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Theory of femtosecond photon-echo decay in semiconductors
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We investigate a mechanism responsible for the observed very short times of the photon-echo
decay (of the order of a few femtoseconds) in semiconductors. It is associated with the loss of phase
memory as a result of the interaction of the interband mixed state with an unscreened random
Coulomb potential of the photocarriers and/or charged impurities. A time characteristic of a system
of interacting electrons is found. This is the time of phase breaking r~, which we calculate within the
eikonal approximation using diagrammatic techniques. ~~ is shown to be typically much shorter than
both the time of electron-electron collisions and the period of plasma oscillations. We demonstrate
that the screening of Coulomb potential cannot be built up during this time. w~ is proportional to
n ~ (where n is the carrier concentration and d the dimensionality of a system), which is consistent
with the experimental results. The derived law of echo decay of the form exp [—(rjr~) j agrees with
the results of numerical simulation, although it does not agree with the existing results of physical
experiment. We believe that such a disagreement is of a fundamental nature and manifests a basic
need for further experimental and theoretical work.

I. INTRODUCTION

The echo phenomenon in an ensemble of two-level elec-
tron systems excited by a sequence of electromagnetic
pulses is well known. ' Recent advances in ultrashort
laser-pulse technique have made possible observation of
the two-pulse femtosecond echo &om interband (valence-
conduction band) transitions in bulk semiconductors as
well as in quantum-well structures. Knowledge of the
ways of time evolution of the mixed quantum states re-
sponsible for the echo phenomena in semiconductors is
of a great importance for the understanding of various
mechanisms of phase relaxation of the electron states as
well as its nature. The present paper is devoted to the
investigation of a possible mechanism of the femtosec-
ond echo decay in semiconductors and can be considered
as a continuation and further development of an earlier
paper.

We will demonstrate that the decay of the interband
femtosecond echo in semiconductors takes place when
carriers in the mixed interband states lose their phase
memory. This occurs due to the action of a random
unscreened Coulomb field originated &om either static
impurities or photocarriers (provided they are randomly
distributed in space) generated by the laser pulse. The
field changing the carrier quasimomentum brings the par-
ticles out of resonance. This results in echo decay.

It is established that the phase-breaking time w& is pro-
portional to n ~~", where n is the carrier (impurity) con-
centration and d is the dimensionality of the system. One
can say that r~ is a time characteristic of an electron sys-
tem. This time usually appears to be shorter than other
characteristic times such as time of electron-electron col-

lisions 7, and period of plasma oscillations; it describes
the rate of decay of the coherent properties of an electron-
hole system in semiconductors.

The calculated phase-breaking times for a three-
dimensional (3D) case are usually about 10 fs. The con-
centration dependence of v+ and its order of magnitude
are in agreement with the experiment. We would like
to note that it is diKcult to make a direct comparison of
the time of phase breaking 7-~ and the quantity measured
in experiment, T,h, because of diferent laws of decay
observed on the experiment and predicted by the theory.
However, the general conclusion 7-~ n ~" is of major
importance.

Echo is a nonlinear eKect that in general can be de-
scribed as follows. Let an observable quantity, say, a
macroscopic electric dipole moment D, be the sum of a
large number of small contributions Rom N independent
subsystems (in particular, particles). At the moment
t = 0 an electromagnetic pulse of a very short duration
Et (a "shock") excites an individual particle j into a
mixed quantum state between two stationary states with
energies E'z and f2. Observables in such a mixed state
oscillate with the frequency ~~. = Ez —Ez (to make ex-
pressions in the intermediate formulas less cumbersome
we will often set h = 1) and the total dipole moment
evolves as

D(t) = ) ds exp (—iurzt) + c.c.

At t = 0 it has a macroscopic value D oc Nd (N ))
1), but then decreases due to the differences in fre-
quencies ~~ and practically vanishes for the times t )
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max (At, 1/Aw), where Ace is a typical width of the fre-
quency distribution. At the moment t = 7 )) At, 1/Aw
a second pulse is applied. A time-reversed part (for
which we use the same notatioux D) appears in the mixed
quantum state, i.e. , the sign of the frequency is changed
u~ m —tui while the phase (—uzi) acquired at the mo-
ment t = ~ is conserved. Therefore, for t & w,

ability distribution of the random variable ( = 8u —bu
as given by

we get, irrespective to the real physical nature of the
diffusion process, the following law for echo decay:

D(t) = ) 'v. dj exp [2(d~ (t —.7 ) —2(d~r] + C.C. (2)
D(2v) = ) v,'d, / W (e exp(vvev)ctvc+c c.

Factors e. characterize the probability of time reversal
in the dipole moment amplitudes d~ due to the second
pulse. We see that at the moment t = 27. the phases
of all the contributions vanish, D(t) emerges again as a
macroscopic quantity, and the corresponding echo pulse
is generated.

Now let us consider echo decay. First of all, we note
that there are two principal mechanisms leading to the
decay of an echo signal. The first one is a simple damp-
ing resulting mainly from large (and fast) Huctuations
("collisions" ). These are the processes that, in particu-
lar, bring about relaxation of the occupancies. In this
case the echo decay is purely exponential

D(2~) = ) v,.d~ exp (—2~2~) + c.c. ,
2

where v~ is the half sum of the damping rates, or inverse
relaxation times, for energy levels 1 and 2.

The second decay mechanism is related to the phe-
nomenon known as spectral digusion, where small fre-
quency Huctuations play the main role. Equation (2)
shows that the constancy of the oscillation &equencies
~~ with time is crucial for observation of the echo. How-
ever, these frequencies sufFer random Huctuations b~~(t)
because of the interaction of the particles with the sur-
rounding medium.

D(2w) is a random quantity that should be averaged
over all possible frequency variations h~i(t). In Sec. II
we will see that

2T

D(2~) = ) v,'d, exp i bur, (t)dt

T
—2 h(u~. (t)dt

~
+ c.c.

0

Here the averaging is denoted by angular brackets (). As
a result of frequency Huctuations, the mean frequency
values averaged over a finite time interval suffer a sort of
random walk so that one can write

D(2~) = ) v, d, (exp [2~(bur' —8~)]) + c.c. ,

where bu and bu' are f'requency fluctuation mean val-
ues during successive time intervals 0 ( t ( v and
~ ( t ( 2w, respectively. The result of the averaging
procedure depends on the kind of random walk the fre-
quency undergoes.

If we assume that the random variation of the fre-
quency looks like the usual difFusion and take the prob-

= ) v,'d, exp (—D,~') + c.c.

The diffusion constant D can be expressed through the
mean square of the frequency Huctuation as (P) /2 = Dt.

In such a way we can single out two extreme cases of
echo decay: a simple exponential decay due to the usual
damping (collisions) and decay (in general, non. exponen-
tional) due to the spectral diffusion. For various distribu-
tions of damping and diffusion constants the summation
over j can change the result even for pure cases of damp-
ing or difFusion (see Ref. 7).

In the present paper we wish to indicate that the most
important mechanism of echo decay due to band-to-band
transitions in semiconductors is often associated with
a sort of spectral diffusion rather than with the usual
damping due to ordinary collisions. The physics of this
mechanism can be described as follows. The echo is due
to almost vertical transitions between the valence and
conduction bands. The energy difference corresponding
to such a transition is determined by the quasimomentum
of a pairs of quantum states, or their "kinetic" energies
p /2m~ g. A. long-. range static field acting on the pair
brings about variation of its quasimomentum and there-
fore the interlevel spacing of the corresponding two-level
system. The variation equals the negative variation of
their potential energies 8U. It is this quantity that plays
a role of b~i(t) in Eq. (4). A smoothness of the spatial
variation of the field is important because in this case the
processes of scattering of the carriers accompanied by a
large variation of their quasimomenta would not happen.

We consider here a particular example of a long-range
Coulomb interaction of the carriers in a semiconductor
where one can look upon the phase variation as a sum
of a large number of relatively small contributions. As a
result, we get a sort of diffusional process that concerns
the phase of the wave function in the mixed state. Such
a process will be called here phase wandering. It is of
major importance that the echo dies off during the time
w~, which may be much shorter than the time character-
izing collisions of the particles interacting according to
the Coulomb law. %'e are going to show that indeed for
a number of cases of interest such random variations of
the phase may be quite effective as a dephasing mech-
anism with the characteristic decay time much shorter
than usual relaxation time due to collisions.

The echo decwy, or optical dephasing, was studied in
semiconductors in a number of papers (see Refs. 8—10).
The results obtained usually correspond to the consid-
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eration of damping, i.e., only the action of short-range
and/or rapidly varying parts of the perturbations are
taken into account. In this way the echo decay in disor-
dered semiconductors is considered in the paper by I on-
sky et al. and an exponential law of decay is found. The
difFerence between their and our case can be understood
as follows. In Ref. 9, due to the short range of the poten-
tial, the time of echo decay is determined by the collision
time and the law of decay turns out to be purely expo-
nential. We point out another mechanism of decay that
under certain conditions may be more effective and re-
sults in a di8'erent law of decay.

It is important to mention that recently El Sayed et
al. have performed a numerical simulation of the set of
equations for the density matrix in semiconductor at the
early nonequilibrium stage after optical excitation. They
found the decay law to be nonexponential, in qualitative
agreement with our results.

The present paper is organized as follows. In Sec. II
we give a brief description of our diagram technique
and time-operator method while applying them to the
echo phenomena. In Sec. III, using these techniques,
we demonstrate that the screening can be neglected at
time intervals less than the inverse plasma &equency. In
Sec. IV we consider the echo phenomenon in a two-band
semiconductor. The use of the time-ordered diagrams
enables one to visualize the physical mechanism of echo
formation as well as possible mechanisms of its decay. Vile
show that on a long-time scale the echo decay is purely
exponential and due to the usual collisions. But this is
probably not the case for the femtosecond echo exper-
iments where the characteristic times are usually very
short. On a short-time scale the wandering of phase can
be the main mechanism responsible for the echo decay.
This case is discussed in Sec. V, where we give a dia-
grammatic derivation of the echo decay law in the eikonal
approximation. In this approximation we sum the terms
of perturbation series in all orders in the perturbation
potential and impurity concentration. The application
of our formulas to the 3D and 2D situations is discussed.
Then the result is generalized for the case where the per-
turbation Geld is due to mobile carriers excited by light.
Section VI is devoted to the qualitative consideration of
our results. The results are brieQy discussed in Sec. VII.

and that the following operator identity holds:

(10)

The use of the operator 1/cIq makes the formulas more
compact and transparent. Moreover, if needed, one can
easily get the Laplace (Fourier) transforms by simple sub-
stitutions of differentiation operators Ot with the corre-
sponding variables.

The diagrams allow one to write down the analytical
expressions by applying the following rules. Two lines
going in the "positive" ("negative") direction with re-
spect to the time variable (along time or against it) on
a diagram describe the time evolution of the density ma-
trix until the moment of observation t = 2~. Each line
carries' the corresponding quantum numbers. An ini-
tial occupancy is indicated by the bar that closes the
loop in a remote past. A point on a positive (negative)
line represents a matrix element of interaction together
with an additional factor —i (+i). An evolution oper-
ator (I9q + i P E~ —i P& FI,) should be brought into
correspondence with each time interval between two ad-
jacent interaction points and after the last one. Here j
(k) stands for the positive (negative) lines. The extreme
right point on the diagram corresponds to an operator of
an observable physical quantity. One should ascribe to
this point the corresponding matrix element. Note that
to write down the analytical expression we should read a
diagram &om future to past, following the order in which
all operators appear.

To illustrate the relation between pictures and formu-
las let us return to the echo eKect in an ensemble of in-
dependent two-level systems (see Fig. 1). At t ( 0 we
have a stationary state. The first pulse at t = 0 creates
an oscillating mixed quantum state. The second pulse
reverses the state at t = v and finally at t = 27. a radia-
tion pulse is observed. A positive (negative) line on the
diagram carries energy fz~ (E'~~) from t = 0 to t = r and
f~~ (Z2~) from t = 7 to t = 27. To inake our consideration
as simple as possible, we assume that the time interval
between the pulses w is much longer than the durations
of the pumping pulses At. As the duration of the pulses
is the shortest time in the problem, we will consider here
b pulses. According to the aforementioned rules we have

II. DIA.GRAMMATIC TECHNIQUES

To investigate the echo phenomenon in semiconduc-
tors and in particular the echo decay we will use in what
follows a time-ordered diagrammatic techniques (cf. with
Ref. 12; see also Ref. 13). Let us first define an inverse
operator I/oI& (which will be extensively used later) as

I
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Making use of this deGnition one can show that
t

a, + i{E',- K,')
FIG. 1. Diagram for two-pulse echo. The bar before t = 0

represents the initial occupancy. For further explanation, see
the text.
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D(t) = ) (2gldllj) . . h(t —7-)
1

8, + i(z,' —t,')
x (—'(» IV212j&) (i(» IV. I2j))x, , (—z(2jlvi I

1j))n h(t) + C.C.
Bt + i(E2~ —ti )

which is equivalent to Eq. (2) because of the iden-
tity (Bq + a) ih (t) = exp (—at) [see Eq. (9)]. Here

ni( —i(2jlVillj))(2jldllj) stands for the induced dipole
moment d~ (n~z being the occupation number for the first
level of jth particle) and (1jlV2I2j) stands for v~. In
principle, there are diagrams with an occupation number
n~2 as well, but for simplicity we consider here the case
where nz ——0. We can include the Huctuations in the
general scheme, regarding them as amplitudes of instant
shocks distributed randomly in time. Representing them
by points on a diagram we get, for the evolution operator
(see Fig. 2),

1 1 . 1+ . [ 'h '(t)] +
Bi + an~ Bt + i~~ Bt, +ice~

. (11)i' + 'i(d& +lb(d& (t)'

Using Eq. (11) we obtain the total dipole moment as

1
x h(t) + c.c.

le + ZCtl& + Zb(d& (t)
(12)

As we already mentioned, this is a random quantity that
should be averaged over all possible &equency variations
bid~(t). Making use of definitions Eqs. (8) and (9) and
returning to exponents, we get a derivation of Eq. (4).

III. SCREENING OF FAST PROCESSES

In this section we will show that the screening of the
Coulomb potential cannot build up during the ultrafast
processes we are discussing here. The Coulomb propaga-
tor renormalized both by the screening and by the lattice
effects was calculated by Gurevich, Larkin, and Firsov in
Ref. 14 and one could base consideration of the build up
of the screening on the results of that paper. Here we
will not be interested in the lattice effects because of the
shortness of the time intervals we are going to consider.
The dielectric susceptibility of the semiconductor may
be considered as a time-independent constant e . We,
however, prefer here to use the language based on the
time-ordered diagram technique formulated in Sec. II.
This will permit us to visualize the physical processes as
developing just in the way they are represented in the dia-
grams. A diagram consists of horizontal lines with points
on them. The lines represent the probability amplitudes
(wave functions) whereas the points indicate time mo-
ments when a probability amplitude changes under the
action of a perturbation.

In the nonrelativistic approximation the Coulomb in-
teraction is instantaneous so that both points on the
Coulomb line are characterized by the same interaction
time, say, t = to, and bare interaction lines in our pic-
tures become vertical. The screening may be interpreted
as polarization of the medium and creation of a polar-
ization field, which should be added to the bare inter-
action. The screened potential may be constructed step
by step by the repetition of time-ordered events. Since
the evolution of an electron system requires some time
and the polarization field emerges at times t ) to the
screened potential becomes time dependent. Its space
Fourier transform U(q, t) is given by the series

U(q, t —t, ) = U(q)[b(t —t, )

+II(q, t)U(q)b(t —tp) + .
]

1= U(q) h(t —t,),

time where by definition

U(q) = 4vre2

&oo 92

)
—iBE2

+ 0 ~ ~

FIG. 2. Action of random forces on a two-level system.

Here the first term represents the "bare" momentary
Coulomb interaction while other terms describe polar-
ization obtained by the iterations. We see that the usual
physical picture of polarization (the field displaces the
charges &om their equilibrium positions; as a result, a
nonzero contribution to the local charge density emerges;
this density gives rise to the polarization field, which in
its turn displaces the charges) has a one to one corre-
spondence to the diagrams.

First consider the contribution to the polarization op-
erator of electrons in the conduction band. The operator
is given by two simple response diagrams of the type
shown on Fig. 1, but with only one interaction point at
time to and one point at the observation time t. It has
the well-known form
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ll(q, t) = ) . i[F,+,(t) —F,(t)] . (14)
1

Bg + 1 Ep+g —fp

This expression may be read as follows. A perturba-
tion with the amplitude proportional to the matrix ele-
ment (p'~ exp(iqr) ~p) = bp p+z at some time creates a
mixed ~p')(p~ electron state out of the pure states ~p)(p~
or ~p')(p'~ occupied by Fp or Fp electrons, respectively.
The evolution of the mixed state under the action of the
unperturbed electron Hamiltonian is described by the de-
nominator on the right-hand side of (14), where the use
of the symbol Bt ensures the necessary time dependence.
The sum over p gives the charge distribution at time t.

Let us consider small values of q as compared with the
characteristic values of p. Then one can write

U(q, t —to) = U(q) 1 ——2(u, + . . 8(t —to)
t

= U(q)[b(t —to)
—(t —t ),i(to)+ ] .

Here up~(t) = [4vre n(t)/m] ~ is the (time-dependent)
plasma frequency. The right-hand side of Eq. (19) takes
into account the initial conditions to the differential equa-
tion (19).

The expression for the screened potential can be sim-
plified provided the electron concentration and therefore
the plasma &equencies are time independent. Then we
have

U(q, t —to) = U(q) 1 —(u
&

—2+ b(t —to)
t

and

e~+~ ——e~ + qv+
Ot=U( ), ', 8(t —t,).+ (21)

BE
Ep+~ ——Ep + q

Op

so that the polarization operator becomes equal to

1 . 19
II(q, t) = ) . iq Fp .

Ot + iqv Op
P

Using the identity

1 1 8 ~ & 1

Op Oq + iqv Bq + iqv Op (Bp Bq + iqv)
1 8 i(q/m)

8, + iqv ap p (8, + ~qv)'

we get

2

II(q, t) = ——),F,(t) .
(0~ + iqv)

We assume that the characteristic time interval t, (whose
inverse gives in particular an order-of-magnitude esti-
mate for Oq) is so short that t, is much larger than
qv. Omitting this term in the denominator, we obtain

1
II(q, t) = ———n(t),

mat

where

n(t) = ) Fp(t)

is the number of carriers (per unit volume) in the con-
duction band. If we insert this expression into (13), we
see that the acting potential after the switching at t = to
is developing as

Taking into account the identity

8& h)p& f 1
~

'
~

=1+ '
B~ + (d

~
2'L ( Bg + Lldp~

one can get

U(q, t —t, ) = U(q) (b(t —t, )

8(t to)(dp) sin[(dp](t —to)])

(22)
le —x(d&] )

(23)

IV. ECHO PHENOMENON IN
SEMICONDUCTORS

We see that the screening of electric field by conduction
electrons leads to the oscillations of their potentials with
the &equency w~~. As we have pointed out, we limit our-
selves to the lowest approximation in q, where there is
no damping of plasma oscillations. One can check, how-
ever, that in higher approximations, the term describing
screening would be even smaller.

We could include valence-band electrons into the
scheme with the corresponding polarization operator that
should be added to the polarization operator in (14). As
a result, the total concentration of the carriers (electrons
and holes) enters the expression for the plasma frequency.
In contrast to the importance of the screening for lower
&equencies, the above-written expressions clearly demon-
strate that there is no reason to take the screening into
account for very short time intervals in the femtosecond
echo phenomenon where u~jt && 1 because it just has
not enough time to build up.

An equation similar to Eq. (19) has been obtained for
the nonsingular part of U(q, t) by other methods and
solved in Ref. 15. The authors of Ref. 15 assumed that
the plasma &equency variation is suKciently small dur-
ing the period of oscillation (WKB approximation). We
believe that, in fact, to neglect the screening there is no
need for up~(t) to vary slowly. It is quite sufBcient that
the condition cuz~t && 1 holds during the time interval of
interest.

or

[0 + ~ &(t)]U(q, t —t ) = U(q)0, b(t —t ) (19)
We consider a semiconductor with the energy gap E~

and the dispersion laws in the conduction and valence
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bands given by E' = p /2m, and. Z" = E—g
—p /2m',

where p is the electron quasimomentum. The interaction
of light with electrons has the usual form

i ( ) 7 ((at 'kyar—)
( P) —i(@at—

kyar)

( ep)eE ~t~

2m(d Z

(24)

2k -k,
t=27

V

p+k-k
1 2

C

p+k

where P = —iV' is an electron momentum operator and
m is the mass of a bare electron. The indices j = 1, 2
correspond to the first and second pulses of an ac electric
field and E~ (t) are their envelopes.

The mixed quantum state that is responsible for the
echo phenomenon is represented by the nondiagonal ele-
ment of density matrix or, simply, by the product of the
wave functions specified by the values of their quasimo-
menta

p+k
+ v=c +QQ.

V

FIG. 3. Echo in semiconductors.

g*,@~„-exp (iOpt), (25)

@*„@p,- exp (—iB~t), (26)

where

Q
2m 2mh

(27)

We assume that a short laser pulse creates such a state at
t = 0 (see Fig. 3). Then another pulse at t = w reverses
it and at t = 2w an echo pulse is observed just as it has
been shown in Sec. III. The drawings in Fig. 3 reflect
the fact that a state oscillating with &equency OP can
be created by mixing of two pure quantum states (diago-

nal elements of the density matrix) @',@z, and @'„@z„.
The bar at the bottom of the drawing corresponds to the
occupancies of these states F,P and F P.

The diagram in Fig. 3 enables one to write an expres-
sion for the spatial Fourier transform of the polarization
current. The current is represented by the point at the
moment t = 2w (connected with an upper arrow) in the
drawing. The corresponding interband matrix element is
ev,„=eP,„/m. Other points correspond to the matrix
elements of electron interband transitions and describe
the action of the two laser pulses with wave vectors ki
and k2. Due to spatial homogeneity the total quasimo-
mentum is conserved at any interaction point. Thus we
have

1j(t, ki —2k2) = 2e ) v,„,b(t —r)(—i(v, p+ ki —k2~V2~c, p+ ki))~t + '(~p+k -k —~ +k )

1
x(i(v, p~V2~c, p + k2)) . (i(c, p+ ki~Vi]v, p))h(t)(E~+k, —E„p)

or

j(t, ki —2k2)

exp (—at)(1/0&) exp (at) = 1/(Bt +. a)

[see Eq. (9)], we have for t = 27

(30)

V2 22(d T
= 2e) v.„ 8(t —~)'"

Bt —i[A~ —(ki —k2)vt, + k, v.]

iV~*x, , b(t)(E,~+k, —E„p).
Bt + ijOP + kgv j

We set E'+& E' ' + kv, h because of the inequality
k (( p. Dere V~~ stands for the matrix elements of the
light-electron interaction [j = 1 (2) for the first (second)
pulse]. In what follows we consider rectangular pulses.
Then

i(cu —A~) Atj
(29)

j(2'r, ki —2k2) = 2e ) v,„exp [i(k2 —ki) (vh, + v, )r]
P

xiV2 e ' Vi* (E,p —E„~).

Here we neglect k~ in the argument of the distribution
function F P.

Let us discuss the mechanisms leading to the echo de-
cay in a more formal way. We assume that the electrons
are influenced by a random field M(r, t) produced either
by impurities (and lattice vibrations) or by other elec-
trons created by the laser pulse and randomly distributed
in space. Field Q(r, t) can be represented by its space and
time harmonics

where At~ is the pulse duration. Making use of the op-
erator identity

U(r, t) = ) M~~e
q,v

(32)
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The mean value of u(r, t) vanishes while

(u*(r], t])u(r, t)) = ) (~ug ~') e ' l' "l+'~~' "l

(33)

The second drawing in Fig. 4 represents the term ibf".
The diagram in Fig. 4 describes interaction of an electron
in the mixed quantum state with the time-dependent lo-
cal Beld fluctuations caused by the scatterers. We can
include the interactions in all lines of the echo diagrams
in Fig. 3. This results in the substitution

For example, for the potential of randomly distributed
static impurities we have O~ m Op+ bOp + i—.

2
(38)

u(r) = ) U(r —r~) = ) U~e' ~' (34)

2 1
8 + iA + i(F' —F —(u)

(35)

and there is an analogous expression for the second dia-
gram. In the Bnal expressions for the polarization current
[of the same type as in Eq. (31)]a large frequency Bz can
be removed from all the denominators making use of op-
erator identity Eq. (10). An order-of-magnitude estimate
gives Bq 1/t. For times t )) 1/Ez this expression is none
other than a contribution to the electron self-energy and
to the damping due to Geld fluctuations:

where r~ is the position of the jth impurity.
At first we will study the role of short-range fast Beld

fluctuations with wave vectors q p and frequencies
Due to the action of such fluctuations the

electron states become damped. We illustrate this by
the following diagram (see Fig. 4). There are two fluc-
tuations with the space and time dependence of the
type exp (kinet + iqr) that act on the wave functions of
the considered state at arbitrary time moments as two
successive momentary shocks. The Brst diagram corre-
sponds to an expression of the type

The frequency variation bO~ vanishes in the final expres-
sion so that only the damping is important. As a result,
there is an exponential echo decay in this case.

For the fast echo phenomena such as the femtosecond
echo an estimate shows that decay takes place on the
time scale w 1/fz. Therefore one usually cannot use
the b-function approximation [Eq. (37)]. Moreover, dur-
ing the delay time for the echo signal w, the electron col-
lisions are improbable because of the inequality ~ (( vp,
where 7& ——1/vp is the momentum relaxation time. If the
source of the random potential are the mobile carriers,
then ~~ has the physical meaning of the electron-electron
collision time w . For the carrier concentration of the
order of 10 cm, w is greater than 100 fs. Since the
time of echo decay is of the order of 10 fs (see Ref. 3),
we should exclude these collisions as a cause of the echo
decay. On the other hand, for such carrier concentra-
tions the period of plasma oscillations is also about 100
fs, so that the Debye screening of field fluctuations can-
not be built up during the echo evolution (see Sec. III).
This was pointed out in Ref. 16 and confirmed recently in
Ref. 15. The experiment shows ' that the time of echo
decay depends on the carrier concentration n, as n
This fact indicates that Beld fluctuations are mainly due
to the unscreened Coulomb Beld of the carriers created by
the laser pulses. Thus the long-range and slowly varying
part of the Geld fluctuations should play the main role in
the decay. We will consider in detail this recently pro-
posed mechanism of phase wandering in the next section.

(36) V. FEMTOSECOND ECHO DECAY

C V
p imp

C
p

v
p

C
p

v
p

Here, for Bz —+ 0 we have used the symbolic relation

(37)

For such a short time interval the potential created
by randomly distributed charges (electrons or impurities)
may be treated as static or quasistatic. The change of
the electron (hole) quasimomentum q under the action
of a smooth and long-range Coulomb potential is small
compared to the average quasimomentum p (this makes
the so-called high-energy or eikonal approximation~ ), so
that

Neglecting the terms proportional to q we have

fp q
—Ep = —Qv.

C V
p p

C V
p p

c'' ll v
p, p

FIG. 4. Damping due to "collisions. "

It was shown that within this approximation it is possi-
ble to sum all the diagrams in all orders of the perturba-
tion theory with respect to the concentration of scatterers
and their potential energy.
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Let us begin with the consideration of the echo de-
cay due to the random potential of static impurities. To
take into account the in8uence of charged impurities, one
should insert points of interaction with impurities into
the diagrams and take the average. In the second order
in the perturbation potential U and in the first order in
the impurity concentration n one gets 12 terms of the
perturbation theory. As an example, three of them are
represented by diagrams in Fig. 5. In the expressions
corresponding to the diagrams given below we will omit
the common factor

dr —i U(r —v, t) dt

+i
2T

U [r —v. (t —r) —vhr] dt

T

+i U(r —vht)dt
0

time intervals. For example, the third diagram takes into
account such a correlation in the electron motion in the
conduction and valence bands during the time intervals
&om 0 to v. and &om w to 2~. After summation over q
we get for the sum of all 12 diagrams

After taking into account Eqs. (30) and (39) the diagrams
are equal to the expressions

1 i v t 1 - —in —b(t —r) —(—iU )e* "'—(—iU )e '~"' —6'(t),
t

—2

2T 2

U [r —vt, (t —r) —v, 7-] dt

(41)
Taking into account all orders in U and n we obtain the
evolution law in the form

n b(t ——r) —(—iU )e '~"' —(iU )e'~"' —b(t), (42)
t

(tU. )e
—*~vet eickv~t1 . 1

x e ' "t$(t —r) —(iU )e' ""t—$(t).

where

exp —n dr 1 —e'@

U [r —(p/m, )t] dt
0

+ Ur —pm t+ pmh~dt

(44)

It is worthwhile to mention that in addition to the
diagrams well known in kinetics describing the usual "in"
and "out" terms, there are some special types describing
correlation of the carriers via impurities during various

U [r+ (p/mt, )t] dt

2T

U [r + (p/mh)t —(p/m, h)r] dt .
T

v
P

C C C

p p
v
P P

c
P

c v
p

v
P

c
P

v
P p

c

FIG. 5. InHuence of impuri-
ties on the nonlinear polariza-
tion.
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Here we introduced the reduced electron-hole mass

m, i, = m, mi, /(m, + mg).

T T

U(R~ —v, t)dt, U(R~ —vent) dt,
0 0

(45)

respectively. Here Rz ——rz —r(0) is the relative carrier
position at t = 0. The first light pulse creates an electron
with quasimomentum p and a hole with quasimomentum
—p. The corresponding velocities that should be inserted
in Eq. (45) are v, = p/m, and vi, = —p/mh. At the
moment t = v the second light pulse changes the band
indices. Therefore, after the second pulse during the time
interval between t = v and t = 27 the electron state
acquires the phase

2T

U [Rg —v h 7 —v ~ (t —r )]dt
T

(46)

whereas the hole state gets the phase

2T

U[R) —v~7 —vh, (t —7 )]dt.
T

(47)

The total phase at t = 27. is the sum over all the im-
purities randomly distributed in space. To calculate an
observable one should take the configurational average of
the expression

A=exp i) (48)

We wish to emphasize that even under the condition
m, = m, h the total phase of a mixed state does not van-
ish.

Let us note that the same result can be derived in
a somewhat diferent way. To begin with, we calculate
the phase acquired by electron-hole state in a field of
a single jth impurity center. Within the quasiclassical
approximation and assuming that the electron (or hole)
kinetic energy is much larger than its potential energy U,
we see that the electron and hole during the time interval
7. between two successive pulses acquire phases

The number of impurities N in a volume V obeys the
Poisson distribution

—N

P(N) =, e

(A), =
~

—f dre'~
~

N
(50)

where ()~ means an average over the Poisson distribu-
tion: Since

(a ) = ) P(N)a = e~~ —'l,
N=O

(51)

we get for (A),

(A), = exp — dr (e' —1)
V y

(52)

Introducing the concentration of impurities N/V = n we
see that Eq. (52) coincides with Eq. (44).

For the 3D case where the impurities of two types
(donors and acceptors) in equal concentrations are
present, we get that the echo signal decay is determined
by Eq. (44), where exp (iP) is replaced by cosP. Taking
for the impurity potential U(r) = e/s r, we transforin
the decay factor to dimensionless variables

exp 27m(p/m, h) —7.
OO j.

R dR dx(1 —cos P)—1

(53)

where N is the average number of impurities. The coor-
dinates of impurities are uniformly distributed with the
probability density 1/V.

The exponent in Eq. (48) is then a product of expo-
nents and we have for the configurational average denoted
by ().

where

U(R, —vi, t)dt
T T

U(R~ —v, t)dt +
0 0

2T

+ U[R) —vi, 7 —v~(t —7 )]dt

2T

U [R~ —v, 7 —v p, (t —7.)]dt.
T

where

P = e f(m, /mh, , R, x)/s h(v, + vh).

Here f(m, /mg, R, z) is a function of the effective mass
ratio m, /mh and dimensionless distance variables R and
x (another variable that is equal to the cosine of the angle
between p and r),

f (m. /m„, R, x) = dt dt

o gR~ + (m /M)~t~ + 2R(m /M)xt i gR~ + [(m /M)t —1]~ + 2Rx[(m /M)t —1]

—[terms obtained by replacement m -+ mg, x ~ (—x)],
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exp —(~/~~) (54)

where w~ has the physical meaning of the time of phase
breaking.

Let us consider particular cases where the general for-
mula can be simplified. In the quasiclassical case

where M = m, + m~. Equation (53) can be presented in
the form

with the time of phase breaking r~ being proportional to
n-1/2

Finally, let us see how our results are changed if the
random Coulomb potential is produced by the moving
carriers. Instead of Eq. (44) we have

exp —) (F,~ + 1 —I'» )
pl

n = e /e h(v, + vg) )) 1, x dr 1 —-' e'&'+e '4" 62

we have

'r = [15(2a) ~ /16'7r ]
~ rf/n (55)

Then the phase-breaking time is much smaller than the
time of Bight wy, which is given by

7g = n /(v, + vg). (56)

Roughly, this time can be defined as the time for a parti-
cle to traverse the average distance between the Coulomb
centers.

Let us turn to the second case where o, (& 1. In this
case the Coulomb potential can be considered as a per-
turbation. We can expand cos P and obtain the same law
for the echo decay with

~~ = ~g/n'~ [erg(m, /mh, )]'~, (57)

where

g(me/mg) = R dR dx [f (me/mg, R, z)]
0 —i

(58)

For me/mg ~ 0 we have 7& ——7y/n ~ (27r) ~ . Now the
phase-breaking time is larger than 7y. In this case, as
well as in the previous one, the deviation of the carrier
trajectory &om the straight line is small during the time
r~. In other words, the quasimomentum relaxation time
w„ is much larger than the time of phase breaking 7~.

We wish to emphasize that the same form for the law of
echo decay given by Eq. (7) for the spectral diffusion and
by Eq. (54) for the phase wandering is purely coinciden-
tal. One can see this, for instance, by considering within
the &amework of the same method a two-dimensional
situation. In this case we get instead of Eq. (53)

where

T (
U r —

i

o (me

+ U r —
i

(p
(me

T (+ U r+i
(m~

2T (
U r+.

i

(mI,

p' lit dt
me)

p' lit+ w dt
me ) meg

I

it dt
me)

p' l
me)

p dt,
meP

VI. QUALITATIVE CONSIDERATION

Let us begin with analysis of the case

o, &) 1 . (64)

Consider the electrostatic potential U(t) in the refer-
ence kame moving with an electron under consideration
(see Fig. 6). The characteristic scale of time variation is

and one gets P2 by the replacement p'/m, -+ p'/mp, in
Eq. (63). Instead of the electron velocity we now have the
difFerence of the carrier velocities and instead of the con-
centration of the carriers P, (I",z~ + 1 —E»~) enters our
formulas where one should sum over the quasimomenta
p' of the carriers that produce the Coulomb field. Note
that in this case both the law of decay and the conclusion
that 7~ oc n ~" remain the same as for the scattering by
static impurities.

( p
2'

exp n
i i

w —RdR dg(1 —cos P), (59)
(meg) o 0

with

e2
)nR

e2

f(m, /mg, R, cos8) .
see ve + Vg

(60)

We arrive at a general conclusion that in the 2D case the
decay law becomes

/v

exp [
—(~/~~)'] FIG. 6. U(t) in the electron reference frame.
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Hence

bg t n /"e /rgb'

(65)

which coincides with Eq. (55).
The opposite case o; « 1 can be understood in the

following way. One can assume that, together with com-
paratively short-scale Quctuations, the Coulomb poten-
tial U has also long-scale Quctuations due to the excess
number of carriers with a charge of a particular sign. Let
the characteristic spatial scale of such a Auctuation be R.
Then the characteristic energy is

e (nR )
/ /e R=e (nR" ) / /s

Due to such a Quctuation the time variation of electron
energy is

2 1/2
( t) d/2 —1/

It brings about the phase variation

Ty = n /" /v, where v is the larger of the two velocities
v, and vp„see Eq. (56)], while the characteristic ampli-
tude is n e /e . We will call this short-scale fluctu-
ations of the long-range Coulomb potential (in contrast
to the long-scale fluctuations that are considered below).
Therefore for t (( 7f one can expand U(t), retaining the
linear term only

bU = tn'/"e /7.fe

The corresponding phase change is

impurities. Indeed, when calculating the echo amplitude
we could have used the exact electron wave function in
the impurity field. This approach, however, might bring
us to a misleading conclusion that there is no decay. This
seeming contradiction has the following origin. The plane
waves of light interact with a pair of electron states hav-
ing certain values of quasimomenta (because of the quasi-
momentum conservation). The exact states are superpo-
sitions of the states with certain values of quasimomenta.
Since our treatment of the echo phenomenon relies on
the concept of independent states, the coupling among
them brings about the decay (cf. with Ref. 18 where ir-
reversibility of energy-conserving dipole dephasing for a
simple atomic system was found). Since impurity con-
centration is small, the exact wave functions are close
to the plane waves and can be built up by the perturba-
tion method. Mathematically such an approach is totally
identical to that we used while starting with plane waves
and considering the impurity potential as the cause of
phase breaking.

We wish to emphasize once again that the physical
considerations put forth in this paper are based on some
generic concepts. As for the calculations, they are pre-
sented, with the help of diagrammatic techniques, in a
straightforward way. The law of the echo decay we de-
rived does not agree with the existing experimental data.
We are of the opinion that such a disagreement is of a
fundamental nature and manifests the basic need for fur-
ther experimental and theoretical work.

2 1/2
( )

d/2 —ltd/2/~

which gives r~ rf/o /" in this case. Let us give an
example of order of magnitude estimate of v~ in the 3D
case. It depends on the average carrier energy. For E'

0.2 x 10 ergs and n = 7 x 10 cm, we get w~ = 15
fs.

VII. CONCLUSION

One can question the physical nature of the echo decay
due to the interaction between the electrons and static
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