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In this paper a theory of the excitonic e6'ect in solid C60 is presented. We first develop an
empirical pseudopotential method to calculate the energy levels of the C60 molecule, which provides
a good basis for the inspection of optical transitions in both the C60 molecule and solid C60. Then
a theory is established to describe the characters of excitons in solid C60. It is found that excitons
in solid C60 are intermediates between the Frenkel and Wannier types and the photoabsorptions
in solid C60 are mainly due to the excitonic transitions. The dielectric function of solid C60 is
calculated based on this theory and some relevant experimental results are discussed.

I. INTRODUCTION

There have been many reports on the absorption spec-
tra and photoconductivity of solid C60. The absorp-
tion spectrum of solid C60 is similar to that of the C60
molecule, only with a redshift and broadening in each
peak of solid C60 with respect to that of the C60 molecule.
The long-wavelength limits of both photoabsorption and
photoconductivity lie between 1.5 and 1.8 eV. The ex-
planation of absorption spectra and photoconductivity
in solid C60 remains unresolved.

Some band-structure calculations from first prin-
ciples using the local-density approximation (LDA)
to the density-functional theory (DFT) have been
performed. Solid C60 is a narrow-band insulator, with
a direct gap at X. The calculated energy gap lies between
1.18 and 1.5 eV. Several authors attributed the optical
transitions and photoconductivity in solid C60 to inter-
band transitions. Other authors thought that solid
C6p is essentially a molecular crystal and optical transi-
tions in it should be attributed to excitonic transitions.
But, as pointed out by Resca, there has not been a pre-
cise theoretical description of the excitonic structure in
solid Gsp. Recent photoemission (PE) and inverse pho-
toemission (IPE) experiments revealed that the band gap
of solid C60 lies between 2.3 and 2.7 eV, ' which is
much larger than those obtained from the energy-band
calculation of the LDA and the long-wavelength limits of
optical absorption and photoconductivity. Theoretically,
LDA calculations usually underestimate the energy gap
of a system. Recently, Shirley and Louie used a quasi-
particle approach to calculate the band structure of solid
C60. Due to the inclusion of many-body corrections, it
is usually believed that this method will give the correct
value of energy gap Eg.~ The energy gap obtained in
Ref. 19 is 2.2 eV, which is much larger than that obtained
from the LDA, in good agreement with experiments.

According to us, solid C60 is fundamentally a molecular
crystal bound by van der Waals forces. The intermolec-
ular hopping matrix elements for an electron or a hole
are rather small and the Coulomb correlation energy be-
tween a pair of electrons (or electron-hole, hole-hole) are

larger than energy bandwidths. Therefore, photoabsorp-
tions in solid C60 should be due to excitonic excitations.
In a typical molecular crystal, an exciton is an excited
state of a single molecule. The propagation of an ex-
citon is merely the propagation of a molecular excited
state. Such an exciton is called a Prenkel exciton. But
there are some differences in solid C60. As will be pointed
out later, though an exciton in solid C60 is mainly the
excited state of the Csp molecule (Frenkel exciton), it
contains a considerable component of the state of C60+-
Csp (l.e. , the state in which electron and hole stay on
different molecules). That is to say, excitons in solid Csp
are mixed states of both Frenkel and Wannier excitons.
A complete explanation of photoabsorption and photo-
conductivity in solid C-6p should be given u11deI' such a
picture. The present paper provides a theoretical analy-
sis of excitonic states and optical transitions in solid C60.

In Sec. II we present a description of the electronic
structure in the C60 molecule and a discussion of the
corresponding optical transitions. In Sec. III we discuss
the excitonic states in solid C60. In Sec. IV an approxi-
mate method is introduced to concretely calculate exci-
tonic states in solid C60. Section V provides a theoretical
analysis of optical transitions in solid C60. Conclusions
are drawn in Sec. VI.

II. ELECTRONIC STRUCTURE AND OPTICAL
TRANSITIONS IN THE Ceo MOLECULE

Much research work has been done to investigate the
electronic states in the C60 molecule. ' For the con-
venience of discussing electronic structure, optical, and
transport properties in solid C60, the authors of this pa-
per develop a method to describe the electronic states in
the C60 molecule. Such a method is in fact an empirical
pseudopotential method (EPM) which is in close analogy
to the EPM used in the calculation of the energy-band
structure of solids. The details of this method and its
application to the description of optical and transport
properties of solid C60 will be presented elsewhere. Here
we just give a concise description.
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In the calculation of the energy-band structure of solids
using the EPM, the first step is to compose the smooth
part of an electron's wave function with some plane
waves, i.e. , adopting the empty lattice approximation.
Correspondingly, in the calculation of the C6o molecule's
electronic structure, the first step is to take the approxi-
mation of a spherically symmetric well, as Troullier and
Martins have done. The bottom of this well occurs on a
spherical surface with a radius of 3.55 A. and a width
of 3.0 A. . The wave functions are the product of a rad-
ical Ri(r) with a spherical harmonic Yi, where / is the
angular momentum. Ri(r) satisfies

d 5 l(l + 1) + Vp(r) (rRi) = si(rRi), (1)

where Vp(r) represents the spherically symmetric poten-
tial experienced by a vr electron. When the Ih symme-
try is introduced into this potential well, the electronic
states can be described in terms of molecular symmetry-
adapted functions y (n, s, n):

y'(n, s, n) = ) g(l, o., s, n~m)Yi

where (o., s, n) labels the irreducible representation n of
the icosahedral point group Ih, 8 distinguishing between
representations that occur more than once. Under the
same l, n denotes the rows of a given representation. The
wave functions Ri(r)y (o., s, n) correspond to the plane
waves used in the empty lattice approximation and are
zeroth order approximations to the smooth part of the vr

electrons' wave functions. We introduce the pseudopo-
tential Vz which belongs to the identity representation
Ag of the Ih group and can be written as

V„= ) VI, (r)g (As, s, 1) . (3)
Lgo

From the theory of the representation of the Ih group, it
is found that L = 6, 10, 12, 14, . . . . The term with L = 0
is Vp, which has been taken into account in Eq. (1).

For the convenience of calculation, we further assume
that

Cl, are parameters for the empirical pseudopotential,
which can be determined through the comparison of en-

ergy levels obtained here to some experimental features
of the photoabsorption spectrum or some other theoret-
ical results. We fitted our parameters to the energy lev-
els obtained &om the LDA by Saito and Oshiyama. ~

The separation between the highest occupied molecu-
lar orbital (HOMO) and lowest unoccupied molecular
oribital (I,UMO) obtained in Ref. 7 is 1.9 eV and the
excitation energy of the transition h ~ tig is 2.9 eV.
From the conditions EQUMQ EHQMQ —1.9 eV and
Er.UMQ+1 EHQMQ —2.9 eV, we got C6 ———9.12 eV
and Cio ——17.52 eV. With such a selection of param-
eters, we obtained the electronic energy levels of the
C6p molecule, which are in good agreement with those
obtained &om first-principle calculations. The excita-
tion energies for the lowest optically allowed transitions

~ &i» hg —+ ti„, and h„~ hg are 2.9, 3.2, and 4.2
eV obtained from our calculation. These values compare
well with the LDA values of 2.9, 3.1, and. 4.2 eV. Sev-
eral levels near the HOMO and LUMO are shown in Fig.
1. It is immediately possible to determine the dipole-
transition selection rules &om symmetry, as indicated in
this figure.

The energy difference between two adjacent spherical
levels is Asi = si+i —si 0.605(t+1) eV and will increase
with increasing L. V„ is the sum of the ordinary potential
of the core and. the repulsive potential generated &om
the orthogonalization of the state of the m electrons with
that of inner and 0. electrons and is rather weak. It is
expected that each level in the C6o molecule will possess
a dominant angular momentum and will have little mix-
ture with other spherical levels with diferent l's. Our
calculation confirms this and Troullier and Martins also
found this from their calculation. The dominant angu-
lar momentum l of each state is given in Fig. 1, and are
in accordance with the results obtained by Troullier and
Martins (see Table III in Ref. 9).

It is worthwhile to point out that such a method can
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h,' t(l+1)
&o+

2m
Bi =Ho.

(4)

deti(s —si)bii + ep(l, l', a)i = 0 .

The zeroth wave functions under the empty lattice ap-
proximation become Rp(r)y'(o. , s, n). Taking V„as the
Hamiltonian for the next step approximation, one gets
the secular equation
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CL —— VLr Bor r dr. (6)

The solutions of this equation are the energies of individ-
ual energy levels (l, n), where

8„(l,l', n)
= ) t L, (y'(n, s, n)iy (As, s, 1)iy' (n, s', n)),

4

FIG. 1. Several energy levels near the HOMO and LUMO
of the C60 molecule within the EPM. These levels are labeled
in terms of irreducible representations of the Ih, group. Also
listed in parentheses are the dominant angular momentum l

of each state. Solid and dashed lines represent dipole-allowed
and dipole-forbidden transitions between two energy levels.
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be directly generalized to calculate the energy levels of
the C6p molecules. In the calculations of energy levels
of the C6p + molecules &om ab initio schemes, the ge-
ometries of these molecules are fixed at that of the C6p
molecule, i.e. , neglecting the relaxation of the charge den-
sity when electrons are added to or removed from the Cop
molecule. ' Under such a situation, one can also obtain
a set of spherical energy levels at first and then introduce
the pseudopotential which possesses the symmetry of the
molecule to split those spherical levels. By fitting to a
first-principles molecular calculation, several parameters
involved in the pseudopotential can be determined. We
focus on the optical transitions in the C6p molecule and
hence it is not necessary to calculate the energy levels of
the C6p + molecules here.

There is close similarity between the method we devel-
oped here and that developed by Gallup. In his method,
Gallup used the free electron model (FEM) to obtain the
electronic structure of vr electrons under spherical sym-
metry and then used zero-range potentials (ZRP's) to
reduce the symmetry to icosahedral. The ZRP in his
method plays the same role as V& used in our calcula-
tion. Another similar method has been adopted by Saito
et al. , who divided the one-electron Hamiltonian into a
spherical term Hp and an icosahedral perturbation HI„.
Hr„ is expanded in terms of the Ih-invariant, irreducible
tensor form of sixth and tenth rank. There are also
several parameters involved in their calculation and by
selecting fitting parameters a set of energy levels of the
C6p molecule can be obtained.

Much experimental work has been performed on the
absorption spectra of the C6p molecule. In general,
there are three strong peaks centered at 3.8, 4.8, and 5.9
eV. Also there is a weak peak centered at 3.0 eV. The
assignments of these absorption bands will be given in
Sec. V.

It is not adequate to analyze optical transitions in the
C6p molecule merely based on the energy levels shown in
Fig. 1. Two other interactions should be taken into ac-
count: (i) the configurational splitting which is due to the
role of the &action of electron-electron interaction which
cannot be attributed to the single electron's central force
field; (ii) the coupling between molecular vibrations and
electronic states, i.e., the Jahn-Teller eBect. Both the
configurational splitting and Jahn-Teller e8'ect will cause
the splitting of a degenerate excited state. In photoab-
sorption, there is another kind of transition, associated.
with the excitation of vibrational levels. ' In the EPM
&amework, these issues can be discussed in terms of clear
physical pictures, but this will not be done in detail here.

III EXCITONS IN SOLID Cgp

As mentioned in Sec. I, solid C6p is a molecular crys-
tal bound basically by van der Waals forces. Conduc-
tion bands in solid C6p can be considered to describe the
propagation of the state of C6p and valence bands the
propagation of the state of C6p+. With the notation of
electronic states in the C6p molecule described in Sec. II,
the Hamiltonian for electrons (or holes) in solid Cso can

be written as

II=) ) s At„A;„
i a,n

+) ) ) (V; „„At„A; i„+H.c.)
i ~,n n', n'

+) ) ) ) (A; „„At„A~ „+H.c.) . (7)
jgi a,n a', n'

Here (n, n) denote the single-electron states of the Cso
molecule. For simplicity, n is used instead of (l, n, s) in

Sec. II, while i, j label lattice sites. A,. and A; are the
quantum creation and annihilation operators of electrons
on site i, respectively. The second term in Eq. (7) is the
interaction due to the crystal field, i.e. , the interaction
on single-electron levels of Cso (or single-hole levels of
Cso+) at site i induced by other molecules. The third
term in Eq. (7) describes the hopping of electrons (or
holes) between different sites. It should be pointed out
that the symmetry of the solid C6p lattice is always lower
than that of the Cso molecule. The second term in Eq. (7)
reflects the symmetry of the surroundings of site i, and,
approximately, it reflects the symmetry of the nearest
neighbors of molecule i. In principle, one can diagonalize
the first and second terms in Eq. (7) to get new states
(6, n), which possess the point group symmetry of site i.
Such a symmetry is lower than Ih symmetry. Then some
former levels will split. Under these new states (n, n),
the third term in Eq. (7) will have the forin of %, -„-- „- .
In this paper, we will not discuss such details. In the
following, we will not discriminate in general between
the use of (n, n) and (n, n).

Introducing creation and annihilation operators for
holes,

with respect to the ground state, the energy of an
electron-hole pair At 13

& ~0) is

e p =s —sp+W(i, j),
where

—U ifi= j (io)

where c is the dielectric constant of solid C6p and A;~
is t'he distance between two molecular centers. In Bloch
representation, the Hamiltonian for an electron-hole pair
is

Here, U is the on-site Coulomb interaction between an
electron-hole pair. W(i —j) is the Coulomb interaction
between a C6p+ and a C6p molecule situated at sites i
and j, respectively. Approximately, W(i —j) is

2

W(i —j) =—
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H = ) ) s, (nn, kq)A (nn, kq)A(nn, kq) + ) ) s~(Pm, k2)B (Pm, k2)B(Pm, k2)
cx,n k2 P,m,

+) ) ) ) ) W „,p (q)A (o.n, k&+ q)B (Pm, k2 —q)B(Pm, k2)A(o. n, k&) .
k~ k2 g ~,~ p, m

(12)

The relation between energy bands of holes and elec-
trons is

I

Hamiltonian (TBH), one can define the single-particle
Green's function of a lattice

sg (Pm, k) = -s, (Pm. , -k)

and W(q) is the lattice Fourier transformation of W(i, j).
According to theoretical calculations, the energy bands

near the forbidden gap in solid C6p are rather nar-
row. The bandwidths of these energy bands are about
1 eV. As for the Coulomb correlation energy U, sev-
eral experimental and theoretical estimates have been
provided) in the range of 1,5—2 eV. The dielec-
tric constant of solid Csp is 4; 4 hence W(i —j) is
always less than 0.3 eV and decreases rapidly with in-
creasing R,j. Therefore the problem of the exciton in
solid C6p is analogous to that of a very "heavy" particle
moving in a potential well with a rather deep center. To
semiquantitatively analyze this problem, from now on we
will take the following approximation:

Gp(z) = g Gp(l, m, z)ata
l,m

G, (t, m, z) = —')
k

Z —me~ k

The "impurity" potential is

Hg ———Uapap .t (17)

Here, a; and at are the equivalent quantum annihilation
and creation operators in the TBH, respectively, l, m la-
bel the lattice sites, and R~, R are the corresponding
lattice vectors. Equation (17) is evidently a reformula-
tion of Eq. (14).

The Green's function of a crystal lattice with an im-
purity potential is

G = Gp+ GpTGp .

We will discuss the discrete and continuous spectra of
excitons in solid C6p under such an approximation, and
correspondingly discuss the photoabsorption and photo-
conductivity. Before doing so, we will brieHy refer to an-
other kind of excitonic effect in solid C6p. Let us consider
the interaction of electrons between different molecules.
In terms of quantum operators of electrons and holes in
the C6p molecule, there will be the following terms:

The t matri~ T is

U
1+ UGp(o, o, z)

1+UGp(o, o, z) = 0 . (2o)

The condition for the occurrence of bound states (discrete
spectrum) is

A& ~B p Bjp&~~ A&~I ~~ (15)
The corresponding wave function of a bound state with
z=E~ is

These terms essentially represent a kind of dipole-
dipole interaction, which means that the annihilation of
an e-h pair in Csp* (an excited Csp molecule) situated
at site j will induce the excitation of the C6p molecule
situated at site i. Such interaction will also induce the
propagation of C6p in solid C6p. The interactions in Eq.
(15) are proportional to 1/Bs. and are rather small. In
this paper we will not discuss them further. As is well
known, this kind of interaction is very important in the
problems of excitons in typical molecular crystals.

IV. A MODEL FOR CALCULATION OP
EXCITONIC STATES IN SOLID Ceo

As just mentioned above, the optically produced exci-
ton in solid C6p can be regarded as a particle with kinetic
energy e',„(k) s, (k) + s~(—k) moving in the poten-
tial (14). Such a problem corresponds to the Koster-
Slater model of impurity states in solids. If s,„(k) is
taken to be the eigenenergy of an equivalent tight-binding

) = ) b~;a, 10)

where

Gp(i, o, z~)
g—G', (o, o, z&)

(22)

The wave functions of continuous spectra can also be
obtained Rom Eqs. (18) and (19). The problem is thus
transformed into seeking s,„(k) and calculating Gp.

But in solid C6p the C6p molecule at a certain
site actually has orientational disorder, even at low
temperature. If we view the electronic states of Eq.
(7) as referring to the local coordinate system of a Csp
molecule, these local coordinate systems on individual
lattice sites are in fact stochastic. The matrix elements
involved in the second and third terms of Eq. (7) become
random quantities, and the Hamiltonian of Eq. (7) no
longer has translational symmetry, with energy bands de-
fined only on the average. Further, taking into account
the configurational splitting and the vibration-electron
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coupling discussed in Sec. II, it is clear that it is not nec-
essary to consider the energy-band structures of solid C6p
in excessive detail. So we will use the Hubbard Green's
function for Gp.

1.0
I

0.9
0.8
0.7

2
Gp(l, l, z) =

(z —Ep) + g(z —Ep) —B (23) 0.6
0.5

Such a function exhibits the correct analytic behavior
near the band edges and is &equently used in the prob-
lems of excitons. ' The density of states corresponding
to the Hubbard Green's function is

0 if IE —Epl & B
~(E) =

, QB' —(E —Eo)' if IE —EoI & B.

(24)

0.4
0.3

0.1

0.0
0.50 0.75 1.00

U/B

1.25 1 ~ 50

It is seen that Ep corresponds to r —op, while 2B cor-
responds to the bandwidth of s,„(k) which is approxi-
mately the sum of the widths of the electron and hole
bands.

If U ) B/2, Eq. (20) has the solution

FIG. 2. The variation of probabilities of e-h on the same
molecule and difFerent molecules with U/B in an excitonic
discrete spectrum, represented by solid and dashed lines, re-
spectively.

( B2i
EB =Ep —

I
U+

4U&

(oIk)
1+ UGo+(0, 0, E)

(29)

and hence

B
bBp ——— 1—

4U2 (26)

In the Koster-Slater model, there is just one bound
state of the e-h pair, whose energy is EB. The range
of the continuous spectrum of p(E) remains the same as
that of pp(E). Hence there exists the sum rule

The Hubbard Green's function does not give the explicit
formula of Gp(0, l, z), but from the renormalization of
I@@~)one gets

IbB,ol +) IbB I

= 1.
i+p

(27)

I@B) = Ik) + Go+(E)T+(E)lk)

where lk) is a Bloch state satisfying s,„(k) = E. From
Eq. (19), one gets

As discussed in Sec. II, Eq. (21) expresses the rela-
tive motion of an e-h pair in a bound state and lbB pl
represents the probability of an e-h pair occurring at
the same molecule in the excitonic discrete spectrum.
p,.

&p lbB, I

= 1 —lbB pl expresses the probability of an
e-h pair occurring at diferent Cop molecules. In other
words, an exciton in solid C6p is a mixed state of C6p*
and Cop+-C6p . The probability for the occurrence of
the former is lbB pl and the total probability for the lat-
ter is 1 —lbB pl2. In solid Csp, if one takes B 1 eV
and U 1.5 eV, the probability for the occurrence of
Cop in the excitonic discrete spectrum is 89%, while the
total probability for the state of Cop+-Csp is only 11'.
Figure 2 shows the variation of these probabilities with
U/B.

The excitonic continuous spectrum is composed of e-h
scattering states (or ionized states of excitons)

B
lbB, ol + po(E)l(OI@B)l dE = 1 .

—B

With the Hubbard Green's function, one gets

2 B'
I('I~'I =

B +.U +.U(E E.)
2 QB' —(E —Eo)'

f(E) = l(OI@B) I ~p(E) ——B, 4U, 4U(E E )

(31)

where E is in the range IE —Epl (B. It is easy to verify
that in such a situation Eq. (30) is satisfied.

Excitation of an electron from energy level n to P in
the C6p molecule will leave a hole in the OMO o. and
create an electron in the UMO P and will induce several
excited states 1;, i.e. , n x P = g,. 1,. Further taking into
account the spins of electrons and holes, multiplet struc-
tures will form. For example, a hole in the HOMO and an
electron in the LUMO couple to form a multiplet struc-
ture with T&g T2g Gg and Hg with singlet and triplet
spins. In our theory, we have not taken into account the
degeneracies of energy levels and spins of electrons and
holes explicitly; hence we have not considered the multi-
plet structure explicitly. Each multiplet structure of the
C6p molecule will form a corresponding excitonic multi-
plet structure in solid C6p. Our main purpose here is to
reveal the characters of excitons in solid C6p and it is not
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necessary to consider explicitly the problem of multiplet
structure. The results we obtained here are applicable
to all the excitonic bands with spins of both singlet and
triplet.

10

V PHOTOABSORPTIONS IN SOLID Cep

In the preceding section, a discussion of the discrete
and continuous spectra corresponding to interband tran-
sitions was given and some concrete calculations were
made under a simplifying approximation. The total mo-
mentum of optically produced excitons is hK = hq,
where g is the wave vector of the incident photon. Since
q —0, we neglect the energy due to the motion of the
center of mass. Under such an approximation, the tran-
sition probability is proportional to

0
0.50 0.75 1.00 1.25 1.50

go = n[!ba,o! ~(~ —Ea)
+1«l&~) I'S o(E)~(~ —E)] .

1 I' =
~ (E —Eo)2+ r2 (33)

for different Eo's.

Here, n is the number of C6O molecules per unit vol-
ume. It is assumed that there is just one discrete level.
If there exist more than one discrete levels, the 6rst term
should be substituted by a sum over those levels. po(E)
is the reduced density of states of e-h bands [the den-
sity of states obtained &om s,„(k) = s, (k) + sz( —k)].
Equation (32) clearly indicates that for a particular pho-
toabsorption there is a line spectrum!b~ o! b(fur —E~),
which corresponds to the discrete level of an exciton,
and a continuous spectrum [(0!@a)!po(E)b(he@ —E) =
!(0!@s )! po(Ru), which corresponds to the ionized states
of excitons. Due to various effects, there are broadenings
in the exciton lines. We may approximately consider that
the spectrum-broadening function is the same for differ-
ent excitonic states, i.e.,

FIG. 4. The variation of g with u.

Then the spectra described by Eq. (32) become

g = ~ Ib~,ol'f(~ —E~)

+ L) —E' 0 @~ p() E' dE' (34)

4B4E„U. (35)

The normalization condition (30) continues to hold after
taking into account the spectrum line broadening.

Figure 3 shows the variations of the absorption spec-
trum with u = U/B, without consideration of the broad-
enings of spectral lines. It is seen &om this figure that
when u = 0 the absorption spectrum behaves as a peak
centered at Ru = Eo with width 2B. %Then u increases
gradually, states are pushed towards the lower band edge
and at u = Or5 a discrete level is split off the continuum.
Further increase of u lowers the energy of the bound level
and increases its weight !b~ o!2 at the expense of the con-
tinuum; at the same time, the peak of the continuum is
shifted to Eo —LE„,where
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0.2

I

1.00

4EI/B
r

0.0----
0.50 0.75

I

1.25 1.50
FIG. 3. The variation of absorption spectrum with

u—:U/B without considering the broadening of the spectral
lines. FIG. 5. Variations of AE~/B and EE~/B vs u.
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FIG. 6. Variation of the absorption spectrum with
u = U/R after taking into account the broadening of spectral
lines.

The ratio between the strength of the discrete level and
the total strength of the continuous spectrum (interband
absorption) is

1 —B /4U2
B2/4U2 (36)

Figure 4 shows the variations of g with u, while Fig.
5 shows the variations of AE„/B and AE~/B with u,
where AE~ ——(Eo —B) —E~ is the difFerence between
the discrete level and interband absorption limit. If U/B
is taken to be 1.5, we obtain g = 9, AE„/B = 0.6, and
AE~/B = 0.67. In such a case, the strength of the
discrete level is dominant and there is an obvious shift in
the peak of the continuous spectrum relative to the case
of U/B = 0. Meanwhile, there is also a clear splitting
between the discrete level and the interband absorption
limit.

As mentioned above, actual spectral lines should have
a broadening. Figure 6 shows the spectrum after taking
into account the broadening of the absorption spectral
lines. In our calculation, we choose Ep ——3.5 eV, B = 1
eV, and I' = 0.4 eV. Comparing Fig. 6 with Fig. 3, it is
found that the peak in the continuum has been covered
by the discrete level and there is just one peak in the
absorption spectrum. The interband transitions induce
an asymmetry in this peak.

1
1%i tl

.~p ~t1g ~t1„
PA; phag;,

where P is the dipole matrix element of the h„~ tq~
transition and A; p is the hopping matrix element be-
tween electrons in the t~~ state on molecule 0 and the
tq„state in molecule i. Obviously, if solid C6p possesses
Th point-group symmetry, A,. p will become A '

p = —A' p

under coordinate inversion (i -+ —i). In Sec. IV we have
approximated the excitonic problem with a Koster-Slater
model. The wave function of the discrete spectrum of an
exciton satisfies b~, ——b~;. Hence Eq. (37) remains
zero in such a situation. Further considering the ori-
entational disorder of the C6p molecules, A; p is also a
random quantity, and A, p = —A p will not hold. It is
not diKcult to understand that the transition matrix ele-
ment due to orientational disorder hopping will be larger
than that due to randomness in the crystal field. Tak-
ing A; p 0.5 eV, ct, —et, 1 eV, it is estimated

The above discussions refer to dipole-allowed transi-
tions. As for the dipole-forbidden transitions, the crystal
field eKects and hopping between diferent molecules will
partly allow such transitions. Let us first discuss the
crystal field efFects concretely. It is well known that the
highest symmetry of solid C6p is Th. We can approxi-
mately think that the second term in Eq. (7) possesses
Th symmetry, when averaged over the orientations of C6p
molecules in the crystal lattice. In such a situation, the
forbidden h„—+ t,q„ transition remains such, while the
gg —+ t~„ transition becomes allowed. Results of energy-
band calculations indicate that the crystal field splitting
is about 0.25 eV. The energy difference between tz„and
t2„ is about 2 eV. Therefore we can estimate that in the
solid the absorption peak due to the gg ~ t2„ transition
will be one or two orders of magnitude stronger than that
due to the gg ~ tq„ transition. The random parts in the
crystal field certainly do not possess inversion symme-
try and will permit the h„~ t~„ transition to become
allowed. At present, there is no detailed calculation to
estimate this. If we tentatively take it to be 0.1—0.2
eV, then the orientational disorder of the C6p molecules
will induce some oscillator strength in the 6„—+ tq tran-
sition. But this transition will still be one or two orders
of magnitude lower than the h,„~tqg transition.

Now let us consider intermolecular hoppings. The
matrix element for the discrete excitonic level of the
6„—+ tqg —+ tq„ transition is

TABLE I. Assignment of various optical transitions in the C60 molecule and solid C60.

2.9
3.1
4.1

3.08
3.78
4.83
5.83

2.6
3.8
4.9
5.97

4.4
5.5
5.8

Transitions in C60 molecule Transitions in
Experimental values (eV) Theoretical values (eV) Experimental values (eV)

Ref. 4 Ref. 5 Ref. 6 Ref. 7 Ref. 33 this work Ref. 1 Ref. 10 Ref. 40
1.7 1.7

2.8 2.9 2.73 3.0
3.1 3.56 3.7 3.5
4.3 4.52 4.8

5.6 5.5

6„-ti„
h„-tg g

hg-tg„
h„-kg

gg, hg-tg„

2.8
~3 0
~4.2

so&id C60 Assignment of
Theoretical values (eV) transitions

this work
1.8
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Transition i h„-+ tgg
3.76
0.7
0.52

hg m tg„
5.01
1.25
2.70

h„—+ hg
5.78
0.96
7.60

gg, hg m t2„
6.71
0.86
2.70

TABLE II. Parameters used in the calculation of the di-
electric function of solid Cso. E;, u, , and f, are the central
energy, an-site Coulomb attraction between an electron-hole
pair, and the oscillator strength for the transition i, respec-
tively.

Y. Yang et al. —

I

lr
I ~

I
I ~

I ~

I ~

iI
I

I'
I'
li
~,

j

I ~

~ ~

I
I

Kelly e t al.

I I I I I I I I

that for the discrete excitonic line 6„—+ t~„ the spectral
strength will be one or more orders of magnitude lower
than that of the h„—+ tq~ transition. As for the transi-
tion to the continuous spectrum, obviously (i~@~) is not
equal to (—i~/@). Therefore, when one does not take into
account orientational disorder, the continuous spectrum
due to the h„~ tz„ transition will exist, caused by in-
termolecular hopping. But the spectral form may greatly
change and weaken.

In this paper, we will not discuss higher-order transi-
tions due to interaction between electrons and lattice vi-
brations. Compared to dipole-allowed transitions, these
transitions are rather weak and wide. But if the tran-
sitions are forbidden in the C6p molecule, it is diKcult
to say that the transitions induced by the crystal field
and intermolecular hopping remain stronger than the
vibration-induced transitions.

Prem the results obtained in the previous sections, we
conclude that any transition n ~ P in the Cso molecule
corresponds to an excitonic peak in solid C6p. If we take
U 1.5 eV and H 1 eV, it is established that the exci-
tion energy is about 0.1 eV lower than the corresponding
molecular excitation. Based on these results, we give an
assignment of the optical transitions in the C6p molecule
and solid C6p, as shown in Table I.

In analogy to Wang et al. and Kelly et al. , we choose
a set of parameters to calculate the dielectric function
of solid C6p. In doing so, we only consider those dipole-
allowed transitions. In our calculation, we choose I' = 0.4
eV and B = 1.0 eV for all transitions. The dielectric
constant e used to approximate interband absorption
well beyond the range of transitions we considered is

0 I I I l

0 1 8 3 4 5 6 7 8 9 10

E(eV)

FIG. 7. The imaginary part of the dielectric function of
solid C6o.

taken to be 2.4. Other parameters are shown in Table
II. The imaginary part of the dielectric function is shown
in Fig. 7.

VI. CONCLUSIONS

In this paper, we have shown that excitonic effects in
solid C6p are very important. This can be seen &om
the quantities g, LE~, and LE„described in Sec. V.
It is revealed that excitons in solid C6p are intermedi-
ate between the Frenkel and Wannier types, although
Frenkel characteristics may dominate. Due to the pres-
ence of on-site electron-electron Coulomb repulsion (or
electron-hole Coulomb attraction), it is required. that the
single-electron energy-band calculations take this inter-
action into account. Our work also reveals that photoab-
sorption in solid Cop is largely excitonic. The main peak
in the absorption spectrum is due to the transition of
a Frenkel type exciton. Photoconductivity in solid C6p
is probably due to &ee carrier generation via collisions
between excitons and defects or surfaces, or via exciton-
exciton collisions.
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