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The nonlocal optical response of a metallic surface is evaluated for a two-component s-d electron
system with the aim of achieving a qualitative representation of the electronic surface excitations of
Ag. The s electrons are treated as a semi-infinite homogeneous electron gas while the effect of the
fully occupied d bands is simulated by a polarizable medium. According to the more localized nature
of the d states, this polarizable medium is assumed to extend only up to a certain distance from the
surface. Since the s electrons spill out farther into the vacuum, the s-d screening interaction in the
surface region is less pronounced than in the bulk. Using time-dependent local-density calculations,
it is shown how the profile of induced surface charge density and the dispersion of the surface plasmon
change with the amount of s-d screening allowed. A key to these calculations is the derivation of a
sum rule expression for the centroid of the induced surface charge in the s-d system.

I. INTRODUCTION

There exists now a wealth of knowledge about the elec-
tronic excitations at simple metal surfaces.! For example,
the wave vector dispersion of the monopole and multi-
pole surface plasmons has been measured for a variety
of systems and semi-quantitative agreement with calcu-
lations using the time-dependent density functional ap-
proach has been achieved.? The nonlocal linear and non-
linear optical response of simple metal surfaces is also
reasonably well understood.3* The basis of the theoret-
ical progress is the weakness of the ionic pseudopoten-
tials in these systems. The dominant surface excitations
can, therefore, be represented by those of the homoge-
neous semi-infinite electron gas. Because of the one-
dimensional nature of the effective one-electron potential,
the electronic ground state density profile and the various
induced surface charge densities can now be computed
quite easily. Moreover, the time-dependent local-density
approximation (TDLDA) (Ref. 5) seems to provide a suf-
ficiently accurate picture of the electronic correlations in
the presence of finite-frequency external electric fields.
Analogous calculations that include crystallinity effects
are considerably more demanding and have been carried
out only for special cases.® On the other hand, many
surface spectroscopic measurements in the past were per-
formed on noble and transition metals where interband
transitions caused by the lattice potential must be taken
into consideration. Thus, there is an obvious need to go
beyond the theoretical description of nearly free-electron
systems.

A striking manifestation of the important influence of
shallow bound states on the surface excitation spectra
is the dispersion of the Ag surface plasmons with par-
allel momentum ¢.” As result of the mutual s-d polar-
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ization, the frequency of the surface plasmon at ¢ = 0
is reduced from the nominal free-electron value at 6.5
eV to about 3.7 eV. Moreover, instead of the familiar
negative dispersion at small g of the surface plasmon on
simple metal surfaces,?® the Ag surface plasmon shows
a positive dispersion at all wave vectors.” Large redshifts
are also observed for the Ag volume plasmon® and the
Mie resonance of Ag particles.!? This lowering of the Ag
collective excitations can be nicely understood in terms
of the picture suggested by Ehrenreich and Philipp,®
who wrote the volume dielectric function e(w) as a su-
perposition of a Drude term ¢,(w) from the s-p elec-
tron states and a bound term €4(w), due to the filled
d bands. Thus, €(w) = €(w) + eq(w) — 1. The vol-
ume, surface and Mie plasmons are then given by the
conditions €(w) = 0, e(w) = —1, and e(w) = —2, respec-
tively. Since €4(w) = 5---6 in the vicinity of the collec-

tive modes, their frequencies are wy = wp /VEy = 3.76 €V,

wr = wp/Vea+1 = 3.63 eV, wpy =wy/vea+2 = 3.50
eV, where w, = 9.2 eV is the bulk plasma frequency of
the s electron density alone.

Recently, Liebsch!! has shown that the s-d polariza-
tion interaction can also explain the positive dispersion
of the Ag surface plasmon and the blueshift of the Ag
Mie resonance as a function of decreasing particle size.'?
Since the d electrons are more tightly bound, they do
not spill out as far into the vacuum as the s-p states.
Thus, in the surface region, the s-d polarization is re-
duced compared to its strength in the interior. At finite
parallel wave vectors g, the fluctuating charge density as-
sociated with the surface plasmon, therefore, oscillates at
a higher frequency than in the ¢ = 0 limit, where the full
s-d interaction applies. With increasing g, this upward
shift becomes progressively more pronounced since the
induced electric field decays more rapidly into the bulk.
Time-dependent LDA calculations for this combined s-d
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electron response show that the g-dependent screening re- . €s(tu) — 1 . eq(iu) — 1 .

shogs = o Qg — . 1
duction is indeed large enough to qualitatively reproduce d (i) e(iu) — 1 dy (iu) + e(iu) — 1 dq(iu) (1)

the experimentally observed Ag surface plasmon disper-
sion. In these calculations, the s electrons are treated as
a semi-infinite jellium system and the occupied d bands
are represented via a polarizable half space, which ex-
tends up to a certain distance z4 near the surface. The
local dielectric function €4(w) of this medium is assumed
to be the same as in the bulk. The attractive feature of
this model is that it retains the computational simplicity
of one-dimensional jellium systems, while capturing an
essential aspect of the dynamical response of metals with
shallow occupied states.

The surface response calculations performed in Ref. 11
are numerically stable down to ¢ values of about 0.05
A-1 and the Ag surface plasmon dispersion extrapolates
well to the expected value w} in the long wavelength
limit. Nevertheless, the precise determination of the ini-
tial slope of the dispersion is difficult, since it is a pri-
ort not clear over which ¢ range a linear expansion is
valid. In fact, the TDLDA results for z; = 0 (when the
polarizable medium extends up to the edge of the posi-
tive background) indicate a weak minimum in w?(q) at
g < 0.05 A1, This result suggests that the linear re-
gion is rather small. It also implies that the main part of
the positive dispersion observed experimentally up to 0.3
A~ need not be related to the linear coefficient at small
q. For z3 < 0, the initial slope of w’(g) becomes positive
and the overall dispersion agrees qualitatively with the
experimental results.”

The aim of the present work is to investigate further
the nonlocal optical response within the two-component
s-d electron model outlined above. In particular, we eval-
uate the frequency dependence of the centroid d, (w) of
the induced surface charge in the long wavelength limit.
This function is relevant for the so-called nonlocal correc-
tions to the standard Fresnel reflectivity formulas and for
the small-q behavior of the surface plasmon.!31% An im-
portant conclusion from our results is that the polarizable
medium representing the Ag d bands leads to a frequency
dependent inward shift of the centroid d, (w). This shift
becomes particularly pronounced just below the volume
plasma frequency wy;. Near w}, however, Red,(w) is
still positive if z4 = 0, i.e., the induced charge centroid
remains located outside the jellium edge. If the boundary
zg is moved inside, Red | (w}) becomes negative. These
results are consistent with the finite-q surface plasmon
dispersion investigated in Ref. 11. These results also un-
derscore the cautionary point raised above, namely, that
the main region of the measured dispersion cannot be
used to determine the linear coefficient in the ¢ — 0
limit.

The influence of bound states on the dynamical re-
sponse at metal surfaces has been investigated previously
by several authors. In their work on the surface cor-
rections to the van der Waals attraction, Zaremba and
Kohn® represented the centroid d; of the total induced
electronic density by a weighted average of the s and d
contributions, d, and dg, which were taken from inde-
pendent calculations for a jellium model and a dielectric
solid, respectively:

At the imaginary frequencies needed for the van der
Waals case, this approach is reasonable since the exter-
nal fields at the positions of the ion cores are rapidly
screened by the jellium component. As shown in Ref. 15,
dg4(iu) =~ 0 for the (100) face of a simple cubic lattice of
point dipoles. If the s electrons are treated as a Drude
metal, one finds

€s(tu) — 1
e(iu) — 1

ds(iu)
1+ [ea(iu) — 1Ju?/w2

(2)

Thus, the charge centroid is shifted inwards but it re-
mains located outside the jellium surface at all imaginary
frequencies.

In the optical case, this picture breaks down, since the
fields penetrate the metal and the s and d electron re-
sponses cannot be treated as independent of one another.
Apell and Holmberg!® argued that at optical frequencies,
one should modify the weight factor in (2), so that

dy (iu) = ds(tu) =

€(w)—1 e(w)

di(w) = @) =1 () ds(w) - (3)

This centroid approaches the jellium surface at the Ag
bulk plasma frequency. However, since the bulk plas-
mon also defines the transparency threshold of the metal,
d ) (w) should not remain localized at the surface, but in-
stead (in the absence of damping) go to —oo.

All of the models discussed so far are purely one di-
mensional. Thus, the crystal face dependence of the
Ag surface plasmon dispersion and its anisotropy on the
(110) face” cannot easily be addressed within these mod-
els. In an effort to understand such phenomena, Tarriba
and Mochan'? followed a different approach. They de-
scribe the s-d electron system by a semi-infinite lattice
of point dipoles immersed in a local Drude system with
cavities at the lattice points. The s electron density is
abruptly terminated at the surface. The d parameters
obtained within this model differ for the three low-index
faces. This model was also used to analyze the reflection
anisotropy observed on Ag(110).18

Finally, Feibelman!® discussed the influence of s-d ma-
trix elements on d, (w), by considering a surface pertur-
bation to the Lang-Kohn potential.2? Since an extra po-
tential well increases the local electron density near the
surface, and since high-density metals have less polar-
izable density profiles, the magnitude of d, (w) should
diminish. Thus, the initial slope of the surface plasmon
should be less negative than in the unperturbed jellium
model. In the ¢ = 0 limit, this model yields the un-
screened plasma frequency w, = 6.5 eV, since the long-
range s-d polarization interaction is not taken into ac-
count. The matrix elements should become stronger with
decreasing separation between the fluctuating s charge
and the d states. Thus, this model predicts successively
less negative slopes for the (111), (100), and (110) faces
of Ag. Such a trend is indeed observed between the (111)



52 INFLUENCE OF A POLARIZABLE MEDIUM ON THE. ..

and (100) faces, but the two slopes for Ag(110) lie in be-
tween those for Ag(111) and (100).72!

The structure of this paper is as follows. In Sec. II,
we specify the model and describe the real-space solution
of the response equation for the induced surface density.
Because of the long-range nature of the Coulomb poten-
tial in the ¢ = 0 limit and the slow decay of the Friedel
oscillations of the induced demnsity, the charge centroid
d) (w) can be reliably evaluated only if one makes use
of the dynamical force sum rule.22:22 The extension of
this sum rule to the two-component s-d electron system
is presented in Sec. III. The results are discussed in Sec.
IV and Sec. V contains a summary.

II. FORMALISM

In principle, the occupied Ag 4d bands can affect
the dynamical surface response in two ways: (i) the s-
d hybridization modifies the single-particle wave func-
tions and energies so that the nonlocal density-density
response function exhibits band structure effects; (ii) the
effective time-varying fields are modified, due to the mu-
tual polarization of the s and d electron densities. A
full numerical treatment of both of these effects is not
yet feasable. Since close to the Fermi level the Ag en-
ergy bands are nearly free-electron like and since the Ag
surface plasmon lies below the region of interband tran-
sitions, we neglect the band structure effects and focus
on the s-d polarization. Excitations involving the filled d
states enter, therefore, only as virtual transitions, which
we describe in terms of a polarizable medium that ex-
tends up to some distance z4 from the surface. Thus,
we write €4(z,w) = €q(w) for z < z4 and €4(z,w) = 1
for z > z4 (see Fig. 1). We assume that the s-electron
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FIG. 1. (a) Schematic model for the dynamical response of
a two-component s-d electron system. Solid curve: ground
state density profile of the s electrons; dashed curve: in-
duced density. The positive background is located in the
space z < 0; the polarizable medium, due to the d states,
extends up to z < z4. (b) Frequency dependence of the real
and imaginary parts of the “bound” dielectric function eg(w)
(dashed and dotted curves, respectively). The measured di-
electric function of bulk Ag (Ref. 26) is also shown: solid and
dot-dashed curves for its real and imaginary parts.

14 221

response can be characterized by the nonlocal surface re-
sponse function of a semi-infinite jellium system. The
neutralizing positive background is located in the half
space z < 0.

Let us consider the density response to a uniform elec-
tric field oriented perpendicular to the surface and oscil-
lating in time as ~ exp(—iwt). The spatial part of the
associated electric potential is assumed to be given by
Gext(2) = —2mz. Within the TDLDA, the induced den-
sity of the s electrons can be obtained from the response
equation,

bna(ew) = [ 42 32 20) [bex()
+8¢(2',w) + ‘SVmc(Z/’w)] , (4)

where x1(z,2',w) is the ¢ = 0 limit of the jellium
independent-particle susceptibility and §¢ is the induced
Coulomb potential. In the adiabatic version of the
TDLDA, the induced exchange-correlation contribution
is obtained from the ground state exchange-correlation
functional via

0Vie(2,w) = [0Vic(n) /O] | o (z) Ona(2,w) . (5)

Henceforth, for simplicity, we will usually not show the
w dependence of functions.

The total electrostatic potential ¢ = dext + ¢ deter-
mines the total electric field E = —¢’' = Eqy+ 0 E, which
in turn satisfies Gauss’s law,

E' = —¢" = 4wén = 4w (én, + dng) . (6)

Further reduction now depends on how one deals with
the induced density of the d electrons, éng(z). We de-
scribe two derivations that use different mathematical
treatments of dng4, but eventually lead to the same effec-
tive response equation to be solved numerically.

First approach

To begin the first procedure, we write éng = —Pj,
where P;(z) is the polarization of the d electrons, and
rearrange (6) to

(E + 47 Py) = 4nén, , (7
or, after introducing €4(2),
(cad)’ = —amén, . (8)
To solve (8) for all z, we combine solutions of
eqd’ = —4mwén, , (9)
for z # z4, with the boundary condition across z4 of
cad'(27) = ¢'(2]) ,

where z;t = 24 + 0F. We write the induced Coulomb
potential as §¢ = ¢y + P2, with

(10)
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(11)
(12)

$1(2) = —27r/dz' |2 — 2| 6na(2')/ea(2) ,
¢2(z) = =27 |z — 24| a .

The expression for ¢; follows from the Poisson equation
(9), while the extra term ¢, arises from the sheet of
screening charge in the z = 24 plane. The coefficient
a may be determined as follows. Let us define

& (zq) = —27r/dz’ dn,(2') sgn(zq — 2') Jea(2)

=-—2nb. (13)
From (12), we have ¢’2(z;t) = F2ma, which gives
d)'(z;‘:) = —27 (14b=xa). The condition (10) then implies
—a+0) 2= =140 (14)

= ea+1 " 4

Far from the surface, the total Coulomb potential is
given by

b(z) —» —2m (z tolz— dL]) , z - 400, (15)

where

c=a+ /dz 0n,(z)/eq(2)
- 20,
=04+ e+ 1 (16)
and
d, = 3 (azd + /dz z 5n,(z)/ed(z))

R % / dz (2 — 2q) Ona(2)fealz) . (17)

Here, a is defined in (14) and o, is the integrated weight
of the induced density o, = [dz én,(z). Using the
boundary condition € ¢'(—o0) = ¢'(00), we also can ex-
press o as

e—1
= — 18
g e+1’ (18)
which yields
€, — 1
= . 19
T e+ 1 (19)
In analogy, we introduce the quantity
€d — 1
= , 20
od e+1 (20)

so that o = o, + 0g4.

In order to explicitly account for the asymptotic behav-
ior of the Coulomb potential, we separate the long-range
bulk part and write

$(2) = #5(2) + ¢:(2) , (21)
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where the bulk part is

bo(z) = —2m (z —oz— dJ_]) , (22)
nd the remainder is
b (2) = —4n /_ e z')JZ‘(S;)
—47 (2 — zq) a0(z — zq) . (23)

Here, 6(z > 0) = 1 and 6(z < 0) = 0. With the above
definitions, we can rewrite (4) as

dns(z) = 608 (2) + / dz' x1(z,2') (qs,(z') +6ch(z')) ,
(24)

with

5B (z) = / dz' x1(2,2') $u(2') . (25)
According to the definition (23), ¢.(z) vanishes for z <
0, i.e., this potential contribution is finite only in the sur-
face region. The response equation (24) can, therefore,
be solved in a computationally stable manner. The struc-
ture of this equation is the same as that for the simple
metals discussed in Ref. 23. We may, therefore, use a
similar procedure to solve for the induced density.

Second approach

Our second method for reducing (4-6) to a compu-
tationally tractable form is based on a formalism that
was developed for tight-binding model calculations?4 and
has been recently adapted to systems with arbitrary (but
one-dimensional) crystallinity.?® It initially treats the d-
electron response as an active degree of freedom rather
than as a passive screening function, but in the final in-
tegral equation that must be numerically solved [see (43)
below] only the s-electron density response appears.

One begins with (4) for the s electrons and

ngp(z,w) = Py(z,w)

= nga(w) 0(zq — z) [Eext + 6E(z,w)]  (26)
for the d electrons. Here, a(w) is the polarizability and
p(z,w) is the induced dipole moment of a d electron at
z. Our continuum approximation for the d electrons al-
lows no z dependence for the polarizability, aside from
the cutoff by the € function at z4, and no local field fac-
tors. We can, hence, replace the product of o times the
equilibrium density for d electrons, ng4, with

ngo(w) = [eg(w) — 1]/4m. 27

Coupling between the s- and d-electron response oc-
curs, because there are both s and d contributions to d¢
and 6 E = —§¢’. For the latter, one has 6 E = §E, +dEg4,
where (again suppressing w dependence)
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§E,(z) = 2n / d' sgn(z —2) ono(<), (28

and
§Ea(z) = 21 / d' sgn(z — ') Sna(2') (29)

with
dnq(z) = —nqp'(2). (30)

Integrating by parts in (29) yields
0E4(z) = 2mngpp — 4mngp(z), (31)

where pp = p(z =& —o0) is the bulk value of the dipole
moment. In turn pp can be determined from

ngpp = (€4 — 1)Ep /47 , (32)
where the bulk electric field is
EB = Eext[l - (0'3 + Ud)] ) (33)

with the o’s given by (19,20). Now subtract (32) in z <
zq from (26) to obtain

ngAp(z) = ngab(zq — z) AE(2) , (34)

where Ap(z) = p(z) — pp is nonzero only for z < z4 and
from (28-31)

AE(z) = Eext + 6E(2) — Ep
- /_ ' [5ny(2') + Sna()] (35)
= 4w /;Z dz' 6n,(2') — AmnaAp(2)

+4mngppf(z — zq) .

One can use (35) in (34) to express Ap(z) in terms of dn,
alone:

4mngAp(z) = (1 — 1/eq) 0(zq — 2) 47 /j dz' 6ng(2').

(36)

A slightly different subtraction procedure is applied to
(4). Begin by defining the response to the uniform bulk
field of (33) as

5P (2) = / d2' x1(2, %) 65(") , (37)

where to within a constant ¢p(2) = —zEp and (37) gives
the same result as (25). Then the analog of (34) is

§ny(z) = 6B (2) + / o' xa(z,7) AG(2),  (38)
where

Ap(2) = 6Vxe(2) + Ads(2) + Ada(z) , (39)
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with

Agy(z) = —4m /j dz'(z — 2') én,(2') , (40)

Ady(z) = 4w /_z dz' ngAp(z')

—4n(z — z4)napB 0(z — 24). (41)

The response to the second term in (41) is easily com-
puted and we formally add it to (37) by defining

onB)(z) = /dZ' x1(z,2") [¢B(2')
—4nngpp(z — z4) 0(z — z4)]. (42)

The other term in (41) can via (36) be expressed in terms
of én,, leading to the integral equation to be numerically
solved,

5ny(2) = 0P (2) + / dz / &2’ x1(2,7) (3, 2') Sne(2)) ,

(43)
with
v(2,2") = [0Vie(n)/On],n, (2r) (2 — 2')
—An 0(z—2") [z -2+ f(5,2)], (44)
where for 2’ < z,
z—2, Z<z<z4
f(Z,zl) = (1/€d - 1) zg—2', 2 <zg<z (45)
0, zg< 2z <z

The important feature of (43) is that [ dz’ v(Z, 2") dn,(2')
vanishes as Z moves into the bulk. This suppresses the
difficulties with the long-range Coulomb potential. Equa-
tion (43) appears similar to (24). One can show that they
are in fact equivalent. First change ¢; of (22) to

¢~$b(z) = ¢p(2) — 47 (z — 24) napp 0(2z — 2z4q) - (46)

Then 677 of (25) becomes 6n'P) and ¢, of (23) must
be replaced by

ér(2) = pp(2) + 47(2 — 24) napp 0(z — 2a) - (47)
Since a = ngp(24), one has
5u(e) = —am [ a(a— ) 2
—4m(z — 24) naAp(z4) 0(z — zq) - (48)

The corresponding expression from (43-45) is

. / T4 =2+ f(z )] Sne(2)

= —4m /_z dz'(z — 2') ————-——5::(5;)
—4n(1 — 1/eq)(z — 2za) 0(z

—24) /_ m o' Sn,(z') . (49)

Finally, (36) shows that (48) and (49) are the same.
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d parameters

We conclude this section by deriving expressions for
the d parameters. We begin with dj. Since our model
allows no variations in the response as one moves par-
allel to the surface plane, we can use the local optics
formula,!3.14

(e — 1)dy = / dz [e(z) — ex(2)], (50)
where with the matching plane at z = 0, the Fresnel
variation is

er(z) = 0(z) + €0(—2) , (51)
while the microscopic (but local) variation is

€(z) =1+ (e, —1)0(—2) + (g —1) O(za — 2). (52)

dj = z4 <e:_—11) : (53)

Near the surface plasmon in Ag, € ~ —1, while ¢ ~ +5
and €, ~ —5. These values imply that dj ~ —2zq4, so
as z4 is moved down into the metal, d} shifts out into
vacuum.

We find

For d, , we start from the general expression,!3:14
d, = / dz [P(z) — Pp(2)]/P(B) (54)

and separate the polarizations into their s and d contri-
butions. Then

d, = 1;’((3)) d, + 1;;1((1?)) da , (55)
where for the s electrons,
4= [z [P(2) - PO@)/PB) (56)

with P{F)(z) = P,(B) 6(—z) and

€s — 1
47

P.(B) =, = /w dz §ny(z) =

— oo

Es. (57)

Equations of the same form apply to the d-electron terms.

Since dn,(z) = —P,(z), we can reexpress (56) after an
integration by parts as
oo oo
d, = / dz z 6n,(z)// dz én,(z) . (58)
— 00 — 00

Thus, d, is set by the centroid of dn,(z). A similar re-
sult holds for d4, but we use an alternate form in our
calculations based on

di= [ dlp()/pm — 0(-2)] (59)

za
= z4 +/ dz Ap(z)/ps -

— 0O
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This can be reexpressed by using (36), which we rewrite
here as

Ap(2)/pB = 6’; ! 0(zq — 2) /Z dz' éng(2') /o, . (60)

Then
dg = +E’_1/zddz(z — z) 8n,(2)
4= 2a+ - - d s
s — 1
= 2d — < (ds - Zd)
€d
€& —1 [
+ / dz(z — zq) 6n,(z) . (61)
€404 z4

Substituting (58) and (61) into (55), we find

€, — 1 €g—1
d
-1 T e

Og o4
= za+ Z2(dy — 2a) + 22 (da —
Zd+a( Zd)+a_(d 24)

dy

I

da (62)

g
=24+ —(ds — 24)
O€q

ed—l

/ " d2(z = 74) 6n(2) - (63)

€40

We note that (62) has the same structure as the formula
(1) used by Zaremba and Kohn.!® The important differ-
ence here is that the two centroids d, and d; are eval-
uated consistently within a response treatment for the
two-component s-d electron system. As the first line of
(61) shows, in our model dy is in fact fully determined by
an integral of the induced density én,(z) in the region of
the polarizable medium.

The form of d, in (63) is convenient for numerical eval-
uation, since the only integral that appears to require
evaluations in the troublesome region of the Friedel oscil-
lations is (58) for d,. However, even d, can be calculated
more simply. The key is to make use of the dynamical
force sum rule.?? For ordinary jellium surfaces and within
the TDLDA, this leads to the identity?3

od; = / dz z 6n(z) = % / dz z én(z) . (64)
—oo 0

Thus, the total induced dipole moment is fully deter-
mined by the part outside the jellium edge. It is,
therefore, not necessary to calculate the internal mo-
ment where the induced density exhibits slowly decaying
Friedel oscillations. The extension of this force sum rule
to the present two-component surface response will be
derived in the following section.

III. DYNAMICAL FORCE SUM RULE

This sum rule follows from the equation of motion for
the s electrons.2? It is convenient for its derivation to
initially work in a slab geometry and then later go over
to the limit of large slab thickness to find an appropriate
expression for a semi-infinite system. Also, for clarity, we
will explicitly show in this section factors of an electron’s
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charge, e < 0, and all n’s will be number densities. Imag-
ine that the metal slab is centered on Z = 0 and placed
between distant, parallel plates that produce a uniform
applied field EF4 at frequency w. The system has trans-
lational invariance in planes perpendicular to Z and one
has per unit area along Z,

1o} 1

'a—tps = Fs - :;’PB y (65)

where P, is the momentum of the s electrons and F, is
the sum of the coherent forces acting on them. The term
with 1/7 arises from incoherent scattering. We ignore the
position dependence of such scattering, but will allow 1/7
to depend on frequency.

At first order within the original version of LDA re-
sponse for the s-d model'! Eq. (65) becomes

oo

—m? /_ = 4z Z6n,(Z) = e /_ dz {6n,(2)E+(2)

(66)

where &? = w(w +i/7). We have calculated the momen-
tum from the time derivative of the dipole moment and
expressed the net force in terms of products of charge
densities and fields. The new symbol is £ for the field
due to the positive background, whose constant charge
density is —enpg between +L,. Newton’s third law jus-
tifies the absence of any direct forces between s electrons
and further allows us to rewrite (66) as

—m? / dZ Z6n,(Z)

— 00

—e /w dZ {n(Z)[Ea + 6E.(Z) + §Ea(2)]

+[no(2) = nt(2)|[Ea + 6Ea(Z)]} . (67)
The integrands here are all even functions of Z, so that we
can switch to (positive) half-space integrals and replace
Z = L + z, where L defines the nominal edge of the
s-electron gas via

oo

/ dZ no(Z) = Lnp. (68)
0

The induced density profiles for Z = L;i.e., z = 0, should

agree for a thick slab, within an overall scale factor, with

those near the surface of a semi-infinite metal. Our aim

is to rewrite the above to exploit this fact.

We can eliminate the fields in the first square bracket
on the right side of (67) by integrating by parts and using
Gauss’s law. At the same time, we switch to z as the
integration variable and argument of the functions. With
Ly =L+ A and w? = 4rnpe’/m, we obtain
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—L

—m@? [L / 4z bny(2) + /_ °: dz ans(z)]

A
= -—mwf,/ dz z6n(z)
-L
+enpA[E4s + SE(A)] + engLEp

oo

te / dz [no(2) — ns(2)][Ea + 6Ea(2)] . (69)
-L

The terms with explicit factors of L cancel by the follow-
ing argument. One has for the integrated charge on the
right side of the slab,

oo(L) = e / dz ny(2) = Py(~L), (70)
and as L — oo,
€ — 1
P,(—L) - P,(B) = yp Ep. (71)
If we use the Drude dielectric function,
€ =1-w2/&?, (72)

for the s-electron bulk response, we find with o, the large
L, limit of o,(L),

enpEp = —mdz2/ dz 6ny(z) = —ma’o,/e, (73)

— 00

which simplifies (69) and makes the limit L,L; — oo
well defined. Also note that in this limit,

[ 7 4z [no(2) — ny (2)] = —nsA (74)
en = —mw2 = zZon\z) .
BOE(A) "/A dz 6n(z) . (75)

Equation (69) now becomes

—gz _°°°° dz z6ns(z)
A oo
=— dz z6 —-A dz é
/_oo z z6n(z) /A z én(z)
+/ dz f(2)0Eq(z)/4me , (76)
where f(z) = [no(z) — n4(2)]/np. If the system were

overall neutral, A would vanish, and if there were no
d electrons, dn and én, would be the same. Then one
would quickly find (64) from (76).

Returning to the general case, we seek to replace 0 Eg
and to express dn in terms of én, alone. This may be
accomplished by integrating the d-electron Poisson equa-
tion,

1o}

—0E; = 4wedng = —47r£Pd.

Oz oz (77)
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Since 6F, vanishes away from the slab in a capacitor
geometry, one has

lSEd = —47T'Pd . (78)
For P, we use (near the right edge of the slab)
Py(2) = 0(zq — 2) [f‘i — g,
1 i ,
+(1-— = dz' edng(z') (79)
d —oo

and find éng by differentiation

~2 A oo
_w_2 dz z6n,(z) = —/ dz z Ins(2) A/
wi J oo oo €a2)

+(1 —64){ [_2_2
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Sna(z) = %Pd(zd)é(z — za)
+0(24 — 2)(1/€q — 1)dn,(2) .

Before substituting these results back into (76), use (73)

(80)

to remove Ep/4n = —w?0, /w2 from (79),
1 @? o,
gPd(z) =0(zq — 2)(eqg — 1) [_W_f,?
1
+— dz on, (2 )] . (81)
€d
Then, we obtain
6715(2)
eq(z)
1 / dz' 5my (2 ] [2a8(A — 24) + A8(za — A)] (82)

+[ dz £(2) [—w—gf+—/wdz S (<! )]} .

The 0 functions arise from considering whether the singular contribution to dng4 is included in various integrals. To

simplify further reduction, consider the usual case for which zg < A and recall that € = ¢4 — wf, /@2. Then after
multiplying by €4 and rearranging, (82) becomes
~2 oo zd A oo
—w—zed/ dz 20mn,(z) = —/ dz z6ns(z) — ed/ dz 20m,(2z) — edA/ dz éns(z)
wp —o0 —oo
+(1 - ed){ (_“’—) ezd—— Y N 5ns(2') (83)
w2
+/ dz f(z) [—~ed— / dz' dn, (2 ]}
or
@2 oo e
(1 - —564) / dz 26n,(z) = ed/ dz (z — A)dn,(2)
Wp —oo A
o o? o, zd
+(1 - eq) / dz (2 — za)bna(2) — 2 2 [ezd +ed/ dz f(z)] (84)
24 w? e .
z4 z
+/ dz f(z)/ d2' Sny() b .
If instead z4 > A, one finds
@2 o i
(1 - _2€d> / dz 26n,(z) = / dz (2 — A)ony(2) + (1 — eq) (85)
Wy —oo A

x{/_:dz (2) /_;dz’ Sny(2) — g;"’: [eA+ed/_z;dz f(z)]} .

Both (84) and (85) must be augmented on their right
sides by

—E—‘é /_ o:o dz n4(2) VL. [no(2)] (86)

if one switches to a random phase approximation (RPA)

[
response treatment.?® In any case, the net result is that
the dipole moment integral of én, has been written in
terms of more numerically tractable integrals.

This feature continues to hold if we allow the d elec-
trons to screen more than the Hartree term in the dy-
namic response. For such generalizations, we need to
replace (66) with
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—m? / dZ 7 5ny(Z)

— 00

- " dZ (510(2) [eE+(Z) + eEa(Z) + Fous(2)]
+no(Z) [eEa + e0E4(Z) + 6 Fext(2)]},

where E4 is the electric field produced by the ground
state distribution of the d electrons and §Ey is the first
order change in it, due to the system’s response. We

write

o}
C(Ed + 6Ed) = -ﬁ(Vd + (sVd) .

Similarly,

o
Fext + 6Fext = - (‘/ext + 6‘/ext) .
0z

We consider only various approximations to local
exchange-correlation energies as the possible sources of

Vext + 0 Vext.
If there is partial d screening of the Hartree term in

the ground state, we write

e / dZ 5ny(2)Ea(Z)

IV. RESULTS AND DISCUSSION
A. Surface excitations in the q = 0 limit

We begin the presentation of our results by showing in
Fig. 2 the frequency dependence of d, (w) and of the s
and d contributions, d,(w) and dg4(w). The boundary of
the polarizable medium is assumed to coincide with the
jellium edge, i.e., zg = 0. The volume dielectric function
of Ag is taken from the room temperature measurements
of Hagemann et al.2® and the s-electron density in bulk is
described by 7, = 2.97. We determine e4(w) and €,(w) =

1 —w?/[w(w +iv)] from e(w) as follows. Below the onset
of interband transitions involving the 4d bands, eq4(w) is
real, so we fit y(w) by requiring Ime(w) = Ime,(w) =~
yw?2/w? and then find e4(w) by subtraction: €z(w) = Re

[e(w) — €5(w)]. Above the onset of interband transitions

at w = 3.7 eV, we set y(w) from yw2/w?® = Ime(w =

3.7 eV) and find a complex valued €4(w) from e4(w)

- —27re'~’/dz (;Z—&ns(Z)) /dZ' \Z — Z'lna(Z") .
(87)

The density ng has both smooth and singular contribu-
tions [cf. Eq. (80) for its first order analog] and satisfies

/dZ na(Z) = 0.

If there is partial d screening of the exchange-
correlation potentials in the ground state, we write

/ dZ §ny(Z) Fuxe(Z) = / iz (%M,(Z)) Vi (2) .
(88)

An example of Vi will be given below in Sec. IV. If
there is partial d screening of the exchange-correlation

potentials in the first order response, we write
/ dZ 1o(Z) 5Fuxs(Z)

= [ iz (ggno(2)) nu(2) 5 Vi (),

where n is evaluated as no(Z) after the differentiation.
We note that if there is no d screening of the exchange-
correlation potentials in either the ground state or the re-
sponse, then the contributions of the (88) and (89) terms
above with €4 everywhere unity should cancel.

(89)

2~
' oy
% il
0 =
3 e il
~ ~— \\ d, ',/
E \.\ \\\ "
o -2 dg ~. DN f/ n
2 . N i
NG ;
NN ///
—4 (a) N T .
| | L ]
1 T T B
2r (b) 7

Im d(w) (a0)

w (eV)

FIG. 2. Frequency dependence of (a) real and (b)
imaginary parts of d)(w) calculated within TDLDA for
two-component s-d electron system. Solid curves: total
d. (w); dashed curves: d,(w); dash-dotted curves: da(w). The
boundary of the polarizable medium representing the d states

is zg = 0. The divergence of the d functions near w; is
smoothed out, due to bulk damping processes. In the ab-
sence of the bulk broadening mechanisms, Red(w) — —oo

and Imd(w) — +oo for w — wy. The dotted curves indicate

these divergences for d (w).
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€(w) — €5(w). Near w}, the bulk data give v = 0.3 V.
This damping was included in the calculations shown in
Fig. 2 by evaluating the dynamical surface response at
complex frequencies, w + 70.5.

In principle, this relaxation-time treatment of damp-
ing processes is not quite correct, since it does not con-
serve the local electron density.2” In a three-dimensional
homogeneous electron gas, one finds corrections of the
order of 0.5y/w. An extension to semi-infinite systems
has not yet been attempted. If one assumes the surface
corrections to be of the same magnitude as in the bulk,
they would amount to less than 5%. We, therefore, ig-
nore such modifications. Because of the damping, the
divergence of d, (w) near the bulk plasma frequency is
smoothed out. We have checked that, if v is taken to be
zero, Red (as well as Red, and Redgy) approaches —oo
for w — wy (see dotted curve in Fig. 2). This behavior is
also found on standard jellium surfaces and corresponds
to the fact that, close to the transparency threshold, the
induced charge is shifted deep into the interior.

The real part of d; (w) is seen to remain positive up
to about 3.7 eV, i.e., until less than 2% below wy. This
behavior is strikingly different from that at the standard
jellium surfaces, where Red, (w) becomes negative al-
ready near the multipole surface plasma frequency, i.e.,
at about 0.8w,.1%23:28 Thus, at the Ag surface plasma
frequency (3.63 eV), we find Red, (w}) =~ 1 a.u., which
is only slightly less than the static value 1.35 a.u. ob-
tained for a standard jellium surface with r, = 2.97.
This demonstrates that screening at the surface of the
two-component s-d electron system remains very effi-
cient, until just below the transparency threshold. At
low frequencies, the relative screening effect of the po-
larizable medium representing the 4d bands diminishes
rapidly and the induced dipole moment approaches that
of an ordinary jellium surface.

We point out that Red  remains positive up to much
higher frequencies than the individual contributions, d,
and dg, which turn negative near 3.54 and 3.26 eV, re-
spectively. The reason is that the weight factors ¢, =
(s —1)/(e—1) and cg = (eq —1)/(e —1) =1 —¢,4
in the expression d; = c¢,ds + cqdq [see (62)] have op-
posite signs. For example, at w} = 3.63 eV, we have
¢s = (€4+1)/2 =~ 3 and ¢cq = 1—c; = —2. This shows that
there is no simple relationship between the effective in-
duced dipole moment of the two-component s-d electron
system and the centroid of the induced s-electron charge
alone. In particular, the real parts of both d, and dg can
be negative although the total Red, (w) is positive. This
is indeed the case at w = 3.63 eV, where Red, = —1.4
a.u. and Redy = —2.6 a.u., whereas Red; = 1.0 a.u.

Figure 2(b) shows the frequency dependence of the
imaginary part of the total induced dipole moment and
of its s and d contributions. In the absence of damping,
Imd, (w) (as well as the s and d contributions) remains
positive up to the bulk plasma frequency (see dotted
curve). As a result of the Drude damping, Imd, is pos-
itive only up to about 3.63 eV; subsequently it becomes
negative. As in the case of the real part, the imaginary
part of the total induced dipole moment is not simply re-
lated to the imaginary parts of the s and d components.
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Thus, both of these contributions may be negative, while
the total Imd, is positive. The reason is again the rapid
frequency variation and the opposite signs of the coeffi-
cients ¢, and ¢cg = 1 — ¢,.

We note here that, in the case of ordinary jellium sur-
faces, the cross section for photoabsorption, due to elec-
tronic surface excitations, is proportional to Imd (w).}3
Thus, this quantity must be positive below the bulk
plasma frequency. If damping is included by evaluating
the surface response at complex frequencies, Imd, (w)
does not need to remain positive, since this damping im-
plies the presence of bulk absorption processes. These
may interfere with surface excitations and lead to partial
cancellations. Only the sum of both processes yields a
positive definite total absorption rate.

The surface excitation spectrum shown in Fig. 2 does
not show any evidence for the existence of a multipole
surface plasmon. Because of the extreme closeness of the
surface and volume plasma frequencies of the s-d elec-
tron system, an additional spectral feature between these
main collective modes would in any case be difficult to
discern. The extra broadening caused by the inclusion
of bulk damping also implies that any such mode would
probably be swamped by the tail of the monopole surface
plasmon.

The induced s-electron density is shown in Fig. 3 for
w = 3.63 eV, i.e., at the Ag surface plasma frequency.
Plotted are the solutions using both approaches discussed
in Sec. II. The agreement between these two methods is
seen to be very good at this frequency. The slight dif-
ferences probably stem from the use of different response
kernels (short range in the first, long range in the sec-
ond scheme). At slightly higher frequencies (as the bulk
plasmon threshold is crossed), only the first scheme, eval-
uated with model densities,?® gives reliable results, at
least for the small damping factor v that is used here.
The induced density is dominated by a large peak within

_
3
S
~~
3
X
3
-20 -15 -10 -5 [o] 5
z (a.u.)
FIG. 3. Spatial distribution of normalized induced

s-electron density n,(z,w)/o(w) for z4 = 0, r, = 2.97,
and w = 3.63 eV. Solid (dashed) curve: real (imaginary)
part using the first approach discussed in Sec. II; dotted
(dash-dotted) curve: real (imaginary) part using second ap-
proach.
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a few A from the surface. Weaker short- and long-range
Friedel oscillations decay rather slowly towards the in-
terior. The centroid of the induced s-electron density
is located slightly inside the metal for the case of Fig.
3. Nevertheless, as pointed out above, the total induced
dipole moment is positive.

In order to compare more directly the s and d contri-
butions to the dynamic surface response, we show in Fig.
4 the total induced polarization and the corresponding s
and d polarizations for w = 3.63 eV. All curves are nor-
malized to the total bulk polarization, which is given by
P(z € 0,w) = o(w) = (e —1)/(e +1). Thus, plotted are

oo
B,(z,w) = / dz' én, (2, w)/o(w) (90)
z
and
_ € €g—1
Py(z,w) = (ad— - P,(z,w))é’(zd —2z)/o(w) ,
€d €d
(91)
T I T I
3T TN (a) T
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FIG. 4. Spatial distributions of (a) real and (b) imagi-
nary parts of normalized induced polarizations for z4 = 0,

rs = 2.97, and w = 3.63 eV. Solid curves:
ization P.(z,w)/o(w); dashed curves: s-electron polariza-
tion P,(z,w)/o(w); dotted curves: d-electron polarization
Py(z,w)/o(w). The asymptotic values of the s and d contri-
butions are ¢ = 3.05+10.51 and cg = 1 —cs = —2.05 —20.51,
respectively.

total polar-
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as well as P;(z,w) = P,(z,w) + P4(z,w). Deep inside the
metal, these functions approach the asymptotic values
P,(z € 0,w) = 0,/0 = ¢, = 3.05+40.51 and Py(z <
0,w) = 04/0 = ¢g = —2.05 — 30.51, i.e., the normalized
total polarization in the interior is ¢, + ¢4 = 1.

The polarization of the d states has the opposite sign of
the s-electron polarization and, therefore, causes a dras-
tic cancellation. The main screening effect takes place
within a few A from the surface; deeper inside, all polar-
izations exhibit characteristic Friedel oscillations about
their mean asymptotic values. The discontinuities in
Py(z,w) and Pi(z,w) at z = 24 = 0 are caused by the
sheet of d-electron screening charge located at the edge
of the polarizable medium.

As mentioned in the Introduction, a two-component
s-d electron system (without damping in €,) has been
used previously by one of the authors!! to evaluate sur-
face excitation spectra at finite g parallel to the surface
plane and to determine the dispersion of the surface plas-
mon. At finite ¢, the surface excitations can be derived
from the imaginary part of the surface response function
g(g,w), which is defined as the asymptotic amplitude of
the induced electric potential far from the surface:

(2 q,w) — —27” [ — g(g,w) e %] . (92)

In the limit of small g, this response function should be

related to the d parameters in the following manner:!3:14

_ e(w)—1 ‘
€(w) +1 — 2qle(w)d L (w) + dy(w)]

9(g,w) (93)

We have found that the two calculational approaches,
one based on the direct evaluation of g(q,w) in the re-
gion ¢ > 0.05 A~ and the other using the above formula
together with the d parameters, are in fact compatible.
This is illustrated in Fig. 5, where the frequency de-
pendence of Im g(q,w) is shown for ¢ = 0.05 A~1. The
dashed curve is obtained from the full surface response
function, while the dotted curve corresponds to the small-
q expansion (93) using d; . We have again set zg = 0, so
that d| = 0 according to (53). Also plotted is the g =0
spectrum, i.e., Im {[e(w) — 1]/[e(w) + 1]} (solid curve).
The agreement between the two calculations at finite g
is seen to be very good, indicating that both approaches
are perfectly consistent as long as d, (w) and g(g,w) are
evaluated within the same model.

The spectra shown in Fig. 5 reveal no trace of the mul-
tipole surface plasmon. As mentioned above, this mode
is presumably suppressed, because of the closeness of the
surface and volume plasma frequencies in Ag, and be-
cause of the extra broadening caused by the bulk damp-
ing processes.

B. Surface plasmon dispersion:
Comparison with experiment

We now turn to the comparison of the calculated sur-
face plasmon dispersion with the experimental results.
Figure 6 shows w?(g) as derived within the same model
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Im g(q,0) (a.u.)

w (eV)

FIG. 5. Spectral distribution of surface excitations of a
two-component s-d electron system. Solid curve: ¢ = 0 limit,
i.e., Im(e—1)/(e+1), where €(w) is the measured bulk dielec-
tric function (Ref. 26); dashed curve: Img(q,w) at ¢ = 0.05
A~1, as calculated within TDLDA (Ref. 11); dotted curve:
Img(q,w) at ¢ = 0.05 A~! derived from small-¢ expansion
(93), with d (w) as in Fig. 2.

as discussed above together with the analogous results
when the polarizable medium representing the d states
is terminated at zg = —0.8 A. The w*(q) are determined
from the frequency location of peaks in Im g(q,w) at fixed
q. The short curves close to the origin are obtained from
the d parameters and the approximation (93), while the

4.0 — a —

wi(q) (eV)

q (&)

FIG. 6. Dispersion of Ag surface plasmon. The theoretical
results are for the Lang-Kohn ground state (no s-d screening
included), with the finite-frequency response treated within
the TDLDA with only the Hartree term screened via the s-d
polarization. Solid curves: finite-q calculations for zq = 0 and
24 = —0.8 A. The short curves close to the origin denote the
corresponding results obtained from the d parameters. The
dotted and dashed curves denote the measured dispersions for
Ag(100) and Ag(111), respectively. The experimental results
for the anisotropic (110) face lie close to the (100) and (111)
data. The triangles indicate the measured dispersion of the
Ag bulk plasmon.
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remaining curves result from using the full finite-q surface
response function g(q,w) over the g range from 0.05 to 0.3
A—1. All results are based on the Lang-Kohn equilibrium
density profile and the TDLDA response with only the
Hartree contribution to the induced potential screened
by the d states. Also indicated are the measured disper-
sions for Ag(100) and Ag(111). The two experimental
curves for the anisotropic (110) face lie close to the (100)
and (111) data. These data have been shifted down by
0.06 eV in order to match the value of w’(g = 0) ob-
tained from the measured bulk dielectric function.?¢ For
the sake of completeness, we also plot the dispersion of
the bulk plasmon,?® which is seen to lie slightly above
the surface plasmons.

For zg = —0.8 A, the calculated dispersion is seen to
lie within the range of the measured results. In particu-
lar, the weak minimum at small g has disappeared. Both
d, and d contribute significantly to the upward disper-
sion; e.g., at 3.63 eV, we find d; = —0.77 — 1.16¢ and
dy = 3.17 + 0.79i. The physical origin of the blueshift
relative to the theoretical results for z4 = 0 is that a
larger portion of the charge density associated with the
surface plasmon fluctuates outside the range of the po-
larizable d medium. Although the equilibrium density is
reduced in this selvedge region [which for simple metals

leads to a negative dispersion up to about ¢ = 0.15 A
(Ref. 8)], the reduction of the s-d interaction in the same
region is the stronger effect and leads to a ¢ dependent
upward shift towards the unscreened plasma frequencies.
In the nonretarded limit, the ¢ = 0 value w; = 3.63 eV
is, of course, independent of z4. We note here that, if
zq is shifted deeper inside the metal, the initial slope of
the Ag surface plasmon becomes more and more positive,
since the unscreened plasma frequency near 6.5 eV must
be approached.

It is remarkable, that for zy4 = —0.8 A, the initial slope
derived from the d functions is similar to the overall slope
at larger g obtained from the full g(¢,w). This does not
imply, however, that the large-q region is governed by the
same processes as the small-¢ region. The comparison
with the results for z4 = 0 illustrates quite convincingly
that these two regions (roughly separated at ¢ = 0.05
A-1) have generally distinct behavior. Also, as we dis-
cuss below, these two regions depend differently on the
ground state electronic properties and on modifications
of the dynamical response calculation.

Because of the simplicity of the present s-d electron
system, it is not clear whether a direct physical mean-
ing can be attached to the location of the parameter z4.
Since z4 is determined not only by the equilibrium lo-
cation of the d electrons, but also by the spatial extent
of their response, it is not a ground state quantity and
can, therefore, not be simply equated, for example, with
the distance of the first atomic plane from the jellium
edge. Microscopically, a single plane of Ag atoms should
have a less sharp onset of interband transitions than a
three-dimensional crystal. The surface of a semi-infinite
Ag crystal might be viewed as an intermediate case, in
particular, at finite ¢, where the penetration depth of the
plasmon field is exponentially reduced. A less sharp on-
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set of interband transitions should lead to a reduction of
the real part of €4 below the onset and a corresponding
blueshift of the surface plasma frequency: According to
the formula w} = wp/+/1+ €4, a decrease of g from 5
to 4 causes w) to increase by 0.35 eV, i.e., by more than
the entire ¢ dispersion observed on the three low-index
faces of Ag. An inward shift of z4 can be interpreted as
a reduction of ¢4 from its bulk value (= 5) to unity in
the thin surface region z4 < z < 0. Thus, a tentative
rationalization of the position zg = —0.8 A used in Fig.
6 could be that the interband onset is weakened at the
surface due to finite-size effects.

The above picture can in fact be used to argue that
the surface plasma frequency on the (100) face should lie
above that for the (111) face, just as it is experimentally
observed. Since the atomic density within a (100) plane is
smaller than in the densely packed (111) plane, €4 should
be reduced more, or should be reduced over a wider re-
gion, in order to simulate the reduced strength of the in-
terband transition relative to the bulk situation. Shifting
z4 farther inside leads to an enhanced blueshift in agree-
ment with the measurements. Conversely, one might ar-
gue that on the (111) face, €4 should be reduced less, or
only over a thinner region, since the strength of the inter-
band transition should be more similar to the bulk case.
Thus, the plasma frequency should be less blueshifted
than on Ag(100). But according to this simple argu-
ment, the frequency on Ag(110) should be even higher
than on Ag(100), since the intraplanar atomic density
is even lower. The data, however, show that this is not
the case. The nonmonotonic behavior of the dispersions
seen on the three low-index faces clearly suggests that no
one-parameter model can provide a satisfactory explana-
tion. Moreover, the anisotropy observed on Ag(110) is a
measure of the importance of dj. It is plausible that this
parameter should also differ for the three low-index faces.
Thus, a consistent understanding of the face dependence
of the dispersions cannot be achieved solely in terms of
d,.

It would be very interesting to investigate whether op-
tical data, for which the corrections to classical optics are
determined by the d parameters, can also be better re-
produced with an effective d-electron medium terminated
below rather than at the jellium edge. For example, the
positive slope that we find here for z; = —0.8 A implies
that the Ag surface plasmon polariton frequencies in the
retardation regime should lie above the values expected
within the local Fresnel picture. In the latter case, the
plasmon polariton dispersion is determined by the rela-
tion

K +Kke=0, (94)
where
2
w
k=4/d3 2
2
"= 1 [g2 — -
K =1/q2 ec2

For a given w, the parallel wave vector is then determined
by
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2
2w €(w)

= —=—"—. 95

9z Cz e(w) + 1 ( )

In the presence of nonlocal surface corrections, the rela-
tion (94) is replaced by the condition®®

k' +Ke= (e —1)[g2dL — kK'd)] . (96)

For not too small values of 1/|¢| and |e + 1|, these correc-

tions imply

i =00 (1= L5 g Relds —dy] +0(a) ,  (97)
e+1

where g, is defined in (95). Thus, at a given frequency
below w}, g, should be reduced if Re[d, —dj] < 0. The
attenuated reflection data on Ag by Tadjeddine et al.3!
show the opposite trend, since the observed polariton fre-
quencies are smaller than expected from classical theory
if the optical data of Hagemann et al.26 or Johnson and
Christy3? are used. This effect could be related to the
fact that these measurements were not done under UHV
conditions. Small amounts of a surface oxide might lead
to a lowering of the polariton frequencies. We point out,
however, that this analysis depends sensitively on the ac-
curacy of the bulk dielectric function. Thus, the bulk €
quoted in Ref. 31 gives a Fresnel dispersion below rather
than above the measured polariton curves.

C. Sensitivity to model assumptions

Since the two-component s-d electron system repre-
sents a highly simplified model of the actual dynamical
response occuring at Ag single crystal surfaces, it is im-
portant to inquire to what extent the model predictions
depend on the input assumptions. As discussed above,
variations of the boundary z4 do not alter the qualitative
picture, but do lead to significant changes in detail. Also,
in Ref. 11 it was shown that an RPA response formula-
tion yields slightly higher surface plasma frequencies for
g > 0 than the TDLDA because, in the latter case, the
bare Coulomb interaction (screened via the s-d polariza-
tion) is partially diminished by the exchange-correlation
contributions to the complex local potential. The shifts
are, however, rather small so that the overall picture re-
mains the same.

Since the ground state electronic density in the cal-
culations discussed above corresponds to the standard
jellium model by Lang and Kohn,2? the treatment of
electron interactions, in the presence and absence of the
applied electromagnetic field, is, in fact, not quite con-
sistent. Figure 7 shows how the ground state density
profile and the effective one-electron potential are mod-
ified if the s-d polarization is included in the interior of
the metal. Screening of only the Hartree potential and
of both Hartree and exchange-correlation potentials are
considered. For both cases, the Poisson equation away
from z = 24 is

0(2) = —4m [no(2) — n(2)]/ea(2) »

where €4(z) = €q = 4 for z < z4 and €g4(z) = 1 for z > 24.

(98)
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The value €4 = 4 corresponds roughly to the adiabatic
limit of the d electron contribution derived from optical
data.2® In the second case, not only the Hartree, but also
the local exchange-correlation potential is screened. We
account for this additional screening by writing V¥ =
Ve + Vi, where

Vo (2) = Voo (2)/eal2) (99)
and
Ve (2) = Vo (2) flrs(2)/ea(2)] - (100)
If the Wigner interpolation formula is used, one has
4z/3 + 7.8

The discontinuity in €4(z) leads to a discontinuity of
Vs and a strong distortion of the s-electron equilib-

no(z)

Vo(z) (Ry)

no(z)

Vo(z) (Ry)

z (ao)

FIG. 7. Normalized ground state density profiles and
one-electron potentials for different treatments of electron in-
teractions. Solid curve: standard Lang-Kohn jellium model;
dashed curve: Hartree potential screened via s-d polarization;
dot-dashed curve: both Hartree and exchange-correlation po-
tentials screened via s-d polarization. In both cases g = 4,
while in (a) z¢ = 0 and in (b) 24 = —0.8 A.
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rium density profile, although the total barrier height is
just slightly changed. When the d electrons screen only
the Hartree potential, the changes in ng and V are less
noticeable.

We point out that the overall height of the surface bar-
rier changes a little as a result of these different ground
state treatments. Thus, the work function ®, which is of
crucial importance for the screening properties of metal-
lic surfaces, is nearly the same for the cases shown in Fig.
7. Once the boundary of the d medium is moved outside
the jellium edge, however, ® diminishes quite rapidly,
because of the strong reduction of the surface dipole.

The variation of the work function ® as a result of
the s-d polarization in the ground state when zg = 0 is
shown in Fig. 8. If only the Hartree potential is screened,
& decreases monotonically from 3.5 eV to about 3.4 eV
as €4 is increased from 1 to 5. This decrease reflects the
reduction of the surface dipole, due to the s-d polariza-
tion in the region z < z4. On the other hand, if Vi is
also screened, the work function exhibits a sharp mini-
mum near €g = 1.5 and a subsequent increase. This more
complex behavior is related to the fact that ® depends
not only on the surface dipole (which is influenced by
both Coulomb and exchange-correlation terms), but also
on the bulk exchange-correlation potential. As shown by
Lang and Kohn,?® & may be expressed as

® =D+ V5 (00) — VT (—o0) — EF . (102)
In the present case where z4 = 0, the surface dipole is
given by

D=4nr /_ T 2 no(2) — na(2))ealz) . (103)

Since D and V:* depend differently cn €4, a nonmono-
tonic variation of ®(eq4) is not surprising. There are sim-
ilar variations in ® with z4 at a fixed value of €4.

37 71— T

3.6 — . n

3 (eVv)

3.4 -

3.3 — \ / —

3.2 L | 1 | 1 1 1 | L |

€d

FIG. 8. Work function & for r, = 2.97 jellium surface as a
function of dielectric constant of polarizable medium extend-
ing up to z4 = 0. Solid curve: Hartree potential screened
via s-d polarization; dashed curve: both Hartree and ex-
change-correlation potentials screened via s-d polarization.
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FIG. 9. Dispersion of Ag surface plasmon for two consistent
treatments of electron interactions in the ground state and
for the finite-frequency response: s-d screening included only
in Hartree potential (solid curve) and in both Hartree and
exchange-correlation potentials (dashed curve). The short
curves close to the origin denote the results obtained from
the d parameters, the remaining curves are derived from the
full surface response function g(g,w). All results are calcu-
lated within the TDLDA, modified by the s-d screening. The
lower pair of results have z4 = 0, while the upper pair use
zq = —0.8 A.

Figure 9 shows the dispersion of the Ag surface plas-
mon for two consistent treatments of electron-electron
interactions in the ground state and in the presence
of the applied field: s-d polarization included only in
the Hartree term (solid curve) and in both Hartree and
exchange-correlation terms (dashed curve). The calcula-
tions have been done for z4 values of both 0 and —0.8
A. The short curves close to the origin denote again the
results obtained from the d parameters, while the remain-
ing curves give the dispersions derived from the general
g(g,w) within the ¢ range from 0.05 to 0.25 A~1. Com-
paring the results for 24 = 0 with those in Fig. 6, it is
evident that the qualitative picture is not altered, due to
these different treatments of electron interactions. The
similarity of the d’s is surprising, since the ground state
profiles shown in Fig. 7 are clearly different. Indeed the
profiles of the induced charge densities are quite different,
but their centroids are not.

The analogous dispersions for zg = —0.8 A are also
plotted in Fig. 9. As in Fig. 6, the weak minimum at
small ¢ has disappeared and the dispersion is positive
over the entire ¢ range in approximate agreement with
the measured dispersions. As before, the inward shift of
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zq causes an enhancement of the blueshift. Thus, within
the present model, the overall behavior of the ¢ depen-
dence of the Ag surface plasmon seems to be overwhelm-
ingly dominated by the fundamental g dependence of the
mutual s-d polarization in the surface region.

V. SUMMARY

The d parameters that characterize the nonlocal op-
tical response of metal surfaces have been evaluated for
a two-component s-d electron system. The s electrons
are treated as a semi-infinite electron gas, while the oc-
cupied d states are represented in terms of a polarizable
half space. To be able to numerically calculate the in-
duced dipole moments in the ¢ = 0 limit in a stable
manner, the dynamical force sum rule, which was previ-
ously known only for pure s electron systems, has been
generalized. The resulting d functions are shown to give
an initial slope of the surface plasmon that is consistent
with the finite-q dispersion obtained from the full surface
response function g.

If the boundary z4 of the polarizable half space co-
incides with the jellium edge, the initial slope is found
to be slightly negative although the overall dispersion
for ¢ > 0.05 A~ is positive. Thus, the linear region is
rather small and cannot be taken as representative of the
main parallel momentum region in which the experimen-
tal data are observed (¢ < 0.3 A"l). If the boundary
is moved inside the metal, the initial slope also becomes
positive and the overall dispersion agrees qualitatively
with the dispersions observed on the three low-index faces
of Ag.

Various alternative treatments of the s-d polarization
in the ground state and in the finite-frequency response
are shown to lead to minor modifications of the calcu-
lated dispersion. These results, therefore, support the
main physical picture for the Ag surface plasmon disper-
sion that was proposed earlier by one of the authors:!!
The mutual s-d polarization that is responsible for the
large downward shift of the Ag surface collective modes
is gradually switched off at finite parallel momenta, be-
cause of the reduced penetration depth of the plasmon
field.

It would be very interesting to check whether optical
data are consistent with the positive slope of the sur-
face plasmon in the small-gq region. Also, refinements of
the present two-component s-d electron model that allow
the consideration of the face dependence of the disper-
sion [including its anisotropy on the (110) face] would be
desirable.
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