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d-band excitations in II-VI semiconductors: A broken-symmetry approach to the core hole
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Local-density approximation (LDA) band-structure calculations place the 3d band of zinc-blende
ZnO, ZnS, ZnSe, and ZnTe at 5.4, 6.4, 6.8, and 7.5 eV below the valence-band maximum (VBM), while
photoemission measurements place them at 7.8, 9.0, 9.4, and 9.8 eV below the VBM, respectively. We
show that this -3-eV LDA error can be accounted for using a "broken symmetry" band-structure ap-
proach. In this approach, a d core hole is placed in an impuritylike splitoff d subband resulting from the
creation of the hole on a partrcular Zn sublattice. Self-consistent solutions to such a constrained LDA
problem reveal that the final hole state is sufficiently localized to trigger a self-interaction correction of
3—4 eV, needed to explain the discrepancy with experiment. This 3-4 eV shift is reduced, by screening
effects, from the 9.7-eV value in a free Zn atom. Finally, we calculated the binding energy EM„ for Mn
3d states in ZnTe:Mn and the effective Coulomb interaction parameter U,ff. Significant improvements
over the results of local-spin-density calculations were found. The calculated EM„=E»M —3.93 eV and
U ff

=6.85 eV are in good agreement with experiments.

I. INTRODUCTION

Wide gap IIB-VI semiconductors are being explored
for optical and electro-optical applications, ' largely be-
cause they have direct band gaps in the bright-color visi-
ble range, and because, unlike the alkaline-earth IIA-VI
compounds (CaTe, BaSe), they can be doped and thus
form electrical junctions. IIB-VI semiconductors are dis-
tinguished from IIA-VI, III-V, and elemental IV materi-
als by having cation d bands inside the principal valence
band —around 8 —10 eV below the valence-band max-
imum EvBM, and 2—4 eV above the band minimum. In
contrast, III-V compounds have their d states at much
deeper energies: EvBM —(17—20) eV, while the Ge d
band occurs at about Ev~M —29 eV. In classical theoreti-
cal descriptions of the electronic structure of IIB-VI com-
pounds, ' the d' closed-shell orbital was assumed to be
chemically inert. This view was anchored in a large body
of chemical evidence, " suggesting that Zn, Cd, and Hg
do not form high-coordination p-d or s-d bonds charac-
teristic of the chemically active d orbital transition-metal
compounds. Consequently, in pseudopotential descrip-
tions, ' the occupied d orbitals of Zn, Cd, and Hg
atoms were classified as "core" and thus were not only
"frozen, " but were also pseudized away, leading to a
band structure lacking the d band. Wei and Zunger
pointed out that even though the d ' orbitals do not form
bonds in IIB-VI compounds, they do form a band that
can significantly alter the principal sp bonds via hybridi-
zation. This is so both because of (i) a "crystal potential
effect" and (ii) an explicit "wave-function effect:" erst,
the d' charge density does not perfectly screen the—10/r nuclear attraction term. The imperfectness of the
screening leads to a net attractive potential correction. In
fact, early' construction of first-principles nonlocal pseu-
dopotential for Zn showed that the s and p pseudopoten-
tials become much deeper if the Zn 3d is treated as part

of the valence, rather than the core. Second, the d orbit-
als in a molecule or a solid can mix quantum mechanical-
ly with the orbitals of the other sublattices (e.g. , anion p-
cation d hybridization in II-VI compounds), leading both
to energy-level repulsion and to orthogonality correc-
tions. Wei and Zunger have shown that the combined
potential and wave-function effects of the d' orbitals
lead to a large increase in lattice constant and bulk modu-
li, and to a significant decrease in the cohesive energy,
spin-orbit splitting, and direct band gaps. %'hile some of
the "potential effects" associated with pseudizing away
the d orbitals (e.g. , the too small lattice constants) can be
rectified, in part, by different construction of the pseudo-
potential (e.g. , adding the "core correction"' ), the
"wave-function effects" cannot be accounted for without
explicit inclusion of the d bands. Examples for such
quantum wave-function effects of d-state mixing include
the reduction of the VBM spin-orbit splitting Ao in IIB-
VI and chalcopyrite ' compounds (d mixing reduces
ho); the occurrence of an inuerted order of spin-up vs
spin-down states (negative exchange splitting) in MnTe, '

the inverted order of crystal-field splitting I » and I &2

states in II-VI compounds, the reduction of band gaps of
chalcopyrite relative to II-VI compounds, ' and the re-
versal of the order of band gaps E~(ZnO) (Es(ZnS) rela-
tive to systems with inactive d bands [e.g. ,
E (BaO)&E (BaS)].

A more complete description of the electronic struc-
ture of IIB-VI semiconductors incorporates an explicit
cation d band. Theoretical methods that include d states
in II-VI compounds range from the early' all-electron
extended basis set self-consistent linear combination of
atomic orbitals calculations, to mixed basis methods, ' '
linearized augmented plane wave (LAPW) methods,
Gaussian orbital approaches, ' ' and the pseudopotential
method with extended plane-wave basis set. ' Unfor-
tunately, all of these local-density approximation (LDA)
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based calculations underestimate the binding energies of
the cation d-band relative to photoemission results
by about 3 eV (Ref. 27) [Table I (Refs. 22 —24, 26, 28 —31)]
(In contrast, Hartree-Fock band calculations overesti
mate the binding energy by about 2 eV.) The large LDA
error in the position of the d band has three relevant
consequences: first, the bulk photoemission peak posi-
tions are poorly explained by such calculations. Second,
the interpretation of core absorption measurements of
nanostructures and surfaces used as probes to local
structural effects is impeded, and third, the placement by
the LDA of the cation d bands too close to the VBM
leads to an artificially strong coupling with the anion p
states. This leads to an underestimation of the band gap,
and to an overestimation of exchange-coupling in mag-
netic systems.

Attempts to correct the LDA underestimation of d-
band energies met with onLy partial success. ' ' ' The
model GR' calculation of Posternak et al. for ZnO
lowers the d-band energy from the LDA value of
Ev~M —5.4 eV to Ev~M —6.4 eV, still considerably above
the experimental value of EvBM —7.8 eV. The quasi-
particle calculation of Zakharov et al. on IIB-VI com-
pounds uses a pseudopotential with d orbitals placed in
the core. Naturally, this potential does not produce any d
band. An artificial increase in the coefticient of the LDA
exchange potential (the "Xa method") displaces the d
band to deeper energies, however, at the expense of wor-
sening the agreement with experiment on other proper-
ties. Simple model corrections to Hartree-Fock band
theory shift the d band up (from EvtIM —10.8 eV to
EvBM —10. 1 eV in ZnS), leaving it still too deep relative
to the measured value of Ev~M —9 eV.

In this paper, we present a method that systematically
corrects the LDA error in all-electron d band positions.
For Zn-based IIB-VI semiconductors, in particular, we

obtain the d-band binding energies to within 0.5 —0.8 eV
of the experimental values. Thus, an approximate 80%
improvement over the conventional LDA approach is
achieved.

II. BROKEN SYMMETRY
AND SELF-INTERACTION CORRECTION

The physical origin of the underestimation of core state
binding energy by the LDA is understood reasonably
well. It consists of four principal factors: (i) the ex-
istence of a spurious self-interaction ' in the LDA ei-
genUalues, which leads to the failure of Koopman's
theorem; (ii) atomic-orbital relaxations in the self-
consistent solution; (iii) solid-state effects, ' such as
hole-induced hybridization and atomic relaxation ("self-
trapping"); and (iv) many-body correlation effects that
are beyond the statistical LDA description.

Effects (i) and (ii) can be described within the formal-
ism of Perdew and Zunger: The electronically relaxed
total-energy difference AE" between the system with a
core hole in state a and the system in its ground state can
be written as

bELDA
~

—bELDA
~

+yLDA

~LDA( 1 ) + [ IILDA+ yLDA ]

Here, AE „„„l is the electronically "unrelaxed"
total-energy difference computed with ground-state wave
functions for both initial and final states, X is the
correction due to electronic relaxation, II"
—=bE ~„„„I+a (1) is the non-Koopman's correc-
tion to the LDA, and e (1) denotes eigenvalues calculat-
ed self-consistently with occupancy 1. Similarly, in the
self-interaction corrected (SIC) formalism,

bE SIC
~

—bE SIC + BASICa rel a unrel a

~SIC( I ) + [ 11 SIC + y SIC
] (2)

ao (Experiment)
E„(LDA)

Ed (Experiment)
Ed (Broken symmetry)

6Ed

'Reference 28.
Reference 29.

'Reference 30.
Reference 31 ~

'References 22 —25.
Reference 26.

ZnO

4.566'
5.4
7 8c

8.62
3.22

ZnS

5.409"
6.37
8.98'
9.57
3.20

ZnSe

5.668'
6.76
9.38'

10.04
3.28

ZnTe

6.38
7.46
9.80'

10.33
2.87

0
TABLE I. Experimental lattice constants (in A) and average

3d-band binding energies Ed relative to the VBM (in eV) for
Zn-based IIB-VI zinc-blende compounds. Present results are
relativistic. Ed(LDA) is EvBM —e3d (1) (all d bands fully occu-
pied), while Ed (broken symmetry) is EvBM e3d ( 2 ), where

half of an electron is placed in one of the d bands of a (ZnS)& su-

percell and the result is iterated to self-consistency. Here,
5Ed =Ed(broken symmetry) —Ed(LDA) is the shift due to lo-
calization.

gESIC
i

BASIC( 1) ELDA( &

)2 (3)

rather than —e" (1) used in standard one-electron
band-structure calculations. Thus, eff'ects (i) and (ii) can
be accounted for by computing self-consistently e"DA( —,

' ).

where the symbols have the same meaning as in Eq. (1),
except that all quantities are obtained from a self-
consistent solution to the SIC problem.

Perdew and Zunger showed that (a) while in the
LDA, the combined H +X" correction is very
large, in the SIC formalism, a special cancellation leads
to II ' +X ' =0. (b) The relaxed total-energy
differences satisfy b,E „I= b,E '

~ „I. (c) Finally,
Slater has shown that in the LDA, .the relaxed energy
difference can be approximated well by the eigenvalue
computed self-consistently at the intermediate occupa-
tion, i.e., b E

~ „I= —e ( —,
'

) ("transition state").
From results (a) —(c), we conclude that the ionization en-
ergy corrected for effects (i) and (ii) is
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To test the accuracy of the "transition state" method for
solids, we have calculated bE ~„I and —e ( —,') for
Zn core-hole excitation in Zn0 and found that the
difference between the two is less than 0.2 eV (2.5%%uo of
the total excitation energy of -8 eV) for supercell size of
8 atom per cell or larger.

It is important to emphasize here that e ' (1} and
e" (1) can be extremely different. To illustrate this
point and its physical content consider the breakdown of
an LDA eigenvalue

(a) (a) (a)
~ke +~ps +~HXC (4)

to, respectively, orbital kinetic energy, pseudopotential,
and screening (Hartree+exchange+correlation) effects.
Here, y and p are self-consistent LDA wave function
and charge density, respectively, and V, is the LDA
pseudopotential constructed from I e ] and [y"D ].
In the SIC-LDA (quantities denoted by tilde), we have

+ V + VHxc[P] VK[P 1 Vx[P ] VCTP. ]IX'."&
—+(a)+~ (a)+~ (a) 6(a) 6(a) 6(a)

ke ps HXC H X C (5)

The first three quantities on the right-hand side of Eq. (5)
have the same meaning as the respective quantities in Eq.
(4), that they are calculated self-consistently with SIC
wave functions, while 6H', 5x ', and 5c ' are, respective-
ly, the self-Coulomb, self'-exchange, and self-correlation
corrections to orbital a. Here, V„, is the pseudopoten-
tial computed with self-interaction-corrected eigenvalues
and wave functions. For the a=3d orbital of the
4s 3d' Zn atom, one finds

e ke 4'54 eV, 5H = 28.78 eV,

Zp Ep 1 .84 eV, 6x = + 16.48 eV

Hxc &Hxc
—0.84 eV, 6c =+0.79 eV .

The self-interaction correction deepens the effective po-
tential, leading to more localized self-consistent wave
functions. We see that this leads to an increase in the
(positive) orbital kinetic energy ek, and to a decrease in
the (negative) electron-ion pseudopotential energy e~, and
the HxC energy eHxc. Since the kinetic-energy term
dominates, the LDA orbital energy goes up by 1.86 eV,
due to wave function contraction. The removal of the
(positive) self-Coulomb ("Hartree") energy 5K and the re-
moval of the (negative) self-exchange tlx and self-
correlation 5c energies moves the orbital energy down by
11.59 eV. Hence, the net self-interaction correction to
the eigenvalue is e3d

—
e3d = —9.65 eV, which is -6—7

ev too deep relative to what is needed to reconcile LDA
band theory vs experiment in the solid (Table I). This
large "overshoot" of the atomic SIC effects must be par-
tially corrected by solid-state effects on the core hole
[effect (iii)]: dielectric screening in the solid replenishes
part of the charge density of the hole. ' Such solid-state
effects can be introduced by solving variationally the
SIC-LDA equations for a solid, as done by Svane et al.
Here we will consider a simpler and more approximate
method that is able to treat self-consistently both self-
interaction, as well as solid-state effects. We will ignore
effect (iv) ("dynamic correlation" ) and attribute any
difference that we find between theory and experiment to
such corrections. As it will turn out, these effects amount
to 0.5 —0.8 eV (about 5 —10%%uo of the binding energy).

Our approach is based on the realization that the ex-
istence of a nonvanishing correction,

gEsIc +eLDA( 1 )
— [esIc( 1 ) eLDA( 1 )]+[IIsIc+ysIc]

[eLDA( I
) eLDA(1)]

to the LDA band eigenvalue stems from spatial localiza-
tion of state a. Bagus and Schaefer have indeed real-
ized early on that computing the Hartree-Fock 1s ioniza-
tion energy of the 02 molecule by localizing the hole on
one atom (thus, using the C „symmetry) produces much
better agreement with experiment than extracting the
electron from the canonically delocalized molecular or-
bital composed of both atomic sites (D„h symmetry).
The same approach has been used within the LDA for di-
atomic molecules by Noodleman, Post, and Baerends
Zunger and Freeman applied the notion of broken-
symmetry solutions to core excitations and ionizations in
a bulk solid (LiF), using a supercell approach, while
Zunger applied it to bulk GaP using a Green-function
formalism. This approach has been used more recently
by Norman et al. to calculate the core ionization in me-
tallic cerium and NiO (Ref. 48) and by Chacham et al.
(Ref. 49} and by Machado et al. to calculate excited
states in II-VI clusters and solids, respectively.

The practical approach to the broken-symmetry solu-
tions to core-hole excitations is based on the fact that re-
moval of an electron (or a fraction thereof) from a dis-
tinct atomic site is analogous to creating an ("electronic" )

impurity state. This gives rise to a physically distinct
eigenstate of the whole system. Since this state is
identifiable, one can place the hole in it throughout the
self-consistency iteration cycle, thus seeking a converged
solution. In practice, one uses a supercell with N crystal-
lographically identical atomic sites, constructing an ini-
tial potential (e.g., by superposing atomic functions) by
placing a core hole in atomic orbital cx of one atomic site,
leaving the N —1 sites undisturbed. The extracted elec-
tron is placed in the "jellium background, " to be de-
scribed below. One then solves the periodic band-
structure problem with this potential. According to Eqs.
(1) and (3), the removal of charge from orbital a, shifts its
eigenvalue e" (1) to e" ( —,

' ) by
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eLDA( i
) eLDA( I ) ) IILDA+ yLDA

)~a 2 a A a

The non-Koopman ( II ) and electronic relaxation
(X" ) terms are large if orbital a is localized. In this
case, the eigenvalue spectrum of the solid will exhibit a
"splitoff" eigenstate, distinct from the states of the
remaining X—1 states. This state is now an eigenstate of
the bulk, unlike the initial input that was constructed by
placing a hole on a specific atomic site. In all subsequent
self-consistency iterations one places the hole in this split-
off bulk eigenstate (irrespective of its degree of spatial lo-
calization), seeking a self-consistent solution under this
constraint (note that the existence of a distinct splitoff
state is necessary for finding a stable solution). These
self-consistent iterations provide an opportunity for the
eigenstate containing the hole to hybridize with other
states. This mixing represents the self-consistent screen-
ing of the hole by the host states [effect (iii) of Sec. II].
This calculation can be repeated with displaced atoms
around the hole, searching for a total-energy minimizing
hole-induced lattice relaxation. Due to screening and re-
laxation effects, the calculation will converge to a core-
hole eigenstate that is, in general, diFerent from the start-
ing solutions in which a hole was forced on a particular
atom. For example, state a could lose part of its localiza-
tion through mixing with other states, thus leading to a
reduction in the II +X shift. This will then reduce the
large SIC shift noted in Eq. (6) for the free atom Note.
further that if state a is a deep state (e.g. , a is core hole)
the localization correction of Eq. (8) is always large, and
the broken-symmetry iterations always converge to give a
stable, splitoF state. The same is true for 3d states in Ge
or III-V compounds, where the d band is deep. But d
states in II-VI compounds exist inside the main valence
band, so there, the existence of a stable splitoff solution is
not guaranteed. Convergence could be slow.

The calculations were carried out using the local-
density approximation as implemented by the linearized
augmented plane-wave (LAPW) method ' and the
Ceperly-Alder exchange correlation as parametrized by
Perdew and Zunger. A zinc-blende supercell and ex-
perimental lattice constants (Table I) were used in all the
calculations. We assumed that the core electron is ex-
tracted with equal probability from the five lowest-energy
d states (i.e., three I,~ and two 1,2 states at I ). The en-
ergy of the d states thus refers here always to the average
energy of the five d states.

III. RESULTS
A. Convergence tests —The efFects of sujpercell size

Figure 1 shows the effects of supercell size on the split-
off Zn 3d level with the core hole and on the valence-
band maximum for ZnO, ZnS, ZnSe, and ZnTe, respec-
tively. For comparison, we also show the position of the
ordinary d' level (average of I,5+I,2), as obtained
from ground-state band-structure calculations. The cal-
culations were done using an equivalent k-point scheme
corresponding to two special k points in the bulk zinc-
blende zone. In this way, we avoided any energy-level
fluctuation, due to different k-point sampling. In deriv-
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FIG. 1. The energies of the valence-band maximum (VBM)
and the splitofF d states, as a function of supercell size for
ZuO, ZnS, ZnSe, and ZnTe, respectively. The energy zero is the
VBM of the ground-state bulk solid. For comparison, we show
also the average d' band energy of the ground state.

ing the results in Fig. 1, we used a kinetic-energy cutoff
for the plane-wave expansion of 13.6, 9.9, 14.5, 14.5 Ry,
respectively, for ZnO, ZnS, ZnSe, and ZnTe. We observe
the following.

(i) The energy of the valence-band maximum of the d '

system increases monotonically with supercell size, and in
all cases it converges at 16 atom cell to the value of bulk
VBM set in Fig. 1 as the reference energy.

(ii) The average energy of the split off d states with the
core-hole decreases monotonically with supercell size and
converges slower than the energy of the extended (p-like)
VBM. That this size variation is not due to direct core-
hole coupling is clear from checking the magnitude of the
dispersion of the splitoff d states within the supercell Bril-
louin zone, which provides a measure of the intercell in-
teraction among the core-hole containing d states. For
an eight atom cell, the dispersion is less than 0.005 eV.
Clearly, direct core-hole interaction via wave function
overlap of the splitoff states is small, consistent with the
compact nature of the 3d orbital. However, a decrease in
the core-hole d-state energy with increasing cell size is al-
ways accompanied by a decrease in its charge inside the
Zn muffin tin. Slow convergence of the d-band energy
(Fig. 1) may thus be caused by the fact that the screening
length of the d core hole in II-VI compounds (a property
involving also valence electrons) is not so small, but close
to the dimension of 16 or 32 atom supercell.

We next tested the effect of k-point sampling on the
core-hole energies. In particular, we carried out the cal-
culations using 2 and 10 special k-point schemes. We
find that the two different samplings yield less than a 0.04
eV difference in the d state binding energy for all the cell
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sizes for ZnO.
Using a supercell approach, one needs to maintain

charge neutrality in the unit cell. In the present calcula-
tion, we smear the extracted electron of charge q over the
unit cell, forming a uniform jellium background with
p~=q/V„&&, where V„&& is the cell volume. We have
tested, in the case of ZnS with an eight atom cell, the sen-
sitivity of the results to such an approximation by placing
the electron, instead, in the bottom of the conduction
band. To within 0.05 eV, the two different approaches
yield identical d-state binding energy.

Finally, we find that to obtain accurate d-state binding
energies, relatively large basis set kinetic energy cutofFs
are needed (larger than those used for testing supercell
size effects). To achieve a 0.01 eV accuracy, the neces-
sary cutoffs are 24, 22, 18, 18, Ry, respectively, for ZnO,
ZnS, ZnSe, and ZnTe, as inferred from d' ground-state
calculations. To determine the core-hole energies, we
used the 16 atom supercell. Corrections, due to finite cell
size and cutoff, are added. Corrections due to VBM
spin-orbit splittings of 0, 0.02, 0.13, 0.30 eV for ZnO,
ZnS, ZnSe, and ZnTe, respectively, were also added.

B. The e8'ects of atomic relaxation

We have examined the effects of atomic relaxations due
to the existence of a core hole. The calculation was car-
ried out for ZnO and ZnS with a 16 atom cell. The
creation of the core hole leads to a reduction of the
muffin-tin charge of the Zn atom carrying the hole. As
expected, the four nearest-neighbor 0 (or S) atoms tend
to relax inwards to reduce the overall kinetic energy
(force = 0.030 Ry/A). The next shell Zn atoms also feel
the presence of the core-hole (force =0.021 Ry/A) and
relax accordingly. The degree of relaxation is, however,
small: 0.013 A (or 0.64% of the bond length) for the
nearest-neighbor 0 atoms and 0.009 A for the next-
nearest-neighbor Zn atoms for ZnO. This leads to a
small relaxation energy of only 0.017 eV. The forces ex-
perienced by the Zn atom in ZnS are even smaller than
those for ZnO. Based on these observations, we conclud-
ed that hole-induced atomic relaxations have little effects
on the core hole binding energy of the Zn 3d states.

the oxygenlike VBM could also lead to hole localization
effects. This would bring the calculated results for ZnO
into a better agreement with photoemission experiments.
No such calculation has been performed.

To see the effect of hybridization with the host crystal,
we have plotted in Fig. 2 the change in total charge densi-
ty due to self-consistent creation of a d hole,

Qppnohole(r)phole(r) (9)

as well as the corresponding change in the charge density
of the d band alone,

~pd Pd-b d (r) Pd-b d( (10)

(z )n

for ZnS. The charge distributions in Fig. 2 are spherical.
This is because we have placed the core hole in both 1,5&

and I &2d states. Clearly, the holes in Figs. 2(a) and 2(b)
are highly localized on only one Zn atom. The noticeable
difference between Fig. 2(a) and 2(b) suggests that the d
hole in Fig 2(b) is. largely screened by non dstates-

Our results for ZnO offer the opportunity to compare
our method with quasiparticle approaches. ' The quasi-
particle approach, in principle, should give exact result
for the 3d binding energy. However, in reality, various
approximations were used yielding less accurate results.
Using ground-state LDA band theory, Posternak et al.
found a 3d binding energy of EvpM —5.4 eV, compared
with EvBM —6.4 eV obtained using a model GR' ap-
proach. Our band theory result is EvBM —5.4 eV in good

C. The d-state binding energies

Table I depicts our calculated 3d binding energies in
ZnO, ZnS, ZnSe, and ZnTe, using the LDA approach
and the symmetry-broken approach. We estimate as de-
tailed in Sec. III A and III B that the uncertainty in the
broken-symmetry calculation is 0.1 eV for ZnS, ZnSe,
and ZnTe. We find (i) The large discrepancy between
LDA and experiment is corrected by our approach, leav-
ing a residual error of about 0.5 —0.8 eV. (ii) The 9.5-eV
core-hole shift of the free Zn atom [Eq. (6)] is reduced in
the solid to about 3 —4 eV. (iii) Our e (1)—e ( —,')
shift for ZnS (3.31 eV) is larger than the value of 2.18 eV
obtained by Machado et al. using their celllular
method, and is smaller than the value of 4.22 eV found by
Chacham et al. in their cluster calculation. (iv) For
ZnO, we speculate that the ionization of an electron from

(Z)n

FICx. 2. Charge contours in the (110) plane ZnS for (a) bare
Ap&=p&'&", „'&(r)—p&&',„&(r) and (b) screened 4p, , =p", ', ""'(r)
—p"„',"(r) splitoff d states for ZnS.
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agreement with their LDA result. In contrast, our
broken-symmetry solution gives EvBM —8.62 eV in better
agreement with the experimental value of EvBM —7.8

V 22-25

A related subject regarding core hole is the splitoff ex-
citon state below the conduction band minimum (CBM).
Depending on the degree of localization of the potential
created by the core hole, the energy of the splitoff state
can be quite large, resulting in spatially localized defect-
like state. However, in our cases, the screened core-hole
potentials are not strong enough to create such a deep ex-
citon state. The results for ZnO and ZnS with a 32 atom
cell showed that to within 0.04 eV accuracy, there is no
such splitoff state from the CBM. Shallower exciton
states with less than 0.04-eV binding energy can, of
course, exist due to a Zn 3d core hole, but that cannot be
studied by the current approach.

LSDA+ Correction
Experiment

Present
HILDA+ OLD" shift

'Reference 52.
Reference 26.

'Reference 53.
Reference 54.

3.36
3.75', 3.80
3.93
0.57

Uea.

5"=5.69
6.80,'7.0,
6.85
1.16

TABLE II. Average Mn 3d $ state binding energy
EvBM EM„3d ( 2 ) and the effective Coulomb interaction

U z =e~(d")—e~(d ) in eV for Zn Te Mn. Here,
LSDA+ Correction means a regular band calculation with an
added spin-dependent empirical potential for Mn atom (see Ref.
26).

D. d-state binding energy and effective Coulomb interaction
of Mn 31states in Zn Te:Mn

el'( d 5.5
) e j

( d 4. 5
) (12)

where e are the one-electron eigenvalues of the localized
Mn 3d states calculated using local-spin-density approxi-
mation (LSDA).

Before we proceed, it is useful to notice that the direct
LSDA eigenvalue diff erence gd gLsDA, f gLsDA

eV for MnTe calculated in Ref. 26 cannot be compared
directly to the experimental value of U,&-7 eV. This is
because (i) b," contains an LSDA error retlected in the
strong p-d hybridization; (ii) The combined effect of the
non-Koopman's correction H" to the LDA eigenvalues
and the correction due to electronic relaxation X, the
II +2" shift (see the discussion in Sec. II) is
significant in this system. The first LSDA error was
corrected in Ref. 26 by adding a spin-dependent empiri-
cal potential on Mn atom, which increases 6„"by 1.S—S.7
eV. Here, we examine the second effect.

The calculation was done on ferromagnetic ZnTe:Mn.
An eight-atom cell was used where one of the four Zn
atoms were replaced by an Mn atom. The Mn potential
used in Ref. 26 was used in the present calculation. As
suggested by Fig. 1, the Zn 3d core state binding energy
Ed is converged to within 0.2 eV in an eight-atom cell for
ZnTe. We, thus, expect that increasing cell size will also
increase U,z, primarily from an increasing Ed, but not to
exceed 0.2 eV. On the other hand, the ground state for
ZnTe:Mn is antiferromagnetic, whereas our calculation
employed a n ~tastable ferromagnetic state. We estimate

As an extension of the calculation on Zn 3d core holes,
we study here d-state binding energy and the effective
Coulomb interaction U,z for substitutional Mn in ZnTe.
Here, U,z is defined as

U,s=E(d )+E(d ) 2E(d ),—
where the superscript n in the expression d" is the occu-
pation number of the Mn 3d orbitals. Using Slater transi-
tion state theorem, Eq. (11)can be written as

U,s=[E(d ) —E(d )]—[E(d )
—E(d )]

that U,z for the true antiferromagnetic ground state is
about 0.2 eV smaller than that for the ferromagnetic
state. An overall error of 0.1 eV is thus expected. In
the calculation, we fix the atoms at their relaxed ground-
state atomic positions and an equilibrium volume corre-
sponding to Zno 75Mno 25Te. As we tested earlier in Sec.
III B, excitation-induced atomic relaxation has negligible
effects on energies. In addition, in the calculation of
ei(d '

), the coupling between the Mn 3d $ states and
other s,p conduction states is relatively strong, thus
wave-function projection was used to determine its ener-
gy position.

Table II shows the results for Ed and U,~ for
ZnTe:Mn. The calculated binding energy for Mn 3df
states of VBM —3.93 eV is in good agreement with re-
cent photoemission results of VBM —3.7S to VBM—3.80 eV. ' Our theoretical binding energy is about
0.1S eV larger than experiment. This is expected from
our Zn 3d core-hole calculations (Sec. IIIC). The 0.15
eV error is smaller than the O.S—0.8 eV error for Zn 3d
core holes, reAecting the less localized nature of the Mn
3d 1 ualence states. The II +2 shift, due to the d
hole is, on the other hand, not negligible (0.6 eV or 18%
of the LSDA binding energy). The calculated U,s of 6.85
eV is also in good agreement with several experimental
values of 6.80—7.0 eV. ' It appears that U,&=8.30 eV
determined by Franciosi et al. is too large compared
with our results and with other experiments. By compar-
ing U,~ with 5", we conclude that the H +X shift
(1.2 eV) for U,s is significant.

IV. SUMMARY

We have reviewed the causes for the large LDA errors
in Zn 3d core-hole binding energies (i.e., the self-
interaction corrections). We next showed that using a
broken-symmetry band-structure approach, these large
LDA errors can be systematically improved. Such a bro-
ken symmetry, implemented via the use of supercells, re-
sults in a physically distinct, spatially localized splito6'
state from other Bloch d states, thereby eliminating the
unwanted self-interaction energy. We found that the
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core-hole effects in a solid is qualitatively different from
those in an atom, due to the large screening effects of
valence electrons. The former is typically only a third of
the latter. The fundamental reason why SIC should lead
to more accurate occupied state energies than the un-
corrected LDA was discussed by Perdew and Zunger,
who also demonstrated the quantitative improvement for
free atoms and ions Th. e present work demonstrates that
the improvements persist also for d state in solid II-VI
compounds. This work thus complements the previous
SIC work for solid transition metals, for transition-

metal oxides, " for LiC1 and LiC1:Cu+, and for Si and
III-V compounds. A11 the above SIC calculations
showed significant improvements over LDA.
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