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Electronic shell and supershell structures in spherical metal clusters with a rough surface are quantum
mechanically investigated. Our nonperturbative approach involves a finite-depth step-walled spherical
potential well with a sine-wave corrugation along the azimuthal and polar angular coordinates. The
electronic structure is studied as a function of both the radial amplitude and the angular wavelength of
the corrugation. When the spatial periods of the roughness are comparable to, or shorter than the Fermi
wavelength, the shell structure related to the overall spherical symmetry survives, even in the case of a
large radial corrugation amplitude. The weakening of the shell effects due to the loss of the spherical
symmetry is rather minor and the electronic structure is essentially ruled by the spherical average of the
rough potential, which has a soft surface profile. In consequence, the magic sizes (supershell beat loca-
tions) are slightly (noticeably) shifted towards larger sizes. These shifts depend strongly on the radial
roughness amplitude. As far as the electronic structure is concerned, the results establish the
equivalence between a fine-grained hard-walled rough potential and a spherical potential having a soft
surface profile. Hence surface roughness could underlie partly the shift of the supershell nodes observed
in trivalent metal experiments. When the wavelengths of the corrugation along the angular coordinates
are large relative to the Fermi one the electronic density of states becomes quite smooth owing to the
large level splitting and mixing effects. The supershell pattern and —to a lesser extent —the shell struc-
ture are considerably damped, and even may disappear. In consequence the size dependence of the
shell-correction energy and of the ionization potential do not exhibit noticeable oscillations, except for
small radial roughness amplitudes.

I. INTRODUCTION

Since the pioneering paper by Knight et al. ,
'

numerous works have been devoted to studying the elec-
tronic shell structure in metal clusters. The structure-
less jellium model (JM), " usually worked out within
the Kohn-Sham (KS) density-functional theory, explains
successfully the major features of the observed electronic
shell structure that results from the sequential filling of
the 2(2l+1)-fold degenerate KS levels E„& by the N,
valence electrons. In the JM, the discrete ionic back-
ground is replaced by a spherical homogeneous hard-
walled positive charge distribution of radius
R& =r,N,', where r, is the Wigner-Seitz radius per

e
valence electron in the bulk. Improvements of this sim-
ple model, by involving softer jellium walls, ' ' or by
taking into account accurate electron-ion interaction
through local' ' or nonlocal pseudopotentials,
have brought the theory in better agreement with the ex-
perimental results. In including these model refinements
the spherical symmetry and the homogeneity of the inner
ionic density have been assumed (except in Ref. 21 where
the discreteness of the ionic frame is preserved), thus
ensuring practicability of the calculations even for very
large cluster sizes. Concerning the cluster homogeneity,
calculations involving strongly inhomogeneous clusters
consisting of nested concentric spherical atomic layers,
have shown that the smoothness of the background is not
an essential theoretical constraint. ' Thus, the overall

spherical cluster shape seems to be the only requirement
for the emergence of the observed electronic shell struc-
ture in liquid clusters (more exactly the possibility for the
clusters of getting the spherical shape for magic sizes).
Let us remark that the spherical-symmetry hypothesis
was not assumed for computational convenience only. A
crude perturbative analysis suggests that taking into ac-
count the angular-dependent component of the effective
electronic potential gives rise to a weakening of the shell
efFects through the removal of the (2l +1)-fold orbital de-
generacy ("level broadening" efFect), but does not modify
the magic numbers or supershell node locations. ' Right-
ness of this analysis would provide insight into the validi-
ty of the JM, seeing that the electrostatic potential of the
jellium distribution is actually a quite good numerical ap-
proximation for the spherically averaged electrostatic po-
tential produced by a homogeneous spherical distribution
of pointlike ions. Thus, usual justifications for the JM,
consisting in invoking statistical arguments —ensemble
or time averaging of the ionic distribution —would ap-
pear to be needless. Thus, apart from the overestimation
of the shell effects due to the high level degeneracy, it
seems that the Coulombic short-range behavior of the
electron-ion interaction is actually the major approxima-
tion involved in the JM.

The main purpose of this paper is to study how, and to
what extent, the electronic shell structure is modified
when the angular-dependent component of the effective
electronic potential is taken into account. In addition,
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the quantum model calculations reported in this paper
will test the spherical averaging approximation assumed
in previous works for determining the magic sizes and the
supershell beat locations. Throughout this paper, only
the loss of the spherical symmetry due to the surface
roughness will be investigated. Effects of surface rough-
ness are expected to be of particular importance, because
the surface profile of the electronic potential was found to
be the major feature governing the electronic shell struc-
ture. "' ' * The study of the inhuence of the inner
background granularity, which is expected to produce
only a slight decrease of the shell-effects strength, is left
for further work (the characteristic wavelength A, of the
perturbation associated with the internal granularity,
typically on the order of the average ion-ion distance, is
slightly smaller than the Fermi wavelength AI =3.3r, ).

Works dealing explicitly with the effects of surface
roughness, or including implicitly these efFects, have al-
ready been published. We brieAy review and discuss
some of them. In the very low cluster-size domain, calcu-
lations taking into account the discrete background
structure preserve —except for a noticeable
weakening —the electronic shell structure as obtained in
the spherical JM, although defining an outer cluster
shape is rather difficult, because the surface is highly
rough on the cluster-size scale. In fact, for very small
sizes, the gaps between the levels E„I (levels obtained at
the zeroth-order approximation for the electronic Hamil-
tonian, for instance, the ones provided by the JM) are
large and the level splittings, due to the lattice structure
effects, do not mix strongly the zeroth-order levels or
bunches. In the medium size range (say N, &1000),
Hiickel calculations of the electronic state density (DOS)
in spherical or polyhedral fcc clusters have shown that
the discreteness of the structure does not destroy the
JM-like electronic structure in the lower region of the
electronic spectrum. ' However, beyond the sizes
1V, =200—400, depending on the cluster shape, JM-like
DOS are never observed over a wide region surrounding
the Fermi level, even for fcc clusters built to ensure the
most perfectly the spherical shape. These results are in-
consistent with the experimental results: for sodium and
gallium clusters the JM-related electronic shell and
supershell structures have been observed up to X, =3000
(Ref. 4) and 15 000 (Refs. 6 and 30) valence electrons, re-
spectively. The disagreement could be due, either to the
unsuitability of the tight-binding approach for describing
large clusters, or to the constraint of using only fcc (or
more generally bulk-lattice) sites to generate the cluster
structure. To our knowledge, except a paper by
Ratcliff, ' a two-dimensional study by Barojas et al. ,
and a very recent investigation by Pavloff, which all in-
volve a corrugated potential well to tackle the effects of
surface roughness, the theoretical framework as well as
the main purpose of most of the previous works
differ from ours. BrieAy, these studies deal with clusters
built from periodic bulklike lattices, and tight-binding
Hamiltonians are assumed to calculate the electronic lev-
els. The central task consists in determining the energy-
level statistics from an ensemble of clusters having the
same number of atoms but different surface shapes, in or-

der to test the predictions of the random matrix theory,
successfully applied in nuclear physics. ' With regard to
the works involving corrugated potential wells, RatclifF
describes the surface deformation of a spherical infinite-
depth hard-walled potential box by a linear superposition
of spherical harmonics, with coefficients randomly chosen
from a Gaussian distribution in order to generate the en-
semble. ' However, a perturbative treatment is used, i.e.,
the surface distortion is diagonalized within a given
zeroth-order (21 +1)-fold-degenerate subspace, and
hence no information about the survival or the vanishing
of the JM-like electronic shell structure can be gained in
this work. Much more closely related to our investiga-
tion is the paper by Pavloff in which the electronic DOS
in infinite-depth hard-walled potential wells exhibiting
small surface deformations from a perfect sphere is calcu-
lated. This study is carried out at a perturbative level
(the deformations are assumed small) within the semiclas-
sical theory. The DOS is then ensemble averaged over
the surface disorder through a Gaussian distribution of
the deformation parameter. Our quantum calculations
are in disagreement with the results reported in Ref. 33.
We think that part of the discrepancies are rooted in the
deficiencies of the semiclassical trace formula approach,
which basically assumes an infinitesimal Planck constant,
and is therefore unsuitable for dealing with surface dis-
tortions having spatial scales comparable to or shorter
than the Fermi wavelength.

The paper is organized as follows. In Sec. II, we detail
the mode1 assumed for investigating the surface corruga-
tion efFects, as well as the mathematical procedure used
to calculate the eigenvalues in nonspherical rough poten-
tial wells. Obviously the efFective electronic potential is
not derived from self-consistent KS calculations involv-
ing optimized cluster structures. Nevertheless, we would
like to stress that the qualitative results obtained with our
simple model potentials, consisting of spherical finite-
depth hard-walled potential wells with a sine-wave corru-
gation, are quite general and can be extrapolated to more
realistic corrugated soft KS-electronic potentials. The
changes in the electronic shell structure, due to the sur-
face roughness, are analyzed by plotting, either electronic
DOS curves, or the evolution of the shell-correction ener-

gy or of the ionization potential as a function of the clus-
ter size. Specific effects of short-wavelength corrugation
intrinsic to the background granularity (A, on the order of
r, ), as well as of long-wavelength corrugation (A, ) r, ), are
studied for various amplitudes of the deformation relative
to a perfect spherical shape. The results are reported in
Sec. III. Concluding remarks and a summary of the ma-
jor results are given in Sec. IV. Atomic units are used
throughout this paper.

II. THE MADEL

A. Parametrization of the rough surface

The corrugated KS-effective electronic potential of real
clusters is mimicked by a spherical finite-depth ( Vo &0)
step-walled potential well of radius R& with a sine-curve

e

deformation along the two angular coordinates. The
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modulated surface of the rough well is assumed located,
in the direction (8,$), at the distance

R (8,$)=R~ + A cos(n, 8)cos(nz(t ), (1)

from the cluster center (see Fig. 1). A is the amplitude of
the surface deformation (RN —A &R(8,$) &Rz + A),

e e

and n, and n, 2 are two positive integers. We will take
n, =n2=n„, throughout this paper (cor means corruga-
tion). This simple roughness parametrization does not
ensure a homogeneous spatial corrugation over the whole
surface. Equation (1) corresponds to two shifted square
lattices of bumps and hollows near the equatorial region
(8=@/2), which progressively become more and more
distorted as one approaches the two polar regions (8=0
and m ). An immediate representation is provided by im-

aging the pattern formed by parallels and meridians, with
the same angular spacing, drawn on a globe, symbo1izing
the lines of zero radial displacement between the succes-
sive bump and hollows (R(8,$)=R& for n„,8 or

e

n„,P=n/2[mode]). Note that the square surface lat-
tices form an angle equal to n./4, with the parallels and
meridians. I.et us stress that the parametrization Eq. (1),
chosen for computational convenience in order to reduce
the size of the matrixes to be diagonalized (see Secs. II B
and IIC), does not give rise to spurious specific effects.
Indeed most of the results, except those related to the
effective surface softness (Sec. IIIB), can be easily in-
ferred by comparing the length scale of the corrugation
with the Fermi wavelength. The qualitative conclusions
drawn from our model calculations are then general. In
our model the grain of the corrugation can be roughly
characterized by the spatial period of the square lattices
of bumps and hollows in the equatorial region

B. The numerical procedure

The single-electron eigenvalues and eigenfunctions are
obtained by solving the Schrodinger equation for the
Hamiltonian H =Ho+EV(r). Ho is the "unperturbed"
Hamiltonian associated with the perfect spherical
well of radius Rz . Ho= —

( —,')6+ V(r) with V(r)
= VoO(R& r) 5V(r) i—s de.fined by 0.4 V]

where 0 is the Heaviside or step function. The three-
dimensional Schrodinger equation corresponding to the
corrugated potential well is solved by numerical diagonal-
ization of the Hamiltonian matrix (P„ i ~H~tt„. I. ~ ) in
a truncated basis of the "unperturbed" Hamiltonian Ho.
Such a method was previously used in Ref. 42 for calcu-
lating electronic DOS in a potential well having
icosahedral symmetry. However, preliminary calcula-
tions have shown that the approximations assumed in
Ref. 42 are too drastic, and applicability of the method
for our purpose requires prior improvements. These con-
cern two essential features to be fulfilled: (i) Because of
the loss of the spherical symmetry, each "unperturbed"
state P„ i interacts with numerous states of lower and
higher energies. Hence, the truncated basis has to in-
clude an energy domain above the Fermi level sufBciently
large to correctly calculate the overall repulsion from the
upper levels; (ii) since the radius R (8,$) of the rough po-
tential box exceeds R& at the surface bumps, the basis

e

set has to suitably span the radial region corresponding
to this additional classically allowed region
(Rz &r &RN + A). This requirement is poorly ensured

e e

by the Ho-bound states, which have a noticeable ampli-
tude in the region r &Rz only. Therefore, the lowest

e

part of the positive-energy spectrum, i.e., the close con-
tinuum, has to be included in the selected basis. A third
requirement, which is of more technical nature, concerns
the fit of the "unperturbed" radial wave functions in the
region of interest (around Rz ), which would be too poor-

e

ly mimicked by its linear approximation, except for
small amphtudes A.

In order to achieve these goals, the basis set has been

generated by an Hamiltonian Ho involving a double-well

potential [Ho = —
( —,

' )5+ V'(r) ], where V'(r) is defined as

(see Fig. 2)

V'(r)= V, &0, 0&r &R~,

V'(r)=0, R„&r&R&+b,

V'(r) = Vi & 0, r & Rx +6 .

6V(r)= Vo[O[R (8,P) r] —O(R& —r)—],e
(2) 0.2

0.0
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FIG. 1. The rough surface bounding the electronic potential
well [V(r)=VO&0 inside the surface, V(r)=0 outside]. The
rough surface is parametrized according to Eq. (I).

FI&. 2. The double-well spherical potential V'(r) [Eq. (3)]
used to generate the truncated basis set involved in the
Hamiltonian-matrix diagonalization. 2A is the total radial am-

plitude of the sine-wave corrugation modulating the surface of
the inner well.
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The truncated basis (eigenstates
~ g„ i ~ ), such as

E„i( V, ) clearly fulfills both previous requirements for
large enough values of the parameters 6 and V, . H is
split according to H =HO+[V(r) V—'(r)]+EV(r). The
rigorous matrix elements ( g„ i ~H~ P„.&. ~ ) are the sum
of two contributions (except for the additional diagonal
one E„i5„„5i&.5,) involving the overlap of the wave
functions over the radial domains [Rz —A, R& +A]

e e

[operator EV(r)] and [r &R~ +b, ] [operator

V(r) —V'(r)]. However, all the bound states of negative
energy trapped in the central well have a vanishingly
small ainplitude beyond r =R~ +5, and a simple pertur-

bative analysis shows that the second contribution [ma-
trix elements of V(r) —V'(r)] will have a negligible
inhuence on the bound levels in the domain of interest
(E(Ef(0). Strictly speaking, the approximation con-
sisting in retaining only the matrix elements of EV(r)
amounts to studying the roughness e6ects in the double-
well potential, instead of in the original single-well one.
Exact calculations (with no roughness) involving both po-
tentials V(r) and V'(r) lead to identical energy levels of
negative energy (for large enough values of 6, the results
are insensitive to the values of both parameters b, and
V, ). It is clear that this will hold true in the presence of
the corrugation, and the convenient approximation made
in disregarding the term V(r) V'(r) —is numerically
correct. Actually, the described procedure is closely re-
lated to the well-known technique used in molecular cal-
culations, consisting in quantifying the continuum. Tests
of the convergence of the results, versus 5 and V1, have
been carefully checked.

C. Matrix-element calculations

The eigenfunctions of H0 are expressed as

(r)=R„,(r)Y, (8,P), (4)

where the functions YI are the spherical harmonics and
the radial functions R„&(r) are linear combinations of
spherical Bessel functions of the first and second kind,
j&(z) and yi(z), respectively, with a real or imaginary ar-
gument, depending on the sign of E —V'(r) (z =kr or
ikr, with k = ~2[E —V'(r)]~' ). The matrix element of
the perturbation b, V(r),

~ BV ~

Xg„& (r)r sin(8)dr d8dg, (5)

is transformed into a sum of products of one-dimensional
integrals according to the following procedure. Each ra-
dial function R„I(r) is beforehand replaced by a high-
degree polynomial approximation in the radial domain of
interest R& —A (r &R& + A, the coefBcients of which

e e
are optimized by a least-square fit,

k

R„i(r)= g &I, (r —R~ ) (6)
k=0

The radial integration in Eq. (5) is performed first and
results in a sum of two-dimensional integrals,

where the coefficients dk depend on the quantum number
set (n, 1, n ', I') and obviously on the size, and
k' =2k +3. The spherical harmonics are factorized ac-
cording to

Yi (8,$)=C P ~ '[cos(8}]e' (8)

where the functions P) are associated Legendre polyno-
mials and the prefactors Ci depend on 1 and m. The to-
tal matrix element is finally expressed as

k'

Vo g di, 2 "a(l, m, l', m', n „k)P(m, m', n2, k)
k=1

with

+E„i5„„5ii 5 (9)

P(m, m', nz, k)= f cos[(m' m)—P]cos"(ning)dP,
0

(10)

a(l, m, l', m', n„k)
P ~ cos g P~, ~ cos g cos g1g

Xsin(8)d8 .

Expanding cos"(n2$} according to

k

cos (nzf)= g ci icos(k n2$) (12)

[with k' odd (even) if k is odd (even)] allows us to write
P(m, m', nz, k) as

p(m, m', n k2)

k 277= —g c& z f Icos[(m' —m+k'n2)P]
2 k~ 0

+cos[(m' —m —k'nz)P]}dP .

Analytical evaluation of p is straightforward, and the fol-
lowing selection rules for P result:

m' —m = —knz, —(k —2)nz, . . . , (k —2)nz, kn2 . (14)

The coefficients a(l, m, 1', m', n „k) are evaluated numeri-

cally, except in the cases where direct application of the
symmetry properties related to the inversion (m —8+—8)
or of the orthogonality of the associated Legendre poly-
nomials (~m~ fixed), leads to zero or a simple analytical
result.

Because the length of the calculations increases drasti-
cally with the matrix size, identifying independent sub-
matrixes to be diagonalized is highly advised. By taking
into account the selection rules Eq. (14), it is obvious
from Eqs. (9) and (14) that the large matrix [M] associat-
ed with the whole truncated basis splits into X indepen-
dent submatrixes, with X =min(n2, 21,„+1),where 1

is the highest angular momentum involved in the truncat-

k'

Vo g di, f f [R(8~$) Rx ] Yi, m(8~4)
k=1 0 0

X Y&. .(8,$)sin(8)d8dg, (7)
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ed basis. Each of these smaller matrixes [M] o is charac-
terized by the specific m values of their related subspace
[mo, mo n—z, mo —2nz, mc —3nz, . . . ], where mo runs
from ms=I, „ to ma=I, „(N——1). Each eigenvalue
has a twofold degeneracy (spin degeneracy). Further
reduction of the computational time is achieved owing to
the symmetry properties of the roughness parametriza-
tion. Actually, for nz&2, apart from the matrixes in-
volving states with m =0 and, if nz is even, m =nz/2, to
each submatrix corresponds a distinct submatrix involv-
ing the negative of the m values characterizing the first
one. These two submatrixes have the same eigenvalues,
since they are merely related through the diagonal uni-
tary transformation corresponding to a change of the
conventional phase defining the spherical harmonics,

This additional degeneracy stems from the symmetry of
the parametrization Eq. (1},with respect to the transfor-
mation —P~P (symmetry cr„). Therefore, the levels of
the Hamiltonian H have a fourfold, or a twofold (for the
two specific above-mentioned cases}, degeneracy.

III. RESULTS

A. Preliminary

10 —10 at the bottom of the inner well, and
10 4 —10 in the neighborhood of the Fermi energy.
The degree of the polynomials fitting the radial functions
[Eq. (6)] is fixed to the value k~ =6 for 2 (3 a.u. and
k =8 for A & 3 a.u. We would like to point out that the

P
selected values for Vi, 6, and kz are largely overestimat-
ed for studying, through electronic DOS calculations, the
qualitative efFects arising from the surface roughness (the
basis and matrix sizes are indeed very large). However,
because the shell-correction energy is a very small frac-
tion of the total electronic energy for large cluster sizes,
very accurate eigenvalues are required in Secs. III B 3 and
IIIC2 to avoid spurious "shell" effects. Moreover, an
enlarged basis ensures that the size discontinuities in the
level-repulsion effects occurring when a new bound level
is included in the truncated basis, are completely rubbed
out for the low-lying states relevant to the electronic
ground state of the cluster.

In Table I are listed, for different cluster sizes, data
which are useful for analyzing the results. The largest
angular momentum I involved in the ground state of the
"unperturbed'* Hamiltonian Ho is indicated in column b.
Except for large corrugation amplitudes A, and if one
disregards the close vicinity of the Fermi energy, the X,
lowest states in the corrugated and unperturbed wells
span essentially the same subspace. The highest angular
momentum / in the truncated basis (E„t ( Vi ) is given in

The Wigner-Seitz radius corresponding to gallium met-
al (r, =2. 191 a.u. ) is used in all the model calculations re-
ported in this paper. However, we emphasize that we are
only interested in the qualitative effects and trends relat-
ed to the surface roughness, and that our results are quite
general. The quantitative results we obtained are not
directly applicable to the real gallium clusters, all the
more that the "unperturbed" hard-walled potential well
is a very crude zeroth-order approximation for the spher-
ical effective electronic potential obtained in self-
consistent KS calculations. Trends to be expected for
other values of the valence number Z, and Wigner-Seitz
radius r, will be brieAy discussed in the conclusion Sec.
IV.

The well depth is fixed to the value Vo= —0.6 a.u. ,
leading to a bulk Fermi level in the "unperturbed" poten-
tial equal to Ef = —0.22 a.u. This depth value, lower
than the mean depth obtained in local-density KS calcu-
lations (Vo= —0.5 a.u. ), is chosen in order to slightly
lower the effects due to the discretized continuum, where
the energy spectrum is more congested. This reduces no-
ticeably the number of positive-energy levels to be re-
tained in the truncated basis. The inhuence of the loca-
tion of the Fermi level relative to the vacuum level will be
discussed.

The continuum is quantified by using the following pa-
rameters for the outer potential well: 6=6 a.u. and
V& =0.4 a.u. With these values, a sufhcient convergence
is obtained. For instance, with the parameter sets (b, =9
a.u. , V =0.4 a.u. ) and (b, =6 a.u. , V, =0.6 a.u. ), the rela-
tive discrepancy 5E/E between the bound levels obtained
with the three parameter sets is typically on the order of

a

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Imax

(ground state)

5
8
9

10
11
12
13
13
14
14
15
15
16
16
17
17
18
18
19
19

~max

(truncated basis)

11
14
16
18
20
21
22
23
25
26
26
27
28
29
30
30
31
32
32
33

9
11
13
14
15
16
17
18
19
19
20
21
21
22
22
23
23
24
24
25

TABLE I. Useful data for analyzing the results of Sec. III.
Column a: the number of valence electrons N, . Column b: the
highest angular momentum l involved in the ground state for
the "unperturbed" spherical potential well. Column c: the
highest angular momentum involved in the truncated basis
(E„I & V& ). Column d: the typical roughness parameter n„,
[n; in Eq. (1)] corresponding to the unavoidable surface rough-
ness related to the intrinsic granularity of the ionic background,
for trivalent metals (see Sec. III A).
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column c. The n„, values in column d correspond to the
typical wavelength associated with the unavoidable sur-
face corrugation related to the background granularity,
and consistent with the square surface lattices of bumbs
and hollows in the equatorial region. The order of mag-
nitude of n„, is easily deduced as follows. Considering
that to each ion corresponds a cubic cell of volume a
defined by a =4m.r, Z„/3, the typical n, value is es-
timated by equating a with the spatial period d„,
of the square lattice of bumps. One obtains
d,0, =2 ' (2nR& /n„, ) =1.6Z„'~ r, =0.7A,f and n, ,
=2.g(N, /Z„)'~ =1.94N,'~ . Since the wavelength of the
roughness decreases along the P coordinate at the polar
regions, the effective "grain" of the corrugation, averaged
over the whole surface, is however slightly finer. We re-
mark that the roughness grain linked to the intrinsic
granularity in actual clusters is expected to depend on the
surface structure, as in faceted polyhedral clusters. So
the above value has only to be considered as a rough es-
tirnation. In Sec. IIIB, we have assumed n„, values
slightly larger than those indicated in Table I in order to
provide a complete investigation of the roughness effects
as a function of the model parameter n „, (up to
n„,=30). The results are nevertheless interesting and
useful. If a non-sine-wave periodic corrugation is as-
sumed, the expansion of R (8,$) into a Fourier series in
Eq. (7) may involve non-negligible harmonic terms with
very large n„, values. The calculations reported in Sec.
III B are thus not at all academic.

With regard to the total height of the bumbs on the
surface of the electronic potential (2A ), only a rough es-
timation can be given. As for the n„, parameter, the
typical height depends on the ionic structure —liquidlike
or layering —over the surface. In addition, because
kinetic effects prevent the electronic cloud from respond-
ing to sharp spatial changes of the background pseudopo-
tential or structure, the roughness amplitude of the to-
tal KS-electronic potential cannot be quantitatively in-
ferred, in a simple way, from background parameters,
such as the effective ion core-radius and the average ion-
ion distance. In the case of gallium (Ga + ionic radius
=1.17 a.u. , average ion-ion distance on the order of 5 —6
a.u. ), we think that values up to 2A =3—4 a.u. are
reasonably consistent with a liquidlike surface structure.

B. EfFects of short-wavelength roughness

I. Is a rough potential equivalent to a soft oneP

Does a rough electronic potential generate the same
electronic shell structure as a soft potential having a per-
fect spherical symmetry? Or in other words, is a rough
step-walled jellium equivalent to a soft one? In a previ-
ous work, ' a positive answer was assumed for explaining
partly the large shift of the supershell node (as compared
to the JM prediction) observed in mass spectra of
trivalent metals. ' This assumption has been formulat-
ed more precisely in Ref. 19 by stating that, provided
that an average homogeneity and an overall spherical
shape are ensured, the size evolution in the electronic
cluster properties can be reliably calculated in keeping

only the spherical component V, h(r) of the KS-
electronic potential V(r) = V,~h(r)+ V,„,(r, 8,$), o«n
practical calculations in spherically averaging the total
ionic pseudopotential prior to KS calculations. Support
for this assumption is provided by the following crude
first-order perturbative analysis. Let us consider the sub-
space corresponding to a single degenerate level E„&, ei-
genvalue obtained in retaining only the component
V, h(r) in the Schrodinger equation. At the lowest order
of the perturbation theory, the effect of V,„(r) consists
only in a level splitting (new orbital eigenstates 4;), with
a shift of the average energy,

bE„(=2+(P;~V,„,~P;) =fp(r)V,„,(r)«, (16)

equal to zero since the electron density p(r) associated
with a filled 2(2l +1)-fold degenerate level E„& is only r
dependent and the spherical average of V,„(r) is by
definition equal to zero. The same analysis applies to the
larger subspace associated with a level bunch. Since the
shell effects and the magic sizes are determined by the or-
dering and degeneracy of the levels and bunches, the
"level broadening" induced by V,„s(r) is expected to give
rise to a weakening of the shell effects only. Our nonper-
turbative calculations confirm this crude qualitative
analysis.

2. DOS calculations

Electronic DOS curves corresponding to the size
N, =801, for increasing roughness amplitude A, are plot-
ted in Fig. 3, and compared to the DOS obtained with the
unperturbed potential well [Fig. 3(a)]. The grain of the
roughness (n„,=25) is finer than the one related to the
intrinsic discreteness of the ionic frame (see Sec. IIIA
and Table I). Two main results emerge clearly from this
figure.

(i) The level broadening is almost nonexistent along the
entire bound spectrum, and is noticeable only in the
upper region of the DOS just below the vacuum level
E =0. More precisely, the effective broadening is smaller
than the full width at half maximum (FWHM) of the
Lorentzian curve (0.0025 a.u. ) taken for convoluting the
discrete DOS. In Fig. 3, the level splittings are essential-
ly rejected through the lowering of the peak height and
an increase of the DOS minima. Let us emphasize that
the height increase of some peaks, as compared to their
height in Fig. 3(a), results from both a tiny change in the
level bunching and the convolution with a finite-width
Lorentzian curve (several close levels, each of them un-
dergoing a specific shift, underlie most of the peaks
displayed in Fig. 3).

(ii) The energy levels E„i move up. The shift becomes
larger as the roughness amplitude and the energy in-
crease, and moreover a slight l dependence is observed:
levels of high angular momenta l (the highest peaks, in
general) are more strongly pushed up than those of lower
l values (the smallest peaks in general). The correlation
(increasing shift versus the peak height) apparently fails
for some displayed peaks, particularly in the upper ener-
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FIG. 3. Electronic DOS curves corresponding to the size
N, =801, for various radial roughness amplitudes A (in atomic
units) and n, ,=n&=n2=25 in Eq. (1). The DOS have been
convoluted with a Lorentzian-shaped profile having a FTHM
equal to 0.0025 a.u. The Fermi energy is indicated by a triangle.
The short horizontal line indicates the location of the supershell
beat pattern. This location has been determined by further
smoothing the DOS curves.

gy domain (E=O), where the discrete DOS are more
congested. Origin of the apparent failure was already
pointed out: the peaks are in fact bunches of very close
levels and the peak height is often related to the sum of
all the level degeneracies. Inspection of the discrete DOS
confirms this analysis. A change in the level-bunching re-
sults from the l dependence of the level shift. In particu-
lar, the supershell beat, characterized by a frequency dou-
bling in the DOS pattern, has been shifted up by the
roughness effects. The nodal structure is not easily dis-
cernible at first glance in Fig. 3, because the FWHM of
the convoluting Lorentzian profile is small. By contrast
the overall supershell structure emerges clearly when the
FWHM is increased. The node patterns, indicated in
Fig. 3 by short horizontal lines, have been located by a
prior smoothing of the sharp DOS curves. For a large
enough roughness amplitude, it is obvious that there is no
beat in the DOS curve below E =0 [Fig. 3(d)].

The two above features can be more quantitatively
grounded from mathematical inspection of the matrix
elements of the perturbation. %'ith regard to the removal
of the (2I +1)-fold orbital degeneracy of the level E„i,
the strict and approximate selection rules for the
coefficients P [Eq. (14)] and a [Eq. (11)] give rise to weak
or large level splittings, depending on the n; and I values.

If n 2 & 2l, the only nonzero matrix elements within the
E„& subspace are necessarily the diagonal ones [Eqs. (13)

and (14) imply k' =0, and then m ' =m ]. Only the even
values of k in Eqs. (9) ( k =2, 4, . . . ) contribute to the ma-
trix element, and from Eq. (13) one obtains P=2n.co k.
From the expansion of cos"(n, 8), according to Eq. (12), it
is clear that, since cos(k'n, 8) is—for k'=2, 4, 6. . .—a
rapidly oscillating function with a zero average, that the
major contribution in the integral Eq. (11) is brought by
the term k'=0, particularly as !m! becomes larger. We
recall that P) is the product of!sin(8)!, by a polyno-
mial of degree (l —

!m! ) in cos(8). From the orthogonali-
ty property of the associated Legendre polynomial,

I P(l~l[cos(8)]PI, 1[cos(8)]sin(8)d8
0 2n [Ci ]

(17)

we finally obtain, within the E„& subspace, a scalar sub-
matrix

Vo
k=2, 4, . . . ,

o.k) +

The same analysis holds true when nz is smaller, but
not too much, relative to 2l. In this case, Zeeman states
such as !m' —m! =n2 can be coupled [k'=1 or —1 in

Eq. (14)] via the odd values of k in Eq. (9) (p+0). How-
ever, since !m! and !m'! are necessarily close to 1

(n2 5 2l), the product of the two Legendre polynomials in
Eq. (11) has a slow behavior as a function of 8, as com-
pared to the rapid oscillations of cos"(n, 8), and, there-
fore, the integral a will be close to zero. The E„&-
submatrix is then approximately the same as previously.

If n2 «2l, the above analysis does not apply. The sub-
matrix contains nonzero off-diagonal matrix elements and
m-dependent diagonal ones. Consequently, a noticeable
level splitting occurs simultaneously with the global shift.
For the bound spectrum E &0, in particular, the whole
domain below the Fermi energy, conditions n2) 2I or
n2 &2l are fulfilled and only the level shift prevails. In
the upper energy domain, where higher l values are in-
volved, the level-broadening effect becomes more ap-
parent.

In the previous analysis, the interaction between dis-
tinct levels E„& and E„ I have been ignored. If one disre-
gards the highest angular momenta involved in the trun-
cated basis, which are energetically far above the Fermi
level (these levels are close to Vi ), the condition
n2 ) (l + l') or n2 5 (/+I') is approximately fulfilled and
the same analysis can be carried out. Considering that
the largest matrix elements are those with m =m', and
using Eq. (17), one finds finally that, in the first approxi-
mation (i) levels having different angular momenta in-
teract only weakly and, (ii) the repelling effects between
the levels having the same I value occur without appre-
ciable level splitting (poor m dependence of the matrix
elements).

Explicit support for the spherical averaging approxi-
mation is derived in assuming the strict applicability of
the numerical selection rules for the coefficients p and a
within the whole basis space. This is achieved formally
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by taking the limit n„,~ c in the mathematical expres-
sions. One obtains the total matrix element,

IP(N, ) = E—f (N, )+ 1

2 N
(20)

k'
' Vo g dk A (CO, k ) +E„(5„„'5() 5~ ~

k 2y4y ~ ~ ~

(19)

Since (co k ) is the spherical average of
cos"(n&8)cos"(nz8), Eq. (19) is manifestly, in view of Eq.
(7), the Schrodinger equation —in matrix form—
involving the V,~h(r) component only. The matrix ele-
ment Eq. (19) will be referred to as "the spherical averag-
ing approximation" in the following. This approximation
leads to the same electronic DOS as previously, over the
whole energy domain relevant to the ground state [com-
pare Figs. 3(d) and 3(e)].

These calculations corroborate the surmise stating that
the electronic shell structure is governed, for the most
part, by the spherical average of the effective potential,
provided that approximate spherical shape and back-
ground homogeneity are ensured. A n„, value larger
than the one given in Table I has been assumed, but we
would like to emphasize that identical conclusions would
be drawn in using the specific value corresponding to the
intrinsic granularity, except for a slight increase of the
level-splitting effects. Moreover, these results demon-
strate that, in the case of a fine surface-roughness grain,
the effective level broadening is negligible, even in the
case of a large roughness amplitude along the radial coor-
dinate. A short-wavelength corrugation is thus expected
to have a minor inAuence on the magnitude of the shell
effects in mass spectra.

3. Shell-correction energy calculations

We now attempt to estimate accurately the size shift of
the supershell node. Qualitative information about the
node location can be gained from DOS curves as those
displayed in Fig. 3, by comparing the location of the
frequency-doubled pattern relative to the Fermi energy.
However, except for infinite-depth hard-walled spherical
potential wells in which the levels scale perfectly as R
as a function of the well radius, a size-dependent reorgan-
ization of the level bunches occurs simultaneously with
the packing down of the electronic spectrum when soft
potential walls are involved. In consequence, reliable
determination of the beat location and magic sizes re-
quires us to perform calculations for numerous sizes. For
this purpose, and in order to illustrate the poor weaken-
ing of the shell effects too, we have calculated for each
cluster size (b,N, =3, 6, 9 in the size ranges [3—1000],
[1000—1500], [1500—2000], respectively), the electronic
energy E(N, ) of the ground state and the Fermi level

Ef(N, ). E(N, ) is taken as the sum of the energies of the
X, lowest bound states, as it was usually assumed in the
independent-electron approximation. The overall shell
and supershell structures can be made visible to the eye
by plotting the shell-correction energy or the ionization
potential (IP) as a function of the cluster size. For the IP,
we have used the approximate formula derived from the
Koopmans' theorem by Brack, Genzken, and Hansen

~max

Ne g a~(near )
j=0 N

(21)

where s =1,—', and j,„=2,~ for the volume and the sur-
face, respectively. Let us remark that the n„,-dependent
coefficients a may be large when the roughness wave-
length decreases. In fact, when A or/and n„, are large,

The shell-correction energy is obtained by substracting
from E(N, ) the smooth part, i.e., the contribution that
varies smoothly with the particle number.

The roughness parameters n„, and A have been kept
constant over the whole size domain. Apart from the ob-
servation that our simple parametrization Eq. (1) is un-
suitable to properly model the size-to-size evolution of
the surface roughness of real clusters, this constraint is
dictated by the fact that the shell-correction energy is a
very small part of the total electronic energy E (N, ), and
thus any size discontinuity in the selected model parame-
ters would blur the shell effects. Obviously this rather
unphysical prescription has to be kept in mind when the
results are analyzed.

The second point we want to emphasize concerns the
approximate method used to extract the shell-correction
energy from E(N, ). When smoothly shaped potentials
are involved, refined methods for determining the average
part of E(N, ), such as the Strutinsky's averaging tech-
nique in nuclear physics, are available. In practice,
guiding by the liquid-drop-model (LDM) picture applied
to a structureless cluster, the smooth part can be accu-
rately parametrized by the best third order in N,' poly-
nomial fit of E(N, ), provided the size domain is large
enough to include numerous shell size periods. This
smooth part accounts for the so-called volume, surface,
and curvature energies. It is tempting to determine the
whole effects arising from both the electronic shell and
surface corrugation effects by imposing the LDM
volume, surface, and curvature coefficients obtained with
the "unperturbed" spherical potential well V'(r) Eq. (3).
However, in applying this procedure, one obtains a large
shell plus corrugation energy, which does not display
clearly the electronic shell effects under investigation:
the electronic shell-related modulations are superimposed
on a size-dependent background of large magnitude. The
same feature is also observed —however to a much lesser
extent —when the constraint on the expansion
coefficients is relaxed and the smooth part of E (N, ) is de-
rived by performing the usual best third-order polynorni-
al fit, especially when large 3 and low n„, parameters
are assumed. Actually, this large residual background,
originating from the effects of the surface roughness on
the level spectrum, is due to the fact that, when highly
distorted potential walls are involved, the volume, sur-
face, and mean curvature of the potential well do not
scale as N„N, ~, and N,'~, respectively (especially for
small sizes), unlike a perfect sphere. For instance, the
roughness parametrization Eq. (1) leads to expansions of
the form
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FIG. 4. The shell-correction energy as a function of the clus-
ter size. Some low magic numbers are indicated (step bN, =3
in the size range 3&N, &1000). The extent of the supershell
beat pattern is roughly characterized by the highest (lowest)
clear magic size spaced from the previous (following) ones by
the shell size period hN, =0.6. (a) No surface roughness. (b)
A =1.5 a.u. and n; =25 in Eq. (1). (c) Result of the spherical
averaging approximation Eq. (19) for A = 1.5 a.u.

the usual LDM expansion is an unsuitable concept for
parametrizing the smooth part of E(N, ). For instance,
when n, ,~~ the surface of the corrugated well be-
comes infinite and the LDM expansion manifestly fails.
From a quantum-mechanical point of view, it is clear that
spatial details having short wavelengths relative to the
electronic de Broglie ones are immaterial. Therefore, the
e+ectiue volume and surface explored by the electron do
not coincide necessarily with the geometrical counter-
parts. When the roughness amplitude A increases, our
calculations indicate that the effective volume probed by
the electrons decreases (this is the main origin of the A
dependent shift of the Fermi level in Fig. 3), unlike the
geometrical volume enclosed by R (8,P). Owing to these
difhculties, we have followed the pragmatic procedure
consisting in increasing progressively the order of the
E(N, )-polynomial fit until the shell-correction energy os-
cillates around the value zero. For a small roughness am-
plitude A, the usual third-order polynomial parametriza-
tion of E(N, ) is sufhcient. In any case up to two addi-
tional terms at the maximum, according to the expansion
Eq. (21), were added to prevent eventual spurious effects
from altering the shell-related oscillations.

Results are displayed in Figs. 4 and 5. The shell-
energy curves exhibit clearly the usual shell and super-
shell patterns related to the spherical symmetry, charac-
terized by a shell size spacing equal to hN, ' =0.6 and a
half-period shift of the major shell closing numbers (the
sharp dips in the displayed curves) in the nodal region.
Specific effects arising from the surface roughness are de-
duced immediately by comparing these curves with the
electronic structure in the "unperturbed" potential well
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FIG. 5. Same as the caption of Fig. 4, except for the rough-
ness parameters 2 and n„,=n I

=n2, which are indicated above
the curves.

V'(r) [ A =0, Fig. 4(a)]. In a first approximation, whatev-
er the radial corrugation amplitude A is, the differences
are the same as those signing a softness increase of the
surface-potential profile, namely, a slight (large) shift of
the magic sizes (beat pattern) towards larger sizes. ' Ex-
act locations of the supershell nodes are not easy to deter-
mine, because the subshell-related structures often ob-
scure the pattern in this size domain and the decrease of
the shell effects is rather weak. Nevertheless the extent of
the beat size domain has been roughly characterized by
the highest (lowest) clear magic size spaced from the pre-
vious (following) ones by the shell period b,N,' =0.6. In
any case, the supershell node shift is unquestionable, and
is found directly correlated to the radial amplitude of the
corrugation. One can notice the poor dependence of the
overall shell and supershell structures on the n„, param-
eter. Actually the n„, values involved in the present cal-
culations are large and the electronic structure is essen-
tially ruled by the spherical averaging approximation Eq.
(19), especially for small roughness amplitudes A [com-
pare Figs. 4(b) and 4(c)]. From a simple glance at the
roughness parametrization Eq. (1) it is rather intuitive
that the effective softness of the rough surface (i.e., the
surface profile of the spherically averaged potential well)
is weakly dependent on the parameter n„, and on the
size (see below). Increasing the n„, paraineter beyond
the value n, , =25 leads to results almost identical to
those obtained in assuming strictly the spherical averag-
ing approximation Eq. (19).

When the parameter A (n„, ) increases (decreases), the
failure of the spherical averaging approximation becomes
more and more apparent in the upper size range. The
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effects of the level broadening and mixing are stronger,
and lead to a noticeable weakening of the shell oscilla-
tions and eventually to a large change in the state bunch-
ing. Let us emphasize that some of the smallest "noisy"
structures observed in Fig. 5 might be due to eventual nu-
merical rounding errors, owing to the large sizes of the
matrixes to be diagonalized. However, since the formal
structure of the matrixes does not depend on A, the larg-
est sharp structures observed in Fig. 5 (compare with Fig.
4) are not computational artifacts, but undoubtedly
reAect large reorganizations in the state distribution. In
the upper size range, the length scales of the surface
bumps and hollows along the angular coordinates are
comparable to the Fermi wavelength. Hence the rough-
ness begins to be effectively felt by the electrons, and the
specific level bunching in the rough potential may devel-
op, all the easier the larger the size. If one disregards the
shell-correction energy in Fig. 5(c), which corresponds to
an amplitude 3 inconsistent with a liquidlike surface
structure, the strength of the shell effects is only very
slightly weakened along the entire size range displayed
(%,=3—2000) for n„,=25. Since this value is the one
associated with the minimal grain for the size N, =2000
(see Table I), we can reasonably conclude that the elec-
tronic shell structure is governed by the spherical averag-
ing approximation Eq. (19) for each cluster size when the
grain of the surface roughness is minimal. Calculations
of electronic DOS at several sizes confirm this statement.
An immediate support is provided by the data in Table I,
in noting that the ratio n„,/2l, „(gr ou nd state) is al-
most constant (0.6—0.7), with a slightly increasing trend
when the size decreases. Hence the analysis reported in
Sec. IIIB2, which grounds the spherical averaging ap-
proximation, appj. ies for each cluster size. Actually this
result is a consequence of the quasi-size independence of
the ratio between the Fermi-wavelength and the average
ion-ion distance, which imposes the grain of minimal
roughness.

The spherical component V, I, (r) of the rough inner
potential well V(r),

V, z(r)= f f O[R (O, P) r]sin(8)dBdg, —(22)
o o

is plotted in Fig. 6 for the radial corrugation amplitudes
3 =1.5, 2.5, and 3.5 a.u. As expected, the softness of the
surface profile increases with increasing amplitude A.
From Eq. (1), V,„b(r —R& ) is manifestly independent of

e

R&, and we have numerically checked that this indepen-
e

dence holds true in respect of the parameter n„,. The
surface thickness is only partially probed by the elec-
trons. The upper radial bound is roughly located at the
outer turning point of the classical oscillation along the
diameter, at the Fermi level (E&= —0.2 a.u. , see Fig. 3).
In fact, this outermost radial domain is relevant only for
the highest occupied quantum levels of low angular mo-
menta. As discussed previously, the volume of the poten-
tial well, which is effectively explored by the electrons, is
smaller than the one enclosed by the corrugated surface,
since the radial extent of most of the occupied levels are
located below r =R& . Figure 6 clearly suggests that, for
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FIG. 6. The spherical average V,~z(r) of the corrugated po-

tential [Eq. (22)], for the radial roughness amplitudes A =1.5
(thin line), 2.5 (dashed line), and 3.5 a.u. (thick line). The rough

surface is parametrized according to Eq. (1). The soft surface

profile does not depend on RN and n„,. The horizontal line in-
c

dicates the location of the Fermi energy in the bulk limit.

a given corrugation parameter set ( A, n„, ), the effective
surface softness, and in consequence the electronic shell
and supershell patterns, depend on the location of the
Fermi level relative to the vacuum level, or in other
words on the potential depth

~ Vo ~. This feature has been
confirmed by calculating shell-correction energy curves
for lower potential depth

~ VD . In order to preserve a
high accuracy in the computation of the eigenvalues, the
parameter V, of the outer potential well has been en-
larged ( V, =—0.5 a.u. ), ensuring, therefore, a correct
overall level repulsion from the upper part of the elec-
tronic spectrum. As expected, the supershell node was
found slightly shifted towards larger sizes relative to the
beat location obtained with Vo = —0.6 a.u. For instance,
with the parameter set (A =3.5 a.u. , Vo= —0.45 a.u. ),
the supershell node is enclosed by the magic sizes 1455
and 1827 [compare with curve 5(d)].

From the semiclassical approach, the N,' scale is
known to be more appropriate to quantify the intrinsic
impact of the surface potential shape on the size depen-
dence of the electronic shell structure. Figures 4 and 5
show that a quite reasonable corrugation is likely to in-
duce a supershell node shift on the order of AN, ' =1.
This shift is far from being negligible on the N, scale,
especially if a large number of electrons is involved. The
shift on the N, scale may be spectacular but, experimen-
tally, is not necessarily easy to detect in mass spectra, be-
cause it involves one or two fringes at the maximum, in a
size domain where the signal modulations are weakly
contrasted and often blurred. A quantitative estimation
of the roughness effects on real clusters is hazardous, be-
cause the actual corrugation is unknown, and undoubted-
ly depend on the experimental conditions prevailing dur-
ing the cluster growth. Moreover, it is not definite that
the net beat shift, arising from both the surface lattice
corrugation and the pseudopotential effects, can be es-
timated by adding the two respective individually es-
timated contributions.
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C. Effects of long-wavelength roughness

I. DOS calculations

10—

A=1.5 n, ,=20

DOS curves corresponding to the size N, =801 and
A =1.5 a.u. , for decreasing n„,-values, are plotted in
Fig. 7. As in Fig. 3, the discrete DOS have been convo-
luted with a Lorentzian curve having a FWHM equal to
0.0025 a.u. For n„,=20 (a value close to the n„, value
of minimal grain, see Table I), no DOS change below the
Fermi level is observed, as compared to the results ob-
tained with larger n„, parameters [n„,=25, see Fig.
3(b)]. Above the Fermi energy the level bunching
remains strong. However, the level broadening and mix-
ing effects are noticeable and are rejected through a reg-
ular increase of the minima between the shells as a func-
tion of the energy E. When n„, decreases, i.e., when the
surface-roughness wavelength increases, both effects are
magnified and extend more and more deeply below the
Fermi level. A contrasted electronic shell structure is
preserved in the lowest part of the potential well only.
Roughly, this energy domain involves angular momenta
such as 21~n„,. For small enough values of n„, (the
range depends obviously on the parameter A), the stan-
dard electronic shell structure is completely destroyed in
the neighborhood of the Fermi level, owing to the strong
level mixing. One can note that the decrease of the n„,
parameter below a particular threshold value does not
modify qualitatively the overall spectrum in this region
(with respect to the entire spectrum, the only noticeable
change is the spreading of the roughness effects towards
the bottom of the potential), indicating that the extent of
the level or bunch splittings has reached a magnitude
comparable to the initial energy gaps. The remaining

"noisy" structures of various scales in the electronic DOS
are due to the reminescence of the overall spherical sym-
metry and to the finite size of the system (statistical iluc-
tuations).

However, let us emphasize that, in enlarging still more
the angular wavelength of the corrugation, simpli6cation
of the spectrum is expected to occur. Actually, in such
cases, speaking of shape-deformation effects instead of
roughness effects would be more appropriate. The reason
is that, for very low n„, values, the picture of a "per-
turbed" sphere, implying the smoothing of the shell
structure through the removal of the orbital degeneracy,
is no longer suitable: the level-bunching scales associated
with the specific classical orbit@ available in the deformed
wells are expected to prevail more and more, because the
spatial extent of the bumps and hollows exceeds consider-
ably the de Broglie wavelengths of the wave functions.
For the reader's information, let us note that the
mathematical framework of Sec. II can be used to calcu-
late electronic DOS for prolate or oblate cluster shapes,
by taking the parameter sets (ni =2, n2 =0, A )0) and
(ni =2, n2 =0, A (0), respectively, in the roughness pa-
rametrization Eq. (1).

Similar DOS curves have been calculated for larger
roughness amplitudes A. Qualitatively, the DOS curves
are similar to those displayed in Fig. 7, but, quantitative-
ly, the level-splitting and -mixing effects are much more
pronounced for intermediate n„, values.

2. Shell-correction energy
and ionization-potential calculations

In order to investigate the size dependence of the sur-
vival of the electronic shell structure at the Fermi level,
we have calculated the shell-correction energy (A =1.5
a.u. , Fig. 8) and IP ( A =2.5 a.u. , Fig. 9) curves corre-
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FIG. 7. Electronic DOS curves corresponding to the size
N, =801, for a decreasing value of the roughness parameter
n„,=n&=n2 in Eq. (1). The radial roughness amplitude 2 is
equal to 1.5 a.u. The discrete DOS have been convoluted with a
Lorentzian-shaped profile having a FWHM equal to 0.0025 a.u.
The Fermi energy is located by a black triangle.

FIG. 8. Shell-correction energy as a function of the cluster
size, for low values of the roughness parameter n„,=n

&

=n2 in

Eq. (1). The radial roughness amplitude is equal to 1.5 a.u.
The extent of the supershell beat pattern is indicated by a short
horizontal line. (a) Result of the spherical averaging approxi-
mation Eq. (19). (b) n„,=20, (c) n, ,= 15.
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the onset of the washing out of the electronic shell struc-
ture at the Fermi level. However, it is worthwhile to note
that some large-scale oscillations survive in spite of the
considerable weakening. This indicates that the level
bunching related to the spherical symmetry is not com-
pletely overcome by the roughness effects. The same
holds true in respect of the shell-correction energy curves
which, as compared to the IP curves, are less blurred by
the subshell-related effects. In fact, when the average
background is locally removed, the shell-correction ener-

gy curves look like the right part of curve c in Fig. 5, ex-
cept for both a more pronounced weakening of the oscil-
lations and a much more developed "noisy" structure. A
trace of some oscillations related to the spherical symme-
try are clearly identified but, in any case, the beat pattern
is blurred and sometimes disappears.

IV. CONCLUSION

FIG. 9. Evolution of the ionization potential [Eq. (20)] as a
function of the cluster size, for low values of the roughness pa-
rameter n „,=n

&

=n 2 in Eq. (1). The radial roughness ampli-
tude is equal to 2.5 a.u. (a) Result of the spherical averaging ap-
proximation Eq. (19). The extent of the supershell beat pattern
is indicated by a short horizontal line (b) n, , =20. (c) n„,= 15.

sponding to the intermediate n„, values 20 and 15. With
lower values, the computational time becomes too prohi-
bitive owing to the considerable increase of the matrix
sizes. Results obtained with A =3.5 a.u. are qualitative-
ly similar to those corresponding to the roughness ampli-
tude A =2.5 a.u.

For A = 1.5 a.u. , the overall shell and supershell struc-
tures are similar to those obtained in the spherical
averaging approximation [Fig. 8(a)]. The shell energy
curve is practically unchanged as long as the Fermi wave-
length remains noticeably larger than the surface-
roughness wavelength along the angular coordinates,
namely, if 2l is not too large as compared to n„, for all
the angular momenta I involved in the ground state.
When the size increases, this condition is no longer
fulfilled and the peak-to-peak amplitude of the shell
modulations weakens appreciably, owing to the magnify-
ing of the level broadening and mixing effects. However,
the oscillations in the shell-energy curve remain strongly
contrasted over the entire size range studied, as do the
shell-related oscillations in the DOS curves in Fig. 7.

For a large amplitude A, the roughness effects increase
considerably, in accordance with the calculated DOS
curves. The decrease of the Fermi level as a function of
the size, originating from the size dependence of the
effective volume probed by the electrons [for a given n„,
parameter, the probing of the surface bumps, i.e., the
geometrical volume enclosed by R (0,P), is more effective
when the size increases], counterbalancing thus the elec-
trostatic contribution in Eq. (20), is responsible for the
slight increasing trend of the IP curves in Fig. 9. This
behavior has to be disregarded because it results from the
constraint n„,=const. The disappearance of the shell-
and subshell-related sawtoothlike (characteristic of the
independent-electron approximation) oscillations signs

In this paper, we have studied the effects of surface
roughness on the electronic shell and supershell struc-
tures of simple metal clusters. Unlike most of the previ-
ous published works, in which the tight-binding formal-
ism is applied to bulklike cluster structures, our nonper-
turbative approach involves a finite-depth hard-walled
spherical potential well with a sine-wave corrugation
along the two angular coordinates. Our results may be
summarized as follows, depending on the spatial periods
of the surface corrugation relative to the Fermi wave-
length A.I.

(l) When the wavelengths of the surface roughness are
comparable to or shorter than A,& (the corrugation linked
to the intrinsic granularity of the ionic frame fulfills this
requirement), the electronic shell structure related to the
spherical symmetry is preserved. The weakening of the
shell effects, which is expected owing to the removal of
the (21+ I)-fold orbital degeneracy, is minor, except for
very large radial roughness amplitudes. The entire elec-
tronic shell structure is found to be ruled by the spherical
average of the potential well. This result proves that a
fine-grained hard-walled corrugated potential is, with re-
gard to the electronic shell structure, equivalent to a
spherically symmetric potential with a soft surface
profile. In consequence, the magic sizes (supershell node
locations) are slightly (noticeably) shifted towards higher
sizes. Surface roughness is thus a possible candidate for
explaining part of the supershell node shift observed in
trivalent metal mass spectra. '

(2) When the wavelengths of the surface roughness
along the angular coordinates are long, as compared to
A,&, the standard electronic shell structure is washed out,
except for small radial corrugation amplitudes. Howev-
er, apart from the supershell pattern, which seems com-
pletely wiped out, the reminescence of the level-bunching
related to the overall spherical symmetry remains visible
in spite of the considerable smoothing of the electronic
DOS arising from the level-broadening and -mixing
effects. Roughly the vanishing of the usual shell struc-
ture occurs when the radial and angular actions pfd
associated with the surface distortions exceed
significantly the Planck constant (pI is the Fermi
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momentum and d„, is the spatial extent of the bumps
along the radial or angular coordinates). By invoking the
semiclassical picture it is expected that, when this
condition is satisfied, the specific classical trajectories-
and consequently the related "level-bunching
organization" —in the rough potential-well prevail: the
nonspherical component of the surface roughness no
longer acts as a weak perturbation on the highly degen-
erate spectrum obtained in retaining only the spherical
component. This difference in physical effects, depending
on the ratio d„, /A, &, has already been discussed by Lom-
bardi et aI. in the context of the classical chaos and its
correspondence in quantum mechanics.

Involving a nonsine-like periodic corrugation in Eq. (1)
would not change qualitatively the above results. By ex-
panding the surface boundary R (8,$) into a Fourier
series, it is quite intuitive that the fundamental term, hav-
ing the longest spatial period, will govern the electronic
shell structure, since the selection rules Eq. (14) corre-
sponding to the harmonic terms reduce essentially to the
simple condition m '= m over the whole bound spectrum,
except in the case of very large angular periods (very low
n„, values). In other words the effective surface softness
of the rough potential will depend on the specific corru-
gation parametrization, but the magnitude of the level
broadening and mixing effects will be mainly governed by
the fundamental term of longest period, which implies
the least drastic selection rules among the Zeeman m
states.

In addition to the unavoidable roughness linked to the
background granularity, actual cluster shapes may in-
volve simultaneous distortions of various angular scales.
The clear observation of the JM-like electronic shell
structure up to very large sizes in Refs. 4, 6, and 30 sug-
gests that the surface of liquidlike clusters is not dominat-
ed by static deformations or temperature-induced Auctua-
tions having long wavelengths along the angular coordi-
nates.

With regard to the level-splitting and -mixing efFects
arising from the unavoidable background granularity, the
above conclusions are valid —all the more —in the case
of alkali species, since the corresponding n„,-value scales
as Z, ' (see Sec. III A) and the E„i-level set involved in
the ground state is poorly dependent on the element.
However, one can argue that the level spectrum is more

congested and that consequently the level broadening and
mixing effects will be much more pronounced (the level

gaps scale roughly as r, ). However, seeing that the ma-
trix elements of the perturbation are proportional to Vo
(for instance, the potential bottom Vo is on the order of
—0.2 a.u. and —0.3 a.u. for sodium and lithium respec-
tively), the effective smoothing of the shell effects due to
the rough surface is not expected to be strongly depen-
dent on the element (for a given surface ionic structure).
On the other hand, this does not hold true in respect of
the supershell pattern, which is very sensitive to both the
ratio 3 /Rz and the location of the Fermi level relative

e

to the vacuum level.
Very large roughness amplitudes have been involved in

this work ( A =3.5 a.u. ) and these might be considered as
quite unphysical (this is undoubtedly true for small clus-
ters). Nevertheless let us recall that this paper aims to re-
port a systematic investigation of the corrugation effects,
and that presently the actual cluster surface corrugation,
which might depend on the experimental conditions pre-
vailing during the cluster growth, cannot be estimated
from "first-principles" calculations, especially for large
clusters. Let us mention that a so-called "roughening
transition, " affecting planar surfaces or particle facets, is
theoretically predicted to occur at finite temperature
below the melting point. This transition has been ex-
perimentally confirmed in the case of metal particles of
micrometric size. This roughening transition has actual-
ly a statistical origin, and results from the counterbalanc-
ing of the increasing surface energy by entropy effects in
the free energy (to a rough surface correspond much
more atomic surface configurations). However, the extra-
polation of such results to clusters of nanometric size is
speculative, all the more that the observation of the JM-
like electronic shell structure requires cluster tempera-
tures consistent with the melting —or at least the surface
melting —of the background.
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