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The thermodynamic and spectral properties of a two-dimensional electron gas with an antidot in a
strong magnetic field, r, ro, where r, is the cyclotron radius and ro is the antidot efFective radius, are
studied via a solvable model with the antidot confinement potential U-1/r . The edge states localized
at the antidot boundary result in an Aharonov-Bohm-type oscillatory dependence of the magnetization
as a function of the magnetic field flux through the antidot. These oscillations are superimposed on the
de Haas —van Alphen oscillations. In the strong-field limit, A'co, —e+, where co, is the cyclotron frequency
and e+ is the Fermi energy, the amplitude of the Aharonov-Bohm-type oscillations of the magnetization
due to the contribution of the lowest edge state is -p&k+r, (p& is the Bohr magneton and k+ is the Fer-
mi wave vector). When the magnetic field is decreased, higher edge states can contribute to the magneti-
zation, leading to the appearance of a beating pattern in the Aharonov-Bohm oscillations. The role of
temperature in suppressing the oscillatory contribution due to higher edge states is analyzed. Rapid os-
cillations of the magnetization as a function of the Aharonov-Bohm flux, occurring on a scale of a small
fraction of the flux quantum hc/e, are demonstrated. The appearance of a manifold of non-
equidistant frequencies in the magneto-optical-absorption spectrum, due to transitions between electron-
ic edge states localized near the antidot boundary, is predicted.

I. INTRODUCTION

The magnetic properties of metallic and semiconduct-
ing structures with restricted geometries are different
from those in the bulk, and have been intensively studied
for a long time (see, e.g., early papers by Lifshitz and
Kosevich' and Dingle, and recent reviews on size effects
in orbital magnetism ). In a magnetic field the charac-
ter of the motion of the electrons near the boundaries of
the system changes significantly, leading, under appropri-
ate conditions, to the formation of an interesting type of
electronic state localized near the surface (the so-called
edge states; see, e.g., Ref. 6). The edge states can
effectively change the sample topology, transforming a
simply connected geometry (e.g. , solid cylinder or disk)
into a doubly connected (ring) geometry. Consequently,
solid-state realizations of the Aharonov-Bohm (AB) (Ref.
7) and Aharonov-Casher effects become possible in sim-
ply connected samples as suggested in Ref. 9 (see also
Refs. 10—15). Additionally, the current-carrying edge
states play an important role in the theory of the quan-
tum Hall effect. '

Progress in modern nanofabrication technology at-
tracted recent attention to new quantum mesoscopic ob-
jects, such as dots and antidots (see, e.g. , reviews in Ref.
17). In a strong magnetic field (i.e., essentially in the
quantum Hall effect regime) the edge states govern the
electronic properties of such systems. While these sys-
tems are seemingly similar, the physical consequences of
edge states in a dot and an antidot are difFerent. In a dot,
edge states formed near the surface (outer boundary) can
contribute to both thermodynamic (e.g. , magnetization)
and transport properties (e.g., AB oscillations ' ). On

the other hand, in a system containing an antidot, the
edge states associated with the antidot are formed inside
the conductor in the vicinity of the antidot boundary.
Therefore, in a large system edge states bound to an anti-
dot (inner edge states) located far from the outer surface
of the sample can contribute only to the thermodynamic
properties (e.g. , magnetization) of the system. Conse-
quently, the influence of the antidot edge states (i.e., the
above-mentioned inner edge states, which are sensitive to
the magnetic Aux through the hole constituting the anti-
dot) on the transport properties of the system can occur
only when they interact with the outer (current-carrying)
edge states associated with the outer surface of the sam-
ple (see the review by Buttiker' ). Such magnetotrans-
port oscillations, induced by antidot edge states, have
been investigated previously. '

In this paper we present a theory pertaining to the
magnetization of a two-dimensional (2D) electron gas
(2DECx) containing an antidot, focusing on the behavior
of the system in a strong magnetic field r, (ro (where r,
is the cyclotron radius and ro is the effective radius of the
antidot) in the ballistic limit. The antidot is modeled by a
repulsive potential U- 1lr, which allows us to obtain
an exact solution of the Schrodinger equation in the pres-
ence of applied magnetic and AB fiux Selds. We demon-
strate that the edge states localized near the boundary of
the antidot (inner hole) cause magnetization oscillations
as a function of the magnetic Aux through the inner hole,
with a period of the order of the flux quantum hc/e. The
small difference between the period of these oscillations
and hcle is due to trajectory effects in a magnetic field.
These thermodynamic-type oscillations are due solely to
the antidot, and in this sense they are different from simi-
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lar oscillations in the magnetotransport of a conductor
with a hole. ' ' Moreover, interference between
different edge states of the antidot leads, at low tempera-
tures, to a beating pattern in the AB oscillations of the
magnetization, which may be superimposed on the usual
de Haas —van Alphen oscillations. Increasing the temper-
ature suppresses the contributions from edge states with
higher Landau quantum numbers. The influence of the
AB fiux exhibits itself in pure (hc le) AB oscillations,
whose amplitude depends on the magnitude of the rnag-
netic field.

In addition to the inhuence of dots and antidots on
thermodynamic and magnetotransport properties of a
2DEG in a magnetic field, they also inhuence its
magneto-optical (MO) spectroscopic characteristics. Us-
ing the aforementioned model for an antidot in a 2DEG,
we investigate the nature of MO transitions in this sys-
tem, demonstrating the appearance of a rich spectrum of
nonequidistant frequencies, different from the MO spec-
trum for a dot modeled by a harmonic confining poten-
tial.

The paper is organized as follows. In Sec. II we calcu-
late the energy spectrum of electrons in a 2DEG with an
antidot model potential in the presence of a magnetic
field. Analytical and numerical analyses of the rnagneti-
zation of the system are given in Sec. III, and its MO
spectral properties are studied in Sec. IV. We summarize
our results in Sec. V.

I(i( (p„,

FIG. 1. Schematic description of a restricted two-
dimensional electron-gas system (shaded region of radius R),
with an antidot (unshaded inner region of effective radius ro), in
an applied magnetic field H, and an Aharaonov-Bohm flux,
@&&, created by an infinitely long solenoid inserted inside the
antidot. Also shown are inner and outer edge states (lines with
bold arrows) near the boundary of the antidot and that of the
whole sample, respectively.

II. EXACTLY SOLVABLE MODEL
OF A QUANTUM ANTIDOT IN MAGNETIC

AND AHARONOV-BOHM FIELDS

Consider a two-dimensional electron gas with a radial-
ly symmetrical hole. We will study properties of such an
antidot structure (Fig. 1) in a magnetic field and an AB
field, applied simultaneously. The total Hamiltonian of
the system is given by

T

1 ep+ —A + UAD(r),
2&k

where m * is an effective electron mass, A is the vector
potential, and the model repulsive potential UAD (r )

describing the antidot structure is taken as

8
UAD(r) =

r 2

Hr
~

AB

2 2'lT'r

Substituting the wave function of the form
g(r, P)=f(r)e' ~/V2a into the Schrodinger equation
with the Hamiltonian given in Eq. (1), we obtain the fol-
lowing equation for the radial function f (r):

d f 1 df + 2m'E (m + a) 2+2m'B /A
2

Qr2 r Br r 2

eH e H(m+a) — r f=0,
Ac 4A' c

where a=@As/@p, and the fiux quantum @p=hc/e.
This equation yields the following expression for the en-
ergy levels of the 2DEG with an antidot, in the presence
of the fields given in Eqs. (2) and (4):

where the constant 8 may be related to the chemical po-
tential g, and the effective radius of the antidot, rp, by the
relation

[(m +a) +a ]'~ +(m +a)+1E „—AG0 n +
2

(6)

2ro

The vector potential A may be represented as a sum of
two terms, A= A&+ A2 such that V X A& =H and
VX A2=0, where H is the applied magnetic field, and
A2 describes the additional magnetic Aux @zz created by
a solenoid inserted inside the antidot (Fig. 1). Conse-
quently, the azimuthal components of the vector poten-
tials are given by

where co, =eH /m c is the cyclotron frequency,
a —=2m*B!fi =(kzrp) kJ; is the Fermi wave vector of
the electron, and n and m are the radial and magnetic
quantum numbers, respectively (n =0, 1,2, . . . ;
m =0,+1, +2, . . . ).

The energy levels in Eq. (6) differ from the usual Lan-
dau levels in a cylindrical coordinate system [see Fig.
2(a)j, to which they transform when a=O (i.e., @As=0)
and a~0 (i.e., when the radius of the antidot vanishes,
rp~0). While the Landau levels are degenerate for nega-
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where

g(E)=2+ (E E„)8(E E„). — —
mn

(12)

where is e aT '
th bsolute temperature (here we express»&

units of energy . n ro) I t ducing the density of state
tegrating twice by parts, we obtain

(E) (E g)/T—
0= —— dE (s &)/T)2T (1+e
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Here 8(x) is the Heaviside 8 function, and the multiplica-
tion by 2 is due to the electron spin.

A. Analytical analysis

g (E)=2Rcog g e

m'+'(E)
X E e 2~™dm

m (rt) (E)
(13a)

We consider the magnetic response of the quantum an-
tidot system analytically. For this purpose it is more
convenient to fix the quantum number n and consider the
contribution of the nth subband. Applying the Poisson
summation formula to the sum over m in Eq. (12), with
the energy-level spectrum given by Eq. (8), for g(E) we
obtain the following expression:

2e—„b—[4e„—a ( l.—b2)]'i2
m(g)(E) =

$2 (13b)

After integration by parts, for the oscillatory part of g (E)
we obtain

with E „=E„—2[(m +a ) +bm], E„=(E/ACE))
(n —+ —,

' ), b = (co, /co) ( 1, and m ~ '(E) are the roots of
the equation e „[m=m+)(E)]=0, i.e.,

2nikm " 2vrik4& /4AB 0

Bm'"' (14)

Substituting Eqs. (13b) and (14) into Eq. (11), we obtain an expression for the oscillatory part of the thermodynamic
potential:

(n) +AB

m(+)(g) 0

2m. kT
gE(n)

Emn

am(")(g)

L

cos 2mk m (")(g)+
0

2m. kT
gE (n) (15)

m(")(g) =—
@0 Acu,

1 — (n+ —,')
+ (n+ —,

'—), (16a)
'flCO

with the function g and b,E+) defined below. The func-
tions m +'(g), determining the oscillatory dependence of
the thermodynamic potential in the limit R»r„have
the form

4,„,/@o

eF /Ace,

@./C'o

EF /fKO

2
rp

rC

a 2ro a 2r,

eF/rico, r,
'

y,„/yo r,

(17)

and considering the most interesting case of strong mag-
netic fields

m(")(g) =— + 1

@0 @0
1 — (n +—,')

r, «ro (18)

~c 3+—(2n +1),
2coo

(16b)
when the edge states are confined to the proximity of the
antidot, we obtain

where 4;„is the magnetic-iield Aux through the antidot
(4;„=m r oH and @,„/Co=a /[4$/%co, ] ), and 4,„,is the
magnetic-field Aux through the whole sample confined by
the outer radius R (4,„,=nR H)

The coefBcients

demn

Bm'"'(g)

BE'

Bm'"'(g)

2
C

A

r 2
C 1—
2ro

2
flCO

(n+ —,
'

)

(19)

~Emn 1 m CO+
am m =mg~)(g) 2 (m 2+a 2)) ~2 m=m "(g)

in Eq. (15) depend on the magnitude of the magnetic
field. Taking into account the expressions

The temperature dependences of the oscillations of0'" [see Eq. (15)] are described by the standard functions
g(2m kT/b E~ ) ), where g(x) =x /sinh(x). The corre-
sponding values of the energies b,E(+' for magnetic fields
in the range described by Eq. (18) are
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gE( )
2~

irico~

AVF r,
&

kFrcR R ~R2 (21)

%co
1 — (n+ —,')

&~c
1 — (n+ —,

' }

2
AVF

rp rp
2

kFr, ,
m *rp

(20}

Differentiation of the thermodynamic potential in Eq.
(15) with respect to the magnetic field gives the magneti-
zation

(22)

and For the oscillatory part of M, we obtain

2fivF r,M'"= g g — 1—
, k

fico, (~) @AB
(n +—,

' ) sin 2mrk m '+'(g)+
0

2m. kT
gE (n)

+AB+sin 2irk m '"'(g) +
0

2m. kT
gE(n) (23)

The sum over n (total contribution of the n subbands)
in Eqs. (15) and (23) is taken from n =0 to n =no, where
np is the index of the highest occupied n level, deter-
mined by the largest integer which satisfies the following
condition [which for zero temperature is obtained by re-
quiring that the right-hand side of Eq. (8) be smaller than

through the antidot and through the area enclosed by the
electron trajectory around the antidot. In Fig. 3 we
display the oscillatory dependence of the magnetization
on the fiux 4;„/Cia, for g/A'co, =1 and 2&T/b, E(+'=
[note that for this temperature the contribution of the
term containing f(2mkT/hE' '). in Eq. (23) is small .

u (n)= g A—con ——E 0" &0, (24) 0.8

where 0 =a cop F ph E '"= fico =2@ r /R is the minimum vaue
of the m-dependent part of the energy E p %co

2[(m +ci )' +1]+ficii,m/2 [see Fig. 2(b)].
The resulting expressions, Eqs. (15) and (23), demon-

strate an oscillatory behavior of the thermodynamic po-
'

1 0 d netization M of a two-dimensiona e ec-
tronic structure with a hole (antidot) in magnetic an
AB fiux (ili&B) fields. We consider the case of such a
strong magnetic field that u(0) 0 and u (1)&0 (i.e.,
when the cyclotron energy hen, is of the order of the
chemical potential). In this case only one term contrib-
utes to the sum over n, i.e., n =0 (this also holds for finite
but low temperatures). The inost interesting result is the

h the'll t d endence on the magnetic Aux throug
ld. Thisantidot, @;„=m.roH, created by the magnetic fie . is

flux being different from the proper AB Aux create y
the solenoi,1 'd 4 = A dr causes oscillations of the

AB t e whose period is close to the Aux quantum, Np,
and is equal in our model to @o(1——,%co, //~,

ype w

uch thatf lied magnetic fields H in the range suc aor app ie m
~ ~ of the or-iIi;„/No»1, variations b.H in the apphed field of

der b,H-@0/~ra yield a negligible variation of fico, /eF.
The difference between the period of the oscillations of
the magnetization as a function of @;„and q~ nd the Aux uan-
tum @0 is due to trajectory effects in a magnetic field,
manifested in different magnitudes of the magnetic Aux
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FKx. 3. Oscillatory part of the magnetization [Eq. (23)] in
hunits of the Bohr magneton p&, vs the magnetic flux throug

the antidot, 4;„=mr+I,in units of the flux quantum No=bc/e,
for extremely strong magnetic fields g/A'c0, = l. Under this con-
dition the only contribution to M'" is from the n =0 term in
Eq. (23). The data were calculated for a temperature given by
2+T/RATE'~' = l.
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The reason for these oscillations is a change, caused by
the magnetic Aux N;„,in the number of levels m +' lying
below the Fermi energy. In the semiclassical description
each oscillation corresponds to a variation of the Aux

through a closed electronic trajectory around the hole
(antidot edge state) by one flux quantum. A decrease of
the magnetic field on the scale b,H —gm c /Pie leads to an
increase in the number n of antidot edge channels which
can contribute to the magnetization [see Eq. (23}]. In-
creasing the temperature leads to a cancellation of the
higher harmonics in the Fourier series, and to a decrease
in the oscillation amplitudes.

For magnetic fields whose magnitudes are such that
u (1)+0 and u (2) &0, there are contributions from two
edge states with n =0 and 1 [i.e., two terms in the sum

10

w3

10

FIG. 4. Oscillatory part of the magnetization [Eq. {23)] in
units of p& vs the magnetic Aux through the antidot @;„,in units
of 4O, for a magnetic 6eld g/fico, =2.3. In this case the two
edge states, with n =0 and 1 contribute. (a) M' for a low tem-
perature, 2m T/AE'+o' =0.1. In this case 2m T/bE'+" =0.5 and
the interference between edge states leads to a beating pattern in
AB-type oscillations. (b) M"' for a high temperature
2m T/5E'+o' =0.1, demonstrating a suppression of the contribu-
tions from edge states with n =1. Compare this result with that
shown in Fig. 3; note that because of the lower magnetic field in
the present case the amplitude of the oscillation is larger than
that shown in Fig. 3.

over n in Eq. (23)]. In this case the oscillatory behavior
of the magnetization is due to the interference of two
edge channels resulting in the occurrence of beats [Fig.
4(a)]. A related mechanism leading to the occurrence of
beats in the magnetotransport in a wire with an antidot
was discussed in Ref. 20. We also note that increasing
the temperature leads to a decrease of the inhuence of the
n = 1 mode, and the 4;„dependence of the magnetization
becomes similar to the situation in stronger magnetic
fields [compare Figs. 3 and 4(b)]. In the general case of
magnetic fields of arbitrary strengths, the oscillatory
behavior of the thermodynamic quantities becomes more
complicated due to interference effects, involving many
antidot edge channels, whose individual contributions
occur with Periods 5@;„=[1—(irico, /g)(n+ —,

'
) ]No,

n =0, 1, . . . , no. It should be noted that contributions to
the magnetization from higher edge channels exhibit a
larger sensitivity to an increase in the temperature. The
temperature dependence is described by the function
g(2+kT!b,E'+') in Eq. (23), with hE'+' proportional to
[1—(A'co, /g)(n+ —,

' )] [see Eq. (20)]. Consequently, in-

creasing n causes hE'+' to decrease, resulting in decaying
contributions from such edge states.

Another kind of oscillation of the AB type is associated
with the second term in Eq. (23), containing m'"'(g). As
seen from Eqs. (23) and (16b) this term oscillates as a
function of the magnetic Aux through the whole sample,
@,„„witha period 4o. This type of oscillation, due to
the outer edge states, was previously investigated in
weak ' and strong"' magnetic fields using different
models. It is of importance to note that these two kinds
of AB-type oscillations have different temperature depen-
dencies because of the different lengths of the closed elec-
tronic trajectories near the inner and outer boundaries.
The temperature dependence of the amplitude of the os-
cillations associated with the antidot edge states is deter-
mined by T/hE'+', while that corresponding to the oscil-
lations associated with the outer edge states (near the
outer boundary of the sample) is determined by T/AE'"'.
As aforementioned, in the temperature region
2&T/E'+' —1 the amplitude of the 4,„,oscillations, that
is the second term in Eq. (23), is negligibly small (see Fig.
3).

We additionally note a third kind of oscillation de-
scribed by the fourth term in Eq. (16b}; that is, one pro-
portional to co, /2coo=(co+co, )/2(co —co, ). These oscilla-
tions are due to the magnetosize effect, and have been dis-
cussed previously. '

Finally, the term cIiAa/4o in Eq. (23) reflects the
dependence of the electronic levels [Eq. (8)] on the AB
Aux @zz. Oscillations in the magnetization due to this
term may be considered as a change in the Landau di-
amagnetism by the AB flux. It is interesting to note that
unlike in the usual AB efFect (see Ref. 25), the amplitude
of these oscillations depends in a significant manner on
the magnitude of the magnetic field (i.e., the cyclotron ra-
dius). B. Numerical results

In this section we present results of a direct numerical
calculations of the magnetization using its definition
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geometric function 1F1(a, b, c). Taking into account the
boundary condition for the wave function (i.e., a finite
value at r ~ ae ) we obtain

2 2 2 A /2

f ( )
—( —1/2 " H

2l~
co ™=co,hn+ —,'ro, g+(m), (30a)

lowed MO transitions are governed by rigorous selection
rules for both p and m quantum numbers.

The absence of rigorous selection rules for the n transi-
tions leads to the following expression for the allowed fre-
quencies of the MO transitions caused by the antidot:

p
2

X)F] —n, A +1,
2lH

(25) g+(m)=Q(m 11) +(kzro) —Qm +(kzro) kl .

Here lH = (Pic /eH) ' is the magnetic length,
A =(m +2m 8/trt )' =(m +k r )' k is the
Fermi wave vector, and n is a non-negative integer. The
normalization constant C

„

is determined by the integral

C~„=l~I dx e "x™[,F1( n, A—+l,x)]
0

The eigenenergies corresponding to the eigenfunctions
are given by Eq. (6) (with a =0), where as noted before in
the limit ro~0 the energy levels reduce to the usual Lan-
dau levels in a cylindrical coordinate system [see Fig.
2(a)]. Additionally, comparison of the curves in Fig. 2(a)
clearly demonstrates a substantial difference in their
behavior for relatively small absolute values of the mag-
netic quantum numbers m, corresponding to the appear-
ance of the antidot edge states in a 2DEG with a hole.
Therefore, the single-electron wave functions and the
energy-level spectrum of a 2DEG with an antidot poten-
tial describe all the electronic states in the system, includ-
ing edge states formed near the antidot boundary.

The MO absorption in such a system is determined by
the probability of transitions between the states g „(r)
and g „(r),which is proportional to the square of the
interaction energy. For the interaction between the os-
cillating electric field and the electric dipole moments of
the electrons (we restrict ourselves to the dipole approxi-
mation) the transition amplitude A „"and associated os-
cillator strength f „"are given by

(27)

(30b)

For b, n =0, only g+(m) should be used. The function
g+(m), which describes the m-dependent part of the
transitions frequencies, is plotted in Fig. 9.

The main characteristic of the magneto-optical transi-
tions in the presence of an antidot is the appearance of a
rich spectrum with many frequencies (as opposed to only
two frequencies in the case of a dot modeled by a har-
monic confining potential ' ), due to the nonequidistant
electronic energy levels [Eq. (6) with a=0] and the ab-
sence of a selection rule for transitions involving changes
of the n quantum number. For each value of hn there is
a manifold of transition frequencies corresponding to the
difFerent quantum numbers m (see Fig. 10). The transi-
tion frequencies between electronic edge states near the
antidot depend on the size of the antidot and the magnet-
ic quantum number m which determine the spacings be-
tween the energy levels. A linear dependence of the tran-
sition frequencies on the magnetic field, with a slope pro.-
portional to g (m), should also be noted (Fig. 10). More-
over, when the magnetic field tends to zero, the transition
frequency in antidot structure vanishes, unlike the corre-
sponding behavior in a dot structure where the finite
value of the transition frequency at a zero field is due to
the quantum-size effect. The magneto-optical transition
frequencies co „+'"corresponding to transitions between
antidot edge states [i.e., the region of small absolute

2.0

fm'n' — m m'n'~ A m n~2' (28)

where ro „"=(E „.E„)/fiis the tran—sition frequency.
Integration over the angle N results in the selection

rule hm =—m' —m =+1 for the allowed transitions, and
the expression for the amplitude A „"is given by

1.5—

co 1.0—

00
0
0
0
0

—X 1/2( A + A '+1)
0

X 1F1( n, A +—1,X)

X,F1( n'„A .+1,X) . — (29)

0.5—
0
0
0
0
00

Analysis of the integral in Eq. (29) shows that transi-
tions are allowed with an arbitrary change of the quan-
tum number n (there is no rigorous selection rule for n)
In this sense the magneto-optical behavior in the antidot
system is similar to the situation for a dot described by a
hard wa11 confining potential. In this context we note
that for a dot with a harmonic confining potential the al-

0.0
-60 -40 -20 20

I

40 60

FICi. 9. The function g+(m) describing the m-dependent
part of the transition frequencies [Eq. (30)] for k1, ro = 10.



14 076 E. N. BOGACHEK AND UZI LANDMAN

~m+1, n+An
mn

Mo -p&kFr, , (31)

FIG. 10. Schematic of the MO transition frequencies,
co „+'"+", in a 2DECx with an antidot plotted vs the cyclotron
frequency co, for transitions between different edge states
characterized by the quantum numbers m. The fundamental
frequencies, which are given by integer multiples of the cyclo-
tron frequency corresponding to transitions between bulk Lan-
dau levels, are denoted by longer lines marked co„2'„3~„etc.

values of the quantum numbers m; see Figs. 2(a) and 9]
have a discrete character and differ from the fundamental
frequencies which are proportional to the cyclotron fre-
quency and correspond to transitions between bulk Lan-
dau levels. Finally, for electronic states with larger ab-
solute values of m [i.e., ~m &&kFro', these values corre-
spond to electronic states localized far from the antidot;
Fig. 2(a)] the spectrum of the transition frequencies be-
comes quasicontinuous and converges to the fundamental
frequencies.

V. CONCLUSIONS

In this paper we have studied the magnetic and
magneto-optical properties of a 2DEG with a hole (anti-
dot) in the strong magnetic-field regime. Using a simple
model for the antidot potential allowed us to obtain
analytical solutions, unlike the often used tight-binding
model treatment"' which can only be solved numerical-
ly.

Edge states formed near the antidot (inner boundary)
manifest themselves in AB-type oscillations of the magne-
tization. In the ultraquantum limit (A'co, —g, r, « ro) the
amplitude of the magnetization oscillations Mo is, ac-
cording to Eq. (23),

It is suggested that the magnetic moment in such a sys-
tem could be measured (for reports of measurements of
the magnetic moments of single metallic and semicon-
ducting rings of mesoscopic size, see Refs. 31 and 32).
These oscillations exist for temperatures
T & (fi /m *re )kyar, Decreasing the magnetic field leads
to the onset of additional edge states with higher n quan-
tum numbers, and to the appearance of beats in the mag-
netization as a function of the 6eld. It is interesting that
contributions of higher edge states to the magnetization
may be suppressed by temperature [see Eqs. (20) and (23)
and Fig. 4].

The oscillations of the magnetization induced by the
antidot edge states are of thermodynamic nature, can ex-
ist in a ballistic limit, and differ from those in magneto-
transport where backscattering of edge states is neces-
sary. '

Although here we have treated only the ballistic limit,
it is well known that in the quantum Hall effect regime a
single impurity cannot backscatter edge-state electrons.
Consequently, we expect that the thermodynamic oscilla-
tions induced by the edge states which we have discussed
will occur for systems and conditions where the electron
mean free path path l is larger than the cyclotron radius,
i.e., when l )&r, .

It should be noted in conclusion that the amplitude of
such thermodynamic oscillations may be increased if we
consider antidot arrays under the conditions r, (d
(where d is the distance between antidots) and ro « l.
The latter condition is necessary in order to exclude
effects due to scattering by impurities which can random-
ize the phases of the wave functions of electrons populat-
ing the edge states localized near the antidots.

Using the same model for an antidot in a 2DEG, we
have investigated the magneto-optical spectroscopic
characteristics of the system. The nature of the electron-
ic energy levels in this system, and the absence of a
rigorous selection rule for transitions involving changes
of the n quantum number, underlie the appearance of a
rich spectrum with many frequencies (Fig. 10). The
dependence of the transition frequencies between elec-
tronic edge states near the antidot on the size of the anti-
dot could be used for spectroscopic characterization of
such systems.
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