10.0 eV and valence band I' points of
—7.0 and —8.5 eV, obtaining hp ———3.0, hq ———0.37,
sp ——0.044, and 8q ———0.047.

The SWMc TB parametrization of Bernal graphite
consists of seven parameters, six of which are illustrated
in Fig. 2(b). The seventh parameter ps represents the
small difference between the on site energy of "A" and
"B" sites. McClure showed that of the seven param-
eters, the four most significant are pp, pq, p2, and p3.
The hopping term between "B" sites on every second
layer, p2, lifts the degeneracy of the highest valence band
and lowest conduction band along the K-II line of the
Brillouin zone, creating the Fermi surface with its charac-
teristic hole and electron pockets. In contrast to p2, the
hopping term between "A" sites on every second layer,
p5, has little effect on the band structure. p3 introduces
asymmetry into the band structure and causes a trigonal
warping of the Fermi surface; however, the effect of p4 is

I

TABLE I. Experimental energy values at M, K, and I' (in
eV).

I' conduction
valence

K conduction
valence

M conduction
valence

Law et aL Marchand et aL

-6.5, -8.0 -7.6 +0.1, -9.0+0.1

0, -0.5 -0.35+0.1, -1.05+0.1

-2.0, -3.0 -2.4+0.1, -3.0+0.1

Takahashi'
et al.

10
-8,-10

2
-2.7

Reference 21.
Reference 22.

'Reference 23.

small. The difference in on site energies between the "A"
and "B" sites, p6, shifts the bands slightly with respect
to one another.

In a reciprocal space representation with four basis vec-
tors corresponding to the respective Fourier sums over
the "A" and "B"sites of the two layers in the unit cell,
the SWMc TBH becomes

- 2p5(2v' —1) + ps
'7pP

2py v

2+3vp

fpP
2p2 (2v2 —1)

2+3vp
2+4 VP

2+yv
2+3VI

2p$ (2v2 —1) + ps
'lpga

2+3vp
2'Y4v p
'YpP

2p2 (2v~ —1)

Comparison of the TBH with that obtained beginning
from a nonorthogonal basis [Eq. (30)] shows that po ++

&o, 7x ++ ~x, ps ++ —(sz~o+sohx), and ps ++ sqhq. —The
next-nearest-neighbor hopping terms p3 and p5 can be
seen to model nearest-neighbor overlap in the nonorthog-
onal system. However, the orthogonalized Hamiltonian
has no equivalent of p2 or p4. Yet p2 determines the exis-
tence of the Fermi surface in Bernal graphite. Therefore,
the Hamiltonian matrix element between "B"sites on the
next-nearest layers, h2, also needs to be included in the
nonorthogonal Hamiltonian to obtain the experimentally
observed Fermi surface. Density functional calculations
indicate that in Bernal graphite there is delocalization of
some of the vr bond charge density from the "A" sites
to the neighboring in plane "B" sites and interlayer re-
gions. Such a redistribution of charge density leads to an
increase in the significance of the matrix element between
"B"sites on every second layer.

Prom the correspondence between the nonorthogonal
and TB parameters obtained above, we And that our
nonorthogonal parameters correspond to a tight-binding
set of pp = —3.0, py = —0.37, p3 = —0.13, and
—0.02. Table II contains SWMc parameters determined
from more sophisticated theoretical band structure cal-
culations and experimental measurements, with which
our values of pp pi and p5 are consistent. Inclusion of
the second-nearest-neighbor terms in the nonorthogonal
Hamiltonian would introduce terms corresponding to p2
and p4 as well as adding to p3, improving the agreement
with the experimental parameters. Experimentally, p3 is

TABLE II. SWMc parameters, theoretical and experimen-
tal in eV (from Ref. 15).

QO

'Y1

y2

'73

p4

+5
p6
EF

Theoretical values
-2.598 + 0.015
-0.364 + 0.020
0.014 + 0.008

-0.319 + 0.020
-0.177 + 0.025
-0.036 + 0.013
0.026 + 0.010

-0.013 + 0.010

-2.9
-0.27
0.22

-0.14
-0.10

-0.0063
-0.0079
-0.027

Experimental
-3.16 + 0.05'
0.39 + 0.01

0.020 + 0.002'
-0.315 + 0.015
-0.044 + 0.024g
-0.038 + 0.005
0.008 + 0.002

-0.024 + 0.002

Reference 15.
Reference 24.

'Reference 25.
Reference 26.

'Reference 27.
Reference 28.

~Reference 29.

found to be much larger than p4, which is consistent with
our finding that the primary role of p~ is to account for
the nonorthogonality of the nearest neighbors. The rela-
tive magnitudes of p3 and p4 indicate that contributions
from the next-nearest-neighbor terms in the Hamiltonian
are much smaller than those from the nearest neighbors.

In Fig. 4, we compare band structures obtained using
the two theoretical SWMc parameter sets from Table II
and our orthogonalized band structure. Figure 5 shows
a more sophisticated double-( basis set LCAO (Ref. 17)
calculation. The band structure obtained from the or-
thogonalized Hamiltonian is in better general agreement
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12

—12
K

y6= —0.026

M K H K H K

s2 = —0.048

FIG. 4. Parametrized band
structures for Bernal graphite
(a) SWMc parameters from
Ref. 15, (b) SWMc parameters
from Ref. 24, (c) nonorthogo'-
nal parameters.

wave vector wave vector wave vector

with that of Ref. 17 than the other two parameter sets,
chiefly because of the inclusion of the nearest-neighbor in
plane overlap.

It is interesting to compare the values of the overlap
integrals 80 and 8~ with those obtained by approximating
the 2p, orbital by a single-( Slater orbital. ( is a length
scale factor accounting for the screening of the nucleus by
core electrons. so ——0.044 corresponds to ( 2.6, while
sq ———0.05 corresponds to ( = 1.6, which is the free
carbon atom value. The inconsistency of the two values
reflects the anisotropy of the system. In the layer plane,
the wave function is considerably more localized than in
the free atom, whereas from an interlayer perspective,
the wave function resembles that of the free atom. This
picture agrees with the finding by Ref. 16 of significant
interlayer charge density, indicating that parametrization

30-

25-

20

15

of the overlap can lead to an appreciation of the effect of
the crystal field upon the charge distribution.

While the S%'Mc parameterization has four princi-
pal parameters, po, p~, p2, and p3, to model the Fermi
surface properties of Bernal graphite, beginning from a
nonorthogonal basis requires five parameters: ho ky h, 2,
as well as the overlap parameters So, Sq. Although in
comparison with the minimal TB model the number of
parameters is not reduced, the overall agreement of the
band structure with experiment and more sophisticated
calculations is improved, principally through the incorpo-
ration of the in plane nearest-neighbor overlap, a feature
which is neglected in the TB model and which would
require an additional parameter.

This example illustrates two advantages of beginning
with an overlapping basis and transforming to the more
easily handled orthogonal basis. First, it enables inter-
pretation of the need for beyond nearest-neighbor terms
when fitting the parametrized band structure to more
sophisticated calculations. Second, the overlap itself can
be treated as a parameter, giving information about the
crystal field effects within the structure. Note that inclu-
sion of nonorthogonality effects in TB density of states
calculations would also improve the DOS, while not in-
troducing extra complexity to the calculation.

IV. OVERLAP AND THE ORTHOGONALITY
CATASTROPHE

g) —0-

-5

-10-

-15-

-20-
M KK Hf

FIG. 5. Double-( basis set LCAO band structure calcula-
tion for Bernal graphite (from Ref. 17).

The orthogonality catastrophe is a many-body effect
that arises when a system experiences a local change in
potential. Although the single-particle states of the per-
turbed system are not orthogonal to the original single-
particle states, the respective N-particle ground states
are orthogonal in the limit that the number of particles,
N, becomes infinite. Such orthogonality signals the fail-
ure of perturbation theory to describe the transition be-
tween states and is thus "catastrophic. "

Here, we give a simple demonstration of how the or-
thogonality catastrophe arises from the overlap between
the initial and final localized single-particle states. Let
the initial conduction band system be described in terms
of Wannier states in a TB picture:
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Hp —— t—) chic, + H.c., (32) = ) (lnu+ —e* "N

where the sum is over nearest neighbors, j, of i. The
system is altered in some manner, e.g. , through emission
of a core state electron, causing a change in the wave
function at site p, such that

so that

= N ln u + —v 1VS„,p,

N 1n u

(44)

(45)
H = t)— c, c~ +t) (ct —dt)c;+ H.c., (33)

where d~ is the operator creating the new wave function
localized about p. In the case of emission of an electron
&om a core state, the difference between the old and new
wave functions of the valence electrons is small, so that
ct —dt (1 —S)ct = Act, S being the overlap between
the new and old conduction electron wave functions. The
Fourier transform of Eq. (33) gives

If A = 0, i.e., original and new ground states are the same,
then v = 0, u = 1, and 8 = 1. However, for any Gnite
value of A, u ( 1, hence in the limit of an infinite number
of particles, 8 = 0. This is the orthogonality catastrophe.
The eÃect of a localized impurity is to create a ground
state orthogonal to that of the system with no impurity,
so that there can be no adiabatic transition &om one to
the other, resulting in a breakdown of any perturbative
description of the transition.

H = —) e(k)ct„cg + ) e(k)ct cg + H.c., (34) V. CONCLUSION

which we canonically transform into a diagonal represen-
tation by introducing the new operator:

= ucg + vc (35)

(36)

1
~2(1 + g]+4pg ) ~

v ~2(1 g]+4pg )
Clearly, as A approaches zero, u and v become unity and
zero, respectively, i.e., the original system is restored.

The new ground state is

In conclusion, we have found that nonorthogonality
effects cast light on the physics of band structure calcu-
lations. The use of the I owdin transformation to obtain
the Hamiltonian for an orthogonal system &om that of
a nonorthogonal system is shown to elucidate the ori-
gin of beyond nearest-neighbor terms in the TBH and to
lead to an improved parametrization of the band struc-
ture of Bernal graphite. In addition, we have shown that
localized nonorthogonality between states of the system
before and after a transition, leads to a nonperturbative
ground state for a many-body fermionic system, demon-
strating in a simple way the orthogonality catastrophe
originally found by Anderson.

The overlap between l4} and the ground state of the
original Hamiltonian ACKNOWLEDGMENTS

(37)

is

S = (Cl+) (38)

(»)

which through the use of the commutation relations

(cq~, c& ) = h~~ A,, and (c~~, ct ) = e'" "1V 2 becomes

B.A.M. acknowledges financial support &om the Aus-
tralian Department of Education, Employment, and
Training. T.C.C. acknowledges Professor M.P. Das and
the workshop on high-T superconductivity at the Aus-
tralian National University where part of Sec. IV was
written.

APPENDIX A: CORRESPONDENCE
BETWEEN ENERGY DISPERSION
OF TB AND NONORTHOGONAL

HAMILTONIANS

(u+ ve'""A' ~). (4o) 1. Square and cubic 1attices

Hence

ln8 = ) ln(u+ ve'""N 2)
k

(41)

The series expansion of the energy dispersion in the
overlap between nearest neighbors is

E(k) = hp + (hi —hpS) p(k) —S(hi —hpS) p(k)

= ) (i + i (i+ -".""~--*'
}) (42)

In the square lattice p(k) = 2(cos k a + cos k„a), where
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a is the lattice parameter. Hence the energy dispersion
to first order in nearest-neighbor overlap is

2. Triangular lat tice

In the triangular lattice p(k) has the following form:

(A2)

E(k): (hp —4Sh] ) + (hy Shp) (2 cos k a + 2 cos k&a)
—2Shi[2 cos(k a + k„a) + cos(k a —k„a)]
—Shi(2 cos 2k a + 2 cos 2k„a).

p, (k) = 2cosk 2a+ 2cos(k a+ k„b) + 2cos(k a —kgb).

(A5)

As in the previous section, the expansion of E(k) to first
order in nearest-neighbor overlap, S, gives

The corresponding TB energy dispersion is

E(k) = n + P(2 cos k a + 2 cos k„a)
+p[2 cos(k a + k&a) + 2 cos(k a —k„a)]
+8(2 cos 2k a + 2 cos 2k„a) . (A3)

E(k) = (hp —6Sh&) + [(1 —2S)hj —Shp]

x(2 cos 2k a+ 4cos k acos 2k„b)
—2Shi(2 cos 2k„b + 4 cos 3k a cos k„b)
—Shi (2 cos 4k a + 4 cos 2k a cos 2k„b) . (A6)

In the cubic lattice, the expansion of the energy dis-
persion to erst order in the nearest-neighbor overlap also
corresponds to the inclusion of third-nearest-neighbor TB
hopping terms. The correspondence is as follows:

(A7)

The TB energy dispersion for the triangular lattice, in-
cluding the third-nearest-neighbor hopping terms is

E(k) = a+P(2cos2k a+ 4cosk acosk„b)
+p(2 cos 2k„b + 4 cos 3k a cos k&b)

+h(2 cos 4k a + 4 cos 2k a cos 2k„b).
o. ++ hp —6Shg,

P m hg —Shp,

p m —2Shi,
b m —Shi. (A4)

Comparison of Eqs. (A6) and (A7) shows that as for the
square lattices, nonorthogonality effects persist up to the
third nearest neighbor. For the hexagonal lattice, see
Sec. III.
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