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Histogram analysis of Monte Carlo simulation results of the Ising antiferromagnet on a stacked
triangular lattice is reported. Finite-size scaling estimates for critical exponents indicate XY univer-
sality. This conclusion supports earlier predictions based on symmetry arguments and is in contrast
with the possibility raised by Bunker et al. [Phys. Rev. B 48, 15861 (1993)I of a nevr universality
class.

Controversy regarding the critical behavior of &us-
trated spin systems continues. The difIiculty in resolv-
ing such issues is due partly to the disparity in results,
and in their interpretation, among the wide variety of
theoretical and numerical approaches available. Even
Monte Carlo (MC) simulations performed by two differ-
ent groups can give results which lead to two diferent
conclusions. Sets of critical exponents associated with
diferent universality classes may differ by only a rela-
tively small amount, especially in the case of the XY
and Heisenberg models on the stacked triangular lattice
(STI ). In this paper, finite-size scaling of extensive
histogram MC data in the Ising case is shown to yield
critical exponents which strongly suggest XY universal-
ity. This result supports the symmetry arguments made
some 10 years ago by Berker et al. and is in contrast
with the possibility of a new universality class recently
suggested for this system.

The finite-size scaling of histogram MC data can
yield highly accurate critical exponents for unfrustrated
models. ' For a system of size L x I x L, exponent ratios
determine the scaling with I of both the extrema of ther-
modynamic functions (except the order parameter) near
the critical temperature, T~, and also these functions
evaluated at T~. The latter procedure appears to be
both more accurate (especially in the case of the suscep-
tibility) and less computer-time expensive with use of the
cumulant-crossing method to obtain reliable estimates of
critical temperatures. With the former procedure, his-
tograms must be made at temperatures close to where
the extrema occur, which can vary significantly with L.
The multiple-histogram technique is useful in this case,
but with more computational expense.

Frustrated systems are expected to exhibit more Huc-
tuations due to the proximity of nearly degenerate
states. Although much progress has been made in recent
years to overcome critical slowing d.own, these techniques
appear largely inefFective on frustrated systems. Special
attention must then be given to ensure that MC runs are
sufIiciently long and that I is suKciently large for the
system to exhibit its true critical behavior.

This paper serves to complement and. extend our
results on the STL Ising antiferromagnet which fo-
cused. on the effects of next-nearest-neighbor basal-plane
coupling and a magnetic field. With these limited
data [i.e. , only 1 x 10 MCS (Monte Carlo steps) were
used for averaging at each I=12—30], the exponents were
estimated. by the scaling of extrema of thermodynamic
functions also for the near-neighbor model. Given the
rather large uncertainties in these results, only consis-
tency with XY universality could be claimed.

In contrast, Bunker et al. employed the multiple his-
togram technique to estimate exponents Rom the scal-
ing of extrema and, although their results are not too
far &om those of XY universality, the difFerences were
significant enough to raise the possibility that the STL
Ising antiferromagnet belongs to a new universality class.
Their histograms were generated at L=6—30, with aver-
aging performed using approximately 1 x 10 MCS for
the smaller lattices and. only 2.2 x 10 MCS at L =30.

We report here the results of extensive MC simula-
tions performed on the STL Ising model with antiferro-
magnetic near-neighbor exchange coupling in the basal
plane, J~ ——1, and ferromagnetic coupling along the c

J~~
= —1. The Metropolis MC algorithm was used

to generate histograms on lattices with I=12—33 using
runs with &om 5 x 10 MCS for the smaller lattices to
1.2 x 10 MCS for the larger lattices, after discarding the
initial 1 x 10 —2 x 10 MCS for thermalization. Averag-
ing was then made using from 6 runs for the smaller I
to 15 runs at L=30. Averaging was made over 13 runs
at L=33. For the largest lattice, this gives a reasonable
15.6 x 10 MCS for averaging. Errors estimated approxi-
mately by taking the standard deviation of the many runs
for each L give some indication of the quality of the data.
All histograms were generated at our previous estimate
of the critical temperature, T~ 2.93.

Results of applying the cumulant-crossing method to
estimate the critical temperature are presented. in Fig.

The points represent the temperatures at which the
order-parameter cumulant U (T) at I ' crosses the cumu-
lant at L = 12 or I = 15. There is considerable scatter in
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FIG. 3. Finite-size scaling of the order parameter. Data
at L=12 and 15 are excluded from the fit. Error bars are
estimated from the standard deviation found in the MC runs.

FIG. 1. Results of applying the cumulant-crossing method
(see text) to estimate the critical temperature, where
b = L'/L.

the data and care must be taken to use only results with
L sufBciently large to be in the asymptotic region where
a linear extrapolation is justified, s i.e. , for Ln i(L'/L) g
2.2. From these results, the critical temperature is esti-
mated to be T~ = 2.9298(10). This value compares well
with our previous estimate but divers significantly &om
that of Bunker et al. , T~ = 2.920(5).

Finite-size scaling results at T~ for the specific heat
C, spin order parameter M, susceptibility (as defined in
Kawainura's works's) y, and the first logarithmic deriva-
tive of the order parameter Vi ——8[Ln(M)]/BK (where
K = T i)@ are shown in Figs. 2—5. Except in the case
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FIG. 4. Finite-size scaling of the susceptibility y, as in Fig.
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FIG. 2. Finite-size scaling of the specific heat data. Data
at L=12 and I=15 is excluded from the fit. Error bars are
estimated from the standard deviation found in the MC runs.
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FIG. 5. Finite-size scaling of the logarithmic derivative of
the order parameter Vi (see text), as in Fig. 3.
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TABLE I. Comparison of estimates for critical exponents of the unfrustrated XY model and
those for the stacked triangular (STI ) Ising antiferroniagnet.

XY:
XY:
XY:
XY:
XY:
STL
STL

RG (4 —e)
HT Seriesb
HT Series
Histogram MC
Histogram MC'
Ising: This work
Ising: Bunker et aL.~

—0.013(15)
—0.01(2)
—0.01(3)
—0.010(6)
+0.014(20)
+0.012(30)
—0.05(3)

0.349(4)
0.345(10)
0.348(15)
0.347(S)
0.331(10)
0.341(4)
0.311(4)

1.315(7)
1.323(15)
1.315(9)
1.316(5)
1.324(1)
1.s1(s)
1.43(3)

0.671(5)
0.670(7)
0.67(l)
0.670(2)
0.662(7)
0.662(9)
0.685(3)

Renormalization group from Ref. 13 and scaling relations.
"High-temperature series from Ref. 14 and scaling relations.
High-temperature series from Ref. 15 and scaling relations.
Prom Ref. 16 and scaling relations.

'Prom Ref. 17 and scaling relations.
With a. determined from scaling relations.

~Prom Ref. 7 with n determined from scaling relations.

of the specific heat, exponent ratios were estimated by
assuming a scaling dependence F = aI for a func-
tion of interest. Scatter in the data was too large to
extract a reliable estimate for n/v and Fig. 2 shows
the scaling results with an assumption of XY universal-
ity. A good straight-line fit is obtained using data &om
the five largest lattices. Estimates for the other expo-
nent ratios were made using either all the data, with
the L =12 data excluded, with L=12—15 data excluded,
etc. Only the estimates for 1/v displayed a significant
variation when data for the smaller lattices were not in-
cluded in the fitting procedure. These were made us-
ing Vi, with the results 1.531(6), 1.526(5), 1.521(5), and
1.515(5), respectively (quoted uncertainties represent the
robustness of the fitting procedure and does not include
the effects of the error bars). Corresponding results us-
ing the second logarithmic derivative V2 are 1.536(6),
1.532(5), 1.527(5), and 1.521(4). The sets of values rep-
resent fits from 8 (first numbers) to only 5 (last numbers)
data points. Although caution must therefore be used in
weighing the significance of these latter estimates, the
sets of values suggest that 1/v 1.51(2) is a reasonable
extrapolation for the thermodynamic limit.

Scaling of estimated maxima of the function Vj was
also performed. The result of using our data for I=12—
30 is 1/v 1.46, exactly the value found by Bunker et
al. With only results L=21—30 included, the estimate
1/v 1.44 was obtained. Since simulations were all
performed at only one temperature (T=2.93), the un-
certainty associated with these scaling results is large.
For example, the maxima in Vj at L=30 was found at
T = 2.952, quite far &om the simulation temperature.
In principle, larger values for the maxima in Vj would be
obtained if the simulations were performed at tempera-
tures closer to where they occur. This would lead to an
increase in the value of 1/v. Sixnilar conclusions may be
relevant in the case of the results at L=30 of Bunker et
al.

The final values quoted for P/v and p/v correspond
to fits made with the two smallest lattices excluded. In
order to estimate errors due to the uncertainty in T~,
identical scaling was also performed at T = 2.9288 and

T = 2.9308. Uncertainties arising &om the error bars
indicated on the figures were always found to be smaller.
The resulting exponents (using v 1/1.51 = 0.662) and
error estimates are presented in Table I, along with a va-
riety of exponent estimates for the. standard XY model,
as well as those of Bunker et al. Our results are well
within the range of values found for the XY model.

Finite-size scaling of our data (as in Figs. 2—5) was
also made with the assumption of exponent ratios as es-
timated by Bunker et al. Except perhaps for the suscep-
tibility, there is no visible distinction in the quality of
the two sets of straight-line fits. This result emphasizes
the need for high-quality statistics in ord.er to obtain re-
liable exponents. Although a corresponding comparison
by Bunker et al. using the "data collapsing" method
(Figs. 16 and 17 of that work) seems to favor their ex-
ponent estimates over those of XY universality, we note
that the transition temperature was not used as a fitting
parameter as is usual in such plots.

In conclusion, these results clearly indicate that the
Ising antiferromagnet on a stacked triangular lattice ex-
hibits a phase transition which belongs to the standard
XY universality class. This is in agreement with the
symmetry arguments of Berker et al.6 and not with the
possibility of a new universality class recently suggested
by Bunker et al. As noted by these latter authors, their
conclusions are contingent upon the absence of large sys-
tematic errors. We believe that the critical exponents
estimated by Bunker et al. are diferent &om ours due
to one or more of the following factors. They were made
using lattices that were too small; there were insufBcient
statistics at the larger lattice sizes; the critical temper-
ature was not accurately estimated. The scaling of ex-
trema of thermodynamic functions, rather than at the
critical point, may also reduce the accuracy of exponent
estimates. These conclusions serve as a general reminder
that special care must be taken in the numerical simula-
tion of &ustrated spin systems.
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