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Universal equilibrium currents in the quantum Hall fluid
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The equilibrium current distribution in a quantum Hall Quid that is subjected to a slowly varying
con6ning potential is shown to generally consist of strips or channels of current, which alternate in
direction, and which have universal integrated strengths. A measurement of these currents would
yield direct independent measurements of the proper quasiparticle and quasihole energies in the
fractional quantum Hall states.

I. INTRODUCTION

Since the discovery of the integral and &actional quan-
tum Hall eKects, a tremendous experimental and theoret-
ical effort has been made to understand the nonequilib-
rium transport current in a two-dimensional (2D) inter-
acting electron gas subjected to a strong perpendicular
magnetic field. It is now known that the essential fea-
ture leading to the quantization of the Hall conductance
is the existence of stable incompressible states at certain
Landau-level filling factors. In contrast, relatively little
attention has been given to the equilibrium current distri-
bution in a 2D electron gas in the quantum Hall regime,
and we shall show here that the existence of incompress-
ible states at integral or fractional filling factors leads to
some remarkable properties of the equilibrium current as
well.

Central to the progress in understanding the quantum
Hall Quid has been the ability to fabricate semiconductor
nanostructures with highly controlled composition and
doping, and the ability to subsequently pattern them, or
provide them with metal gates, or both. The electron
sheet density p in a GaAs heterojunction is typically be-
tween 10ii and 1012 cm —2 The quantum Ha]]. regime
occurs at low temperatures and at field strengths where
the magnetic length / = (hc/eR) ~ satisfies I. = p 2. At
these high field strengths, the magnetic length is often
small compared with the length scale over which the con-
fining potential —produced by the remote donor centers
and gates as well as by the electron gas itself—changes
by a bulk energy gap. When this condition is satisfied,
the confining potential is said to be slowly varying.

In this paper, we derive a general expression for the
low-temperature equilibrium current distribution in a
disorder-&ee 2D interacting electron gas, subjected to a
strong perpendicular magnetic field, and in a slowly vary-
ing confining potential. Our expression, which becomes
exact in the slowly varying limit, has two components:
One is an edge current or a transverse "dift'usion" cur-
rent, which is proportional to the local density gradient,
and the other is a bulk current or Hall current, which
is proportional to the gradient of the self-consistent con-

fining potential. The edge current is a consequence of
an inhomogeneous population of the orbitals in a given
Landau level, whereas the bulk current originates &om
the electric-Geld-induced mixing of the Landau levels. At
low temperatures, the confined quantum Hall Quid sep-
arates into compressible edge channels, where the den-
sity varies, and incompressible bulk regions, where the
density is uniform. As we shall show, the screening in
the compressible regions becomes perfect at zero tem-
perature, in the sense that the self-consistent confining
potential, which includes exchange and correlation, be-
comes constant there. Hence, the edge current term con-
tributes exclusively to the compressible regions, whereas
the bulk component contributes only to the incompress-
ible regions. The resulting current distribution therefore
consists of strips or channels of current, and we shall show
that the direction of these currents generally displays a
striking alternating pattern. I&'urthermore, we shall show
that the integrated current in each channel is univer-
sal, independent of the width, position, and shape of the
channel, as well as the details of the confining potential.

We begin by calculating the current distribution with
current-density functional theory, which rigorously ac-
counts for the efFects of electron-electron interaction
through an exchange-correlation scalar potential V„, and
vector potential A„,. A study of the equilibrium cur-
rent distribution that neglects exchange and correlation
effects has been reported by us elsewhere, and several
other authors also have contributed to the understand-
ing of equilibrium and nonequilibrium current distribu-
tions.

II. EQUILIBRIUM CURRENT DISTRIBUTION
IN THE QUANTUM HALL FLUID

Let H be the efI'ective single-particle Hamiltonian of
current-density functional theory, which contains func-
tionals of the density p and current density j. We
shall use the self-consistent solutions of the correspond-
ing Kohn-Sham equations, Hag = E @, to define an
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effective single-particle Green's function for the confined
quantum Hall Quid,

Here V„,(p) is simply V„,(p) with the discontinuities re-
moved, and

AV„,(p) = ) AV„, ; 8(p —p;)

where s is a complex energy variable and vP is a spinor
with components @ (o =t, $). Although this effective
Green's function is generally different &om the actual
single-particle Green s function of the 2D interacting elec-
tron gas, it nevertheless yields the exact equilibrium num-
ber density, p hv) (1O)

is the remainder, where LV„, ; is the discontinuity in
V„,(p) at p, , and where 8(x) is the unit step function.
Similarly,

ds
p(r) = Tr f(s) G(r, r, s),

and orbital current density,

.Tr/ . f(s)

x lim Re —i'd%+ —A G r, r', s,r' —+r C

at fixed chemical potential p. Here e is the magnitude
of the electron charge, m* is the effective mass, and A is
a vector potential associated with the uniform external
magnetic Geld B = Be . The contour in the complex en-
ergy plane is to be taken in the positive sense around the
poles of G, avoiding the poles of the Fermi distribution
function f (e) = [e&' "l~"~ ~ + 1]

Next, we let V be a slowly varying potential from the
remote donor centers and gates, and we write the Hamil-
tonian as H = H +H, where

H:— + 2gpI3cr B,
II2

2m*

II = p + -A, and where

II' —= (A„. . II+ II A„.) + V+ V~ + V„.. (5)

Here p~ = eh/2mc is the Bohr znagneton, V~ is the
Hartree potential, V, is a 2 x 2 diagonal matrix with
elemeiits V„, = (hE„,/bp )„,and

c f'hE„. &t

p ( b'v

We have omitted a term in H proportional to j.A, which
is irrelevant in the slowly varying limit. The exchange-
correlation energy E„,[p, v] is a functional of the p and
of the gauge-invariant vorticity v = V' x (jz/p), where j„
is the paramagnetic part of the current density.

In the low-temperature (k~T && e2/KE) phase of the
uniform quantuzn Hall fluid, hE„,/hp and bE„,/bv have
discontinuities at certain Geld-dependent densities p;.
Analysis of the low-temperature density and current dis-
tributions is most conveniently carried out by separating
the exchange-correlation potentials into regular and sin-
gular parts,

V (p) = V (p)+AV (p)
A„,(p) = A„(p) + AA„, (p).

G(r, r', s) = G (r, r', s)

+ dr" G r, r", s H r" Gr yr', s,

where G is the Green's function for the unconfined non-
interacting electron gas. For large ~r —r'~, the magni-

I 2 4g2tude of G falls off as e ~' '
~ /, except at its poles.

The Dyson equation (11) and the short-ranged nature of
G may then be used to evaluate the effective Green's
function by a gradient expansion in the self-consistent
confining potential. At each point in the Quid, the con-
fining potential is approximated by a local potential plus
a gradient. We sum the local confining potential terms
to all orders and the gradients to Grst order. The orbital
current density is found to be j = jepge + jb„~p, where

j,s, (r) = —eu, E ) (n+ 2)V'p (r) x e,

+ e~,p(r)
A„,(r)

jb„ik(r) = — ) p (r) V'V,&(r) x e„m*e

and ~, = eB/m'c is the cyclotron frequency. The elec-
tron density is given by

p(r) = Tr ) f[(n+ 2+ 2po, )hen,

+&V-(p(r)) + V. (r)l (14)

where p:—gp~B/fuu, is the dimensionless spin splitting,
and p (r) is simply the nth term in (14). These expres-
sions differ kom those obtained in Ref. 2 by the new edge
current term proportional to A„„and by a self-consistent
confining potential,

V,s (r) = V(r) + V~(r) + V„,(r), (15)

which is modified by exchange and correlation. The AV„,

is the regular part of A„„where (hE„,/bv) is 'equal
to (bE„,/hv) with the discontinuities removed, and
AA„, (p), a sum of delta functions, is the remainder.

The effective Green's function (1) may be written
(again suppressing spin indices) as
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term in (14) leads to strips of density with fractional fill-

ing factor v = 2vrE p, in the same way that the disconti-
nuities by ~ in the chemical potential of the noninter-
acting system lead to strips at integral v.

Because p and v are slowly varying, (10) may be writ-
ten as

f m*c2 'i 1
A„, =

i i

—V'xM„„
e

where M„, is the exchange-correlation contribution to
the orbital magnetization of a uniform 2D electron gas,
with the discontinuities removed. The second edge cur-
rent term in (12) may therefore be rewritten as cV' x M„,.

In a uniform Hall Quid with no confining potential,
the orbitals in each Landau level are equally populated,
so their associated current densities cancel each other
and the equilibrium current density vanishes everywhere.
The edge contribution (12) occurs because the Kohn-
Sham orbitals v/r for a given Landau level are not equally
populated in a nonuniform system. The bulk term (13)
is the well-known transverse Hall current responding to
a local electric field V'V, ir/e. This contribution occurs
because the electric field changes the form of the orbitals
and hence their associated current densities, which pre-
vents the aforementioned cancellation, even if the density
is uniform.

It is tempting to regard the edge current (12) as being
diamagnetic and the bulk current (13) as paramagnetic,
but this is not generally correct. However, in a simple
quantum dot with a confining potential that is a non-
decreasing function of radius, this identification is cor-
rect. In more complicated geometries, the edge or bulk
current may be diamagnetic in one region and paramag-
netic in another. We also note that the total conserved
current in a magnetic field also includes a spin contribu-
tion, j,~;„= —zcgp~V(pt —p~) x e, which will not be
discussed here further.

The precise nature of the compressible regions of the
slowly confined quantum Hall Quid as T —+ 0 is made
evident by a remarkably simple perfect screening theorem
In a slowly varying system, (12) and (13) may be used to
obtain a total energy functional E[p j of the density only.
Minimizing this functional with respect to the p (o=g, $)
under the constraint of fixed total particle number leads
to the conditions

III. UNIVERSAL EQUILIBRIUM CURRENTS

The integrated currents follow straightforwardly &om
(12) and (13). For example, the magnitude of the inte-
grated current at the edge of the filled Landau level n,
assuming there is no bulk current present from incom-
pressible strips at kactional filling factors, is

I,gs, —— (2n+ 1)
' + cb.M„„

4m
(18)

where AM„, is the change in the z component of M„,
across the edge channel. Similarly, the integrated equi-
librium current in a bulk region of integral or &actional
filling factor v = 2m.X p has magnitude

e
Ib„Ik ——v —Lp = cLM,

where Ap is the energy gap and LM the discontinuity
in the magnetization there. In (19), we have used the
fact that, according to the Maxwell relation (BM/Bp)~ =

(Op/BB)z, the —discontinuities in p and M are generally
related by

comes constant there. Therefore, we see that there exists
a complementarity in the low-temperature phase of the
slowly confined quantum Hall Quid: In the incompress-
ible regions, p is uniform and V,~ varies, whereas in the
compressible regions, p varies and V,g is uniform.

The largest contributions to the current density come
&om the first term in (12) and from (13), and these
have opposite signs because V'p and VVg are antipar-
allel. Furthermore, the perfect screening in the edge
regions makes the bulk current vanish there, and the
incompressibility of the bulk regions causes the density
gradient and also A„, to vanish in those regions. There-
fore, the current distribution generally consists of a series
of strips or channels of distributed current, ivhich folloiv
the equipotentials of the self consis-tent confining poten
tial, and which alternate in direction. The origin of this
striking alternating pattern is the oscillations in the low-
temperature orbital magnetization of a 2D electron gas,
in a fixed magnetic Geld, as a function of density. These
oscillations are of course caused by the same competition
between the energy of a Landau level and its degeneracy
that leads to the de Haas —van Alphen eÃect.

yo (p(r)) + AV„,(p(r)) + V&(r) = const, (17)

where po (p) is the spin-o. chemical potential of a nonin-
teracting Hall Quid of uniform density p in the same field
B. Of course, (17) does not apply to incompressible re-
gions because po or LV„, is discontinuous there. In fact,
(17) shows that the discontinuity in @0+V,s at an incom-
pressible strip is precisely equal to the electron chemical
potential gap Ap there. Because po(p) becomes piece-
wise constant as T ~ 0, and b,V„,(p) is constant in each
compressible region, the self consistent pote-ntials V,&(r)
in each compressible region must also become uniform in
this limit. The screening is perfect in the compressible
regions in the sense that the self-consistent potential be-

(20)

j=cV xMe, (21)

where p& = (m/m')y~. The integrated currents (18)
and (19) in the confined Hall Quid are clearly universal,
depending only on properties of the uniform Hall Quid,
and independent of the details of the confining potential.

The origin of this universality lies in the relation be-
tween the equilibrium orbital current and orbital mag-
netization. The equilibrium density is stationary, so
V' ~ j = 0, and we may write the orbital current as
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where M is the z component of the local thermodynamic
magnetization, and e is a unit vector in the z direction.
Therefore, between any two regions in the 2D electron
gas having slow density variation, the magnitude of the
integrated equilibrium current is simply

change in Mo across the edge of a filled Landau level leads
to the first term in (18), and the change in the regular
part of M, leads to the second term.

The interaction energy per area of a quantum Hall Quid
generally depends on p and B separately, but with the
assumption of negligible Landau-level mixing by the in-
teractions, we may write

This result is valid regardless of whether there are addi-
tional incompressible channels present, and regardless of
whether the system is slowly varying in the intermediate
region.

Let M = Mo + M„„where Mo is the kinetic contri-
bution. The ground-state kinetic energy per unit area,
ignoring spin, is

e'/r. l
8„,= f„,(v) 2~12 (26)

M„, = n( 3f„,—+ 2vf'„, )"' 2m/2 ' (27)

where r. is the bulk dielectric constant. In terms of f„„

where

hu)
Ep ——fp(v) where

e2/KI.

h. (28)

fo(v) =——.'[v]'+ ([v]+ —.')(v —[v]) (24)

Mo = ([v] —(2[v]+1)(v —
[ ])k2 ~,

and where [x] denotes the integer part of 2:. The kinetic
chemical potential po = (Mo/Bp) e is discontinuous at all
integral filings factors by an amount ~ . At T = 0, the
orbital magnetization of noninteracting spinless electrons
is

is the dimensionless Coulomb interaction strength. The
zero-temperature orbital magnetization of spinless elec-
trons, including the efFects of exchange, is plotted in the
solid curve of Fig. 1. The exchange contribution to the
magnetization is calculated in the Appendix.

Note that the interaction strength varies with magnetic
1

Geld as o. B &. The interactions will cause negligible
Landau-level mixing if o. « 1; that is, in the strong-
magnetic-field limit.

as plotted in the dashed curve of Fig. 1. Note the dis-
continuity in Mo/p&p at integral filling factors, which
is equal to twice the discontinuity in po/Ru, there. The

IV. INTEGRATED CURRENTS
IN THE LOWEST LANDAU LEVEL
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f„,(l —v) = f„.(v) + (1 —2v) f„.(l),
where f„,(1) = —(a/8) ~. Hence, we find

1
sr i ~

M„,(l ) = —ni —
i

q8p 2
(30)

We now calculate the integrated current at the edge
of the lowest spin-polarized Landau level (no =0/), be-
tween v = 1 and v = 0, to first order in o, . We shall
consider for convenience a long Hall bar oriented in the y
direction, with a confining potential V(x) that varies in
the x direction only (except near the two ends of the Hall
bar, which we avoid). The current is then directed along
the Hall bar in the y direction. Near v = 0, the ground-
state energy is expected to be close to that of a Wigner
crystal, so f„, oc —v~ there. Particle-hole symmetry in
the lowest Landau level implies

FIG. 1. Orbital magnetization of the zero-temperature Hall
Quid as a function of filling factor v = 2m' p, in units of
pz/27rP. Here ps = eh/2m*c is the effective Bohr magne-
ton, and E is the magnetic length. The dashed curve is the
magnetization of noninteracting spinless electrons, Mo. The
solid curve includes the efFects of exchange at a field strength
corresponding to n = 1, where n = e /hut, lr/ is the dimen-
sionless Coulomb interaction strength.

and therefore

Ipg= —
~
1+n eu,

) 4'
Expressions for the integrated currents at the edge of
higher filled Landau levels, obtained by a similar analysis,
are presented in Table I.
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TABLE I. Magnitude of the integrated orbital current
at the edge of the filled Landau level n, apart from a
spin-degeneracy factor of 2, for the case of negligible spin
splitting (p (& 1). Currents are in units of ecu, /47r.

1 e(d
I3 = ——+ 20!Eqh

q 4

Note the alternating signs of the integrated currents, and
that their sum agrees with (31), even though there is now
an incompressible strip at v, . Furthermore, a measure-
ment of the currents (34—36) would provide direct inde
pendent measurements of the fundamental quantities eq~,
6qh and, of course, Eg

Next, we shall assume that there is an incompressible
strip at an odd-denominator filling factor v, = —present
in this edge channel. At filling factors very close to v„
the ground state is expected to be a Laughlin state plus
a Wigner crystal of &actional}y charged quasiparticles or
quasiholes. Let eL, be the interaction energy per elec-
tron in the Laughlin state at v„ in units of e /KE, and
let 6qp and eqh be the associated gross quasiparticle and
quasihole energies in the same units. Then close to v„

( )
er, /q+qeqh(v, —v)+. for v & v,

( )eL, /q+ qe~p(v —v, ) + . . for v & v, .

—2aE'qg (pn/27I E )
2ae„(p' /2vre')

for v= po

for v=v+,

where &~i, = eqh + 3eL, /2q and e~~ = eq~ —3el, /2q are
the proper quasihole and quasiparticle energies defined
in Ref. 5. For example, eqh

——0.026, 6'qp: 0 073, and
Eg p: 0.099 are the calculated values for v, = 3 ~ The
discontinuity in M„,/p&p at v, is equal to twice the dis-
continuity in y,„,/fun„as expected.

Let Iq be the integrated current in the edge channel
between v = 1 and v = v+, I2 be the current in the
incompressible strip at v = v„and I3 be the current in
the edge channel between v = v, and v = 0. According
to (12) or (22),

(Ii ———1 ——+ a~ (34)

Similarly, I2 is given by 2aEs ~(ear, /47r). Restoring units
to Eg ~ leads to

e e
I2 = —Eg~p = v —Lp)

h h

as in (19). The magnitude of the integrated equilibrium
current in any incompressible strip i8 v(e/h) Ay„, tohere
Ep, i8 the electron chemical potential gap in the uniform
quantum Hall fbsid at filling factor v. Finally,

For example, Morf and Halperin have evaluated CL, 6qp,
and eqh using trial wave functions at v, = 3, they Gnd

eL, ———0.410, eqp = —0.132, and eqh ——0.231. Accord-
ing to (32), p„, —:(M„,/Bp)e is discontinuous by an
amount Lp = qEg~p, where Eg~p —6qp+E'qh is the energy
required to create a single well-separated quasiparticle-
quasihole pair. The interaction contribution to the or-
bital magnetization near v, is therefore

V. DISCUSSION

We would like to correct here a common misconception
in the literature regarding the equilibrium currents in
the two-dimensional electron gas. For definiteness, con-
sider a noninteracting electron gas in a channel oriented
along the y direction, with a confining potential V(x)
that varies in the x direction only. It is commonly be-
lieved that the sign of the current density is determined
by the gradient of the local confining potential or the
gradient of the local Landau bands, but this is incom-
plete, as there is also an edge current contribution (12)
proportional to the density gradient, which has the op-
posite sign. The source of the confusion is that although
the net integrated current

I = dej" x

ehj = — V'px e, .
2m

(3S)

This formula, Grst derived by Girvin and MacDonald,
is exact for lowest Landau-level many-body states.

Finally, we would like to make a comment regarding
our use of current-density functional theory, which em-

ploys functionals of the density and current density, in-
stead of conventional density-functional theory, which
uses the density only. Both formulations may be used
to calculate the density and total energy in a strong

associated with a single given Landau-gauge orbital vP

which is centered about x, is in fact proportional to
V (x), the current density ji'(x) is distributed over a re-
gion of the order of the magnetic length and has spatial
oscillations. Because the equilibrium current density j(x)
at a point x includes contributions from different parts
of many nearby orbitals, j(x) may have either sign.

We now discuss the strong-magnetic-Geld limit of the
equilibrium current distribution. Because the interac-
tion energy of the Hall fluid scales with the magnetic
field as e2/KE, whereas the kinetic energy scales as Ru„
the exchange-correlation contribution to the current is
smaller than the kinetic contribution by a factor of a [see
Eq. (28)j. Therefore, in the strong-inagnetic-field limit,
where n ~ 0, the current distribution approaches that
of a noninteracting Hall fluid. If, in addition, the den-
sity remains Gxed as B ~ oo, and no confining potential
is present, the many-body wave function will lie entirely
within the lowest Landau level, and the current density,
given by (12), becomes
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magnetic field, but only current-density functional the-
ory rigorously determines the current. In fact, the cur-
rent has an interaction contribution directly proportional
to A „the exchange-correlation vector potential unique
to current-density functional theory. In general, the den-
sity calculated with current-density functional theory will
also depend on A„„but in the slowly varying limit con-
sidered here, this contribution is of second order in the
gradient of the confining potential.

In conclusion, we have derived an expression for the
low-temperature equilibrium current distribution in a
confined quantum Hall Quid. The current distribution
has two components, (12) and (13), which contribute ex-
clusively to the compressible and incompressible regions,
respectively, and have opposite signs. The current distri-
bution therefore consists of strips or channels of current,
which alternate in direction. The integrated current in
each channel is also shown to be universal, reQecting the
change in local orbital magnetization across its bound-
aries, and it is noted that measurement of the integrated
currents would yield direct independent measurements
of the proper quasiparticle and quasihole energies in the
&actional quantum Hall states.
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tion, as de6ned in the Appendix.
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) L„(x) y" =
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may be used to obtain the relation

(A5)

APPENDIX: EXCHANGE CONTRIBUTION
TO THE ORBITAL MAGNETIZATION

OF THE HALL FLUID

)~ )ipb m I+

m=0 n=o
(1 —y) '(1 —y') ' '

x (1 —yy')

In this appendix, we calculate the exchange contribu-
tion to the zero-temperature orbital magnetization of a
two-dimensional system of spinless electrons. The ex-
change energy per area is given by

18 (v)= —— d2:e
2 0

2

Iab
min(m, n)

) ( 1)tn+n+j
m —j )

x
/

( b-
&"—jr &jJ (A7)

Expanding the right-hand side of (A6) in a double power
series leads to

n —1

x ) Lo(ix ) + (v —n)LO (i+2)
j=O

e2/rd
2mE2

'

(Al)

where

(AS)

where I (x) is a Laguerre polynomial and n = [v] is the
integer part of the filling factor v. It is convenient for
our purposes to write (Al) as

8 (v) = [A„+ (v —n)B„+ (v —n) C„], (A2)
e2/KE

Here min(m, n) is equal to m if m ( n or to n other-
wise. The exchange energy coeKcients for the lowest few
Landau levels are presented in Table II.

The exchange contribution to the orbital magnetiza-
tion, obtained by using (27) and (Al), may be written
as

where
1 11An = —2I„1n 1)

1 00&n = 2In, n) (A3)

M (v) = n[D„+ (v —n)E„+ (v —n)2P„] ~, , (A9)

where D = —3A + 2nB, E = —B + 4nC„, and
E = C . These exchange magnetization coefBcients are
also given in Table II.
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