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We combine a recent mapping of the Anderson-Mott metal-insulator transition on a random-
Geld problem with scaling concepts for random-field magnets to argue that disordered electrons
near an Anderson-Mott transition show glasslike behavior. We first discuss attempts to interpret
experimental results in terms of a conventional scaling picture, and argue that some of the difhculties
encountered point towards a glassy nature of the electrons. We then develop a general scaling theory
for a quantum glass, and discuss critical properties of both thermodynamic and transport variables
in terms of it. Our most important conclusions are that for a correct interpretation of experiments
one must distinguish between self-averaging and non-self-averaging observables, and that dynamical
or temperature scaling is not of power-law type but rather activated, i.e., given by a generalized
Vogel-Fulcher law. Recent mutually contradicting experimental results on Si:P are discussed in

light of this, and new experiments are proposed to test the predictions of our quantum-glass scaling
theory.

I. INTRODUCTION

The metal-insulator transition that is observed. in
doped semiconductors and other disordered solids is not
fully understood, despite almost 20 years of intense ex-
perimental and theoretical efforts. There is strong ev-
idence for both disorder and electron-electron interac-
tions to play an important role at this transition, which
is called an Anderson-Mott transition (AMT) to distin-
guish it &om a disorder dominated pure localization or
Anderson transition on one hand, and &om a correla-
tion dominated pure Mott transition on the other hand.
This interplay between disorder and interactions makes
the AMT a very hard problem in statistical mechanics.

On the theoretical side, until very recently virtually
all approaches studied the problem in the vicinity of
two dimensions (d = 2) by generalizing Wegner's theory
for the Anderson transition. These theories have led
to a classification of the AMT into various universality
classes that depend, inter alia, on the presence or absence
of spin-orbit scattering, magnetic impurities, magnetic
fields, etc. For most of these universality classes, pertur-
bative renormalization-group methods lead to a critical
fixed point in d = 2 + e dimensions, and standard criti-
cal behavior with power-law scaling is found. However,
the framework of these theories does not allow for an or-
der parameter (OP) description of the AMT, and does
not lead to a simple Landau or mean-field theory. As a
result, the physics driving the AMT remains relatively
obscure in this approach, compared to standard theories
for other phase transitions. An alternative line of attack
has recently been explored by the present authors. In
these papers we showed that the same model that was

used for the 2+ e expansion allows for an OP description
of the AMT with the tunneling density of states (DOS)
as the OP, and for a simple Landau theory that yields the
critical behavior exactly above the upper critical dimen-
sion d+ = 6. Furthermore, it was shown that the prob-
lem has random-field aspects and is closely related to a
random-field Ising model. The structure of that theory
also suggests that for certain parameter values, in partic-
ular for weak effective electron-electron interactions, the
OP driven AMT can be pre-empted by a different kind of
metal-insulator transition. The most obvious candidate
is the Anderson transition, where the DOS or OP is un-
critical. These results lead to the suspicion that in large
parts of parameter space important physical features of
the AMT have been missed both in the low-dimensional
theories, and. in the interpretations of experiments that
were based on these theories.

On the experimental side, the best studied systems
are doped semiconductors, and some of the most de-
tailed and careful experiments have been done on Si:P. In
what became a benchmark experiment in the Geld, Paala-
nen, Rosenbaum, Thomas and collaboratorss (to be
referred to as the Bell experiment) performed transport
measurements at temperatures, T, down to 2.7 mK, and
used a stress tuning technique to drive a barely insulat-
ing sample through the metal-insulator transition. These
experiments concluded that the critical P concentration,
n, in this system is close to 3.7 x 10 cm, and that
the conductivity, extrapolated to T = 0, vanishes with
a critical exponent s 0.5, with error bars of about 3%
for n, and about 14% for s. The measured value of s
proved hard to understand theoretically, and the criti-
cal behavior of Si:P is still considered enigmatic. More
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disturbingly, however, a similar experiment on the same
system (to be referred to as the Karlsruhe experiment)
has recently produced results that are inconsistent with
those of Refs. 8 10) viz. , n, close to 3.5 x 10 cm 3, and
s 1.3. These disagreements are far greater than the
error bars quoted, and have not been settled between the
respective experimental groups. Measurements of the
Hall coefIicient have also led to mutually contradicting
results. Dai, Zhang, and Sarachik have reported evi-
dence for a divergent Hall coeficient in Si:P, in contrast to
previous results that had found the Hall coefBcient to
remain finite. Finally, di8'erent experimental results have
been obtained for the crossover exponent of the (longitu-
dinal) conductivity in an external magnetic field, is but
in this case no direct comparisons on the same system
have been done.

The fact that the most careful experiments on the best
studied systems lead to contradictory results is, taken at
face value, extremely discouraging. An important ques-
tion is what the source of these discrepancies is. One
relevant consideration is the temperature range covered
by the respective experiments, and the lowest tempera-
ture reached. This is important since any measurement
of static critical exponents at the AMT involves an ex-
trapolation to T = 0. For instance, the discrepancy con-
cerning the Hall efFect results has been blamed in Ref.
14 on the earlier experiments not having reached sufIi-
ciently low temperatures. In the case of the conductiv-
ity exponent in Si:P, however, extrapolation problems by
themselves are not sufBcient to explain the disagreement.
References 8, 9, and 12 agree that the extrapolated
conductivity shows a "tail" at phosphorus concentrations
n ( 3.7 x 10 cm, but disagree about whether or not
this tail contains the salient physics. The Bell group
observed. strong sample-to-sample variations of the con-
ductivity in the tail region at the lowest temperatures,
and concluded that the tail was due to sample inhomo-
geneities and should be discarded. The Karlsruhe group,
on the other hand, claims that the tail represents the
asymptotic critical region of the AMT. The fact that
no strong sample-to-sample fm.uctuations were observed
in this case should, however, not be overweighted: The
lowest temperature reached in the Karlsruhe experiment
was T = 62.5 mK, while the strong fluctuations in the
Bell data set in only at lower temperatures. Also, sample-
to-sample variations in the T dependence of the conduc-
tivity does seem to set in just at the lowest T reached in
the Karlsruhe experiment, a phenomenon attributed in
Ref. 12 to "thermal decoupling, " i.e., problems in reach-
ing and maintaining equilibrium. To summarize the ex-
perimental situation regarding the conductivity in Si:P,
one might say that unusual features, variably described
as rounding, " "smearing, " "thermal decoupling, " etc.
were observed at low temperatures close to the critical
point. These anomalies became stronger upon approach-
ing the critical point and lowering the temperature, and
the main discrepancy between the Bell and Karlsruhe
experiments can be traced to difFerent assumptions con-
cerning their significance, i.e., whether or not the "tail"
should be taken seriously.

Apart &om the conductivity, unusual behavior has also

II. CONVENTIONAL SCALING

A. Homogeneity laws

Let us recall the homogeneity laws for the tunneling
or single-particle DOS, N, and the conductivity, o., that
express conventional power-law scaling, ~

N(t, T) = b P!"N(tb /" Tb )

o.(t, T) = b 'i"o.(tb, Tb )

(2.1)

(2.2)

been observed in thermodynamic properties of doped
semiconductors. Both the magnetic susceptibility, y
and the specific heat, c~, show a pronounced non-Fermi-
liquid behavior. This behavior is observed near the
transition as well as far away &om it, is not obviously
related to any critical phenomena near the AMT, and
is usually explained in terms of local moments. is How-
ever, Bhatt and Fisher2 have argued that once local-
moment/local-moment interactions are taken into ac-
count, one obtains singularities in y and cv that are
significantly weaker than those observed experimentally.
This suggests that phenomena other than local moments
might contribute to the observed anomalies in the ther-
modynamic susceptibilities.

If one insists on a conventional theoretical interpre-
tation of the conductivity d.ata in terms of power-law
scaling, then the inescapable conclusion is that either
the Bell experiment erroneously discarded the data in the
true critical region, or the Karlsruhe experiment mistook
spurious efFects for the critical behavior. If this was the
case, then a careful scaling analysis of both data sets and,
if necessary, new and more accurate experiments, should
be able to show that the conductivity, and possibly other
quantities, show scaling behavior in one region but not in
the other, thus settling the issue. There is, however, an-
other possibility. If the theoretical suggestion that the
AMT has random-field aspects is correct, then one would
expect glasslike features and unconventional scaling sim-
ilar to what has been predicted i' and observed 3 in
classical random-Beld magnets.

In this paper we explore these possibilities. In Sec.
II we assume conventional scaling, and check whether a
scaling analysis of the existing data can settle the dis-
agreement between the experimentalists. We Gnd that it
cannot, mostly due to an insufhcient temperature range
and the lack of precision experiments that probe the crit-
ical behavior of more than one quantity in a given mate-
rial. Our analysis suggests, however, various experiments
that might be able to tell which, if any, of the two doping
regions that have been suggested to be the critical one,
displays conventional scaling behavior. In Sec. III we as-
sume instead that the AMT features activated scaling of
the type found in random-field magnets, appropriately
modified for a quantum problem. Accordingly, we first
develop a general scaling description of a quantum glass,
and then work out predictions for the critical behavior of
various observables. We check to what extent the existing
data are consistent with these predictions and propose
new experiments to further investigate this issue.
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Here t = n/n, —1 denotes the dimensionless distance
from the critical point, and T is the temperature. Since
in a quantum problem temperature and &equency scale
the same way, one obtains the same homogeneity laws
at T = 0 with T replaced by cu, where u is the external
&equency in the case of the conductivity, and the distance
in energy space from the Fermi level, i.e., the bias voltage
in a tunneling experiment, in the case of the DOS. P and
s are the critical exponents for the DOS and the conduc-
tivity, respectively. v is the correlation length exponent,
z is the dynamical critical exponent, and 6 is an arbitrary
length scale factor. Analogous homogeneity laws can be
written down for all other quantities of interest. Here
we focus on the DOS, since it is the order parameter for
the AMT according to our recent theory and since it
is easily measured, and on the conductivity since it is the
most obviously interesting observable in the context of
a metal-insulator transition. Note that throughout this
paper we ignore the possibility of significant corrections
to scaling. '

Putting b equal to the correlation length, b = ( t
we obtain

C(t, T; q) = b + " C(tb ~",Tb', qb) (2.6)

(2.7)

with I"c a scaling function. Equation (2.7) predicts a
strong divergence as T —+ 0, the presence of which can
be checked experimentally. We will come back to this
point.

Here g is the usual critical exponent that governs the
spatial dependence of the OP susceptibility, and 0 & 0
is minus the scale dimension of a dangerous irrelevant
variable in the random-field problem. ' In the presence
of random-Beld effects, the perturbative value of 0 is 2,
while in the absence of random-Geld effects one has 0 = 0.
Even though the perturbative result cannot be correct,
at least not in d = 3, it is very likely that the presence of
0 will overcompensate g, and make the scale dimension
of C larger than 2. This leads to a strong divergence
of C(t = 0, T = 0; q ~ 0), the analogue of which has
been observed in classical random-Geld magnets. Alter-
natively, one can consider the homogeneous correlation to
find,

N(t, T) = t~I'~(T/t"') (2.3)

and B. Scaling analysis of the Bell experiment

(2.4)

C(t, T; x —y) = (N(x) N(y)) (2.5)

which according to Refs. 4—6 is the order parameter sus-
ceptibility for the AMT. In Eq. (2.5), N(x) is the local
DOS at the Fermi energy, and ( .) denotes the impurity
average. The Fourier transform of C obeys the homo-
geneity law

where E~ and F are scaling functions.
These homogeneity laws predict that N and 0 are func-

tions of a particular combination of their two arguments
t and T, and they have been derived &om the tradi-
tional description of the AMT. They also follow &om
a perturbative treatment of the order parameter theory
put forward recently. ' As has been mentioned in these
references, it is likely that in the second case the per-
turbative results are misleading, and that the dynamical
scaling in the physical dimension d = 3 is of activated
rather than of power-law type. We will explore the con-
sequences of activated scaling in Sec. III below. For now
we assume that the power-law scaling expressed by Eqs.
(2.3) and (2.4) is correct asymptotically close to the tran-
sition observed in Si:P. This could be due to either the
OP theory of the AMT not being applicable to Si:P, or to
the perturbative analogy between the AMT and classical
random-field magnets being misleading. In this section
we investigate the experimental consequences of this as-
sumption. In doing so it is important to realize that
the theoretical values of the critical exponents are not
known.

Another quantity of interest is the correlation function
of the local, unaveraged DOS,

Let us now check whether the data of Ref. 10 are con-
sistent with the above homogeneity law, Eq. (2.4). From
a double logarithmic plot of the extrapolated T = 0
conductivity the experimentalists determined the critical
value of the stress, S„in their stress-tuning experiment
to be S = 6.5 + 0.2 kbar, and the conductivity exponent
s 0.5. Prom the T dependence of ~ at a stress value
estimated to be close to the critical one, they also in-
ferred the value of vz —2.7. In Ref. 1 it was shown that
with these exponent values the data do not obey scaling.
It must be emphasized, however, that the error in the
value of vz is at least 30%. Accordingly, let us keep
S = 6.5 kbar and s = 0.5 fixed, but let vz float &eely to
produce the best scaling plot. The result is shown in Fig.
1, which replots data &om Fig. 1 of Ref. 10 in a way sug-
gested by Eq. (2.4). With vz = 2.13 one obtains a scaling
plot that is better than the one in Ref. 1, although its
absolute quality is not very good.

We next check whether the quality of the scaling plot
can be improved by changing S . The largest value of
S that is consistent with the error bars given in Ref. 10
is S = 6.7 kbar. Indeed, inspection of Fig. 1 in Ref.
10 shows that at S = 6.59 kbar the data still show the
curvature at the lowest temperatures that the authors
considered characteristic of the insulating regime. Let
us therefore assume that the next higher stress value,
S = 6.71 kbar, was the critical one. With this value for
S, we found that the best scaling plot is achieved with
s = 0.29 and vz = 1.82, which is shown in Fig. 2. The
quality of the scaling plot is now much better.

As Figs. 1 and 2 show, the dynamical scaling plot fa-
vors a large value of the critical stress, S, and a corre-
spondingly small value of the conductivity exponent s.
This requires some comments in the light of the determi-
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FIG. 1. Dynamical scaling plot of the conductivity data

from Fig. 1 of Ref. 10. The plot assumes a critical stress
S = 6.5 kbar, and exponent values 8 = 0.5, vz = 2.13.
Only data in the temperature range T ( 60 mK have been
included in the plot, and different symbols denote different
stress values, from S = 6.59 kbar to S = 8.03 kbar. We have
chosen To ——100 K, and the relation between t and S —S
was taken from Ref. 8, viz. , t = (S —S,) 5.4 x 10 (kbar)

nation 8 = 0.51 + 0.05 in Ref. 10. The determination of
S and 8 in Refs. 8—10 was guided by the desire to achieve
a good static scaling plot, i.e., a straight line of lno. vs
lnt, over as large a t interval as possible. While this is
a legitimate and often used criterion for determining the
critical point, in the case of Si:P it leads to a rather pe-
culiar result: It is found that an exponent of 8 = 0.5
fits the behavior of o(T = 0) very well out to t = 1.0.
While this is remarkable and may well have interesting
(and presently unknown) reasons, it is very unlikely that
the critical region in Si:P is that large. Indeed our dy-
namical scaling plot, which is a more sophisticated test of
scaling than the static one, shows that it is not. On the

other hand, a static scaling plot over a more restricted t
range, viz. , the data from Fig. 1 of Ref. 10 (which is the
same data set that was used to produce the dynamical
scaling plots in Figs. 1 and 2), shows that S, = 6.71 kbar
and 8 = 0.29 fits the data close to the transition very
well, as shown in Fig. 3. This interpretation suggests a
size of the critical region of about 1%, which is compara-
ble with the corresponding value for most thermal phase
transitions.

We conclude that the Bell experiment allows for a rea-
sonably good dynamical scaling plot, consistent with a
conventional power-law scaling interpretation, provided
that the location of the critical point is adjusted upward,
and the value of the conductivity exponent 8 downward,
compared to the values given in Ref. 10. The resulting
small value of s aggravates the problem that results &om
the inequality v ) 2/3 in conjunction with the exponent
relation 8 = v. This interpretation is therefore only feasi-
ble within theories that allow for s g v, as, e.g. , the order
parameter description of Ref. 5 and 6. Any theory that
yields power-law scaling with 8 = v, like those reviewed
in Ref. 1, is inconsistent with the Bell experiment unless
there are large corrections to-scaling. For later refer-
ence we also note that the dynamical scaling observed in
this experiment is restricted to a small dynamical range
of just a bit over one decade: For the plot in Fig. 2 only
data at temperatures T & 60 mK were included. Data
at higher temperature do not scale, as can be seen &om
the inset in Fig. 2.

C. Scaling analysis of the Karlsruhe experiment

For the Karlsruhe data a dynamical scaling plot has
been given by Stupp et al. in Ref. 13. For a direct com-
parison with the Bell data, we have digitized the data
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FIG. 3. Static scaling plot of the conductivity at T = 0
with the same parameter values as for the dynamical scaling
plot in Fig. 2. The line corresponds to an exponent s = 0.29.

FIG. 5. Static scaling plot of the conductivity at T = 0
with the same parameter values as for the dynamical scaling
plot in Fig. 4. The line corresponds to an exponent s = 1.3.

&om Fig. 1 of Ref. 12, and plot them in Fig. 4 in the
same way as the Bell data in Figs. 1 and 2. We have in-
cluded data for T ( 160 mK, but have left out the lowest
temperature points on some samples that showed obvi-
ous rounding efFects. We will discuss this rounding in the
next subsection. We have assumed a critical phosphorus
concentration of 3.52 x 10 cm, and exponent values
8 = 1.3, and vz = 2.7. This yields the plot shown in Fig.
4. The slight difFerences between our dynamical scaling
plot and that of Stupp et al. (who found the optimal
value of vz to be 3.5) are due to Stupp et al. optimiz-
ing over a larger range of t values, and possibly due to
some errors introduced by redigitizing the data. Overall,
however, the two plots are of comparable quality. Figure
5 shows a static scaling plot analogous to the one shown
in Fig. 3. Again, the assumed value of 8 fits the T = 0
conductivity well over one decade of t.
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FIG. 4. Dynamical scaling plot of the conductivity data
from Fig. 1 of Ref. 12. The plot assumes a critical P density
n = 3.52 x10 kbar, and exponent values s = 1.3, vz = 2.7.
Only data in the temperature range T & 160 mK have been
included in the plot, and diferent symbols denote difFerent P
densities, from n = 3.55 x 10 cm to n = 3.69 x 10 cm
We have chosen To ——100 K.

D. Discussion of the conventional
scaling interpretation

Sections IIB and IIC and the accompanying figures
show that the data &om both the Bell and the Karlsruhe
experiment allow for dynamical scaling plots of equal and
satisfactory quality, even though their results are mutu-
ally inconsistent. A check for dynamical scaling is there-
fore not sufIicient to distinguish between them, and it is
necessary to consider additional experimental informa-
tion to settle the issue.

At the heart of the discrepancy lie the difFerent values
of n„which differ by 6%%up between the two groups. An
independent measurement of n with an error of about
1% or less would therefore suffice to rule out at least one
of the two interpretations. Unfortunately, both groups
claim to have done just that, but again do not agree on
the results. Paalanen et al. have measured the dielec-
tric polarizability and in at least one sample have found
insulating behavior for values of n as little as 1% be-
low their value of n, . Lakner and von Lohneysen have
found the thermopower to exhibit a metallic characteris-
tic for values of n above their n, but below that of the
Bell group.

Clearly, what is needed in this situation is an indepen-
dent determination of n . The existing measurements of
the spin susceptibility " and the specific heat are not
suitable for this purpose since they showed singular be-
havior in the metallic phase far &om the critical point.
One therefore expects these thermodynamic susceptibili-
ties to show a superposition of critical behavior and some
noncritical, but nevertheless singular, background, which
makes them unsuitable for the present purpose. The
most obvious observable that should be &ee &om such
complications, and that is easy to measure, is the DOS.
If the conventional scaling scenario is correct, then the
DOS as a function of t and T should show dynamical
scaling, as expressed by Eq. (2.3), and the quality of the
dynamical scaling plot should be equal to that of the
conductivity with the same parameter values.
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Even such an additional measurement, however, may
turn out to be inconclusive unless it is carried out at
sufficiently low temperatures, and unless the nature of
the sample-to-sample Quctuations that were observed in
the tail region in Refs. 8 and 9 is clarified. The Karl-
sruhe experiment did not observe such fluctuations, and
seemed to yield a smooth conductivity as a function of
doping. However, this may be misleading since the low-
est T reached in this experiment was 62.5 mK, while
the sample dependence in the Bell experiment became
obvious only at lower temperature. In this context it
is interesting to note that in the latter there is a clear
break in the temperature dependence of the conductivity
around T = 60 mK; see Fig. 1 of Ref. 10 and the in-
set in our Fig. 2. Furthermore, in the same temperature
range sample-dependent problems did start to arise in the
Karlsruhe experiment, which were attributed to thermal
decoupling; see Fig. 1 of Ref. 12. Finally, we note that
all of the work done by the group at CUNY, both on Si:P
(Ref. 31) and on Si:B, which also yielded a smooth be-
havior of the conductivity, was at temperatures higher
than 60 mK.

We conclude that the existing experimental data on
Si:P provide evidence that close to the critical point
(whose location is only imprecisely known), and at
temperatures T & 60 mK there are large sample-to-
sample Buctuations, and possibly equilibration problems.
While the data at higher temperatures, and the low-
temperature data with the tail region discarded, are
not inconsistent with conventional scaling behavior, this
poses the question whether the critical behavior at the
AMT might be more exotic than is suggested by Eqs.
(2.1)—(2.7). Indeed, our recent work on an order param-
eter description of the AMT shows that the AMT has
random-field aspects. ' Classical random-field magnets
are well known to display glassy behavior with exponen-
tially long equilibration times, unconventional scaling,
etc. It is natural to assume that similar phenomena
can characterize the AMT. While any conventional scal-
ing interpretation of the AMT in Si:P will necessarily
imply that one of the disagreeing experimental groups
made a gross error in the determination of the critical
concentration, an interpretation in terms of random-field
physics has the potential for explaining the unusual fea-
tures observed, and the disagreements between the ex-
perimentalists, in terms of real physical effects that are
germane to the AMT. We consider this a very appealing
possibility. In the remainder of this paper we therefore
take this suggestion seriously, develop it, and then come
back to a discussion of the experimental situation.

III. QUANTUM GLASS% BEHAVIOR
AND ACTIVATED SCALING

A. Scaling theory of a quantum glass transition

An important characteristic of a glass transition, as
opposed to an ordinary phase transition, is the occur-
rence of extremely long time scales. While critical slow-
ing down at an ordinary transition means that the crit-

ical time scale 7 grows like a power of the correlation
length, v (', with z the dynamical critical exponent, ss

at a glass transition the critical time scale grows expo-
nentially with (,s4

ln (~/~p) - (+ (3.1)

with Tp a microscopic tiine scale, and @ a generalized dy-
namical exponent. As a result of such extreme slowing
down, the system s equilibrium behavior near the transi-
tion becomes inaccessible for all practical purposes: Even
at the smallest feasible frequencies (i.e., the inverse of
the longest feasible waiting times, say, days), finite fre-
quency effects become noticable ("the system falls out
of equilibrium" ) at modest values of ( or t It .has been
proposed that the phase transition in classical random-
field magnets is of this type, ' and experiments have
confirmed this conjecture. The physical picture behind
this model of random-field magnets is as follows. The
IIrustration induced by the competition between the ex-
change interaction and the random field leads to large
clusters of misaligned spins, that is, locally ordered spins
that "point the wrong way, " within the ordered phase.
Even though aligning these clusters leads overall to a
lower &ee energy, it requires a large &ee energy barrier
to be overcome. These Bee-energy barriers grow like I~
as a function of some length scale I, and near the criti-
cal point they diverge like the correlation length ( to the
power @. The exponent @ is therefore often referred to
as the "barrier exponent. " Via the Arrhenius law, this
leads to Eq. (3.1).

In a quantum system one expects time and inverse
temperature to show the same scaling behavior, irrespec-
tive of whether the critical slowing down follows an ordi-
nary power law, or Eq. (3.1). Quantum mechanics thus
makes it even harder to observe the static scaling behav-
ior, since in addition to exponentially long times or small
&equencies it requires exponentially small temperatures
as well. Under realistic experimental conditions the sys-
tem will either fall out of equilibrium, or pick up finite
temperature efI'ects. This is a crucial point, which we will
have to keep in mind for any discussion of experimental
consequences of our ideas.

The role played by temperature in a glassy quantum
system can be seen explicitly in Fisher's recent study of
a quantum-mechanical Ising spin chain in a transverse
random magnetic field. This system is closely related
to the classical McCoy-Wu model, for which a number
of exact results have been obtained. ' Since the AMT
has been shown to be a quantum phase transition with
random-field aspects we believe that these results are
qualitatively relevant for our purposes, and will often use
them for comparisons. The physical idea analogous to
the one explained above for spin systems is that while a
repulsive electron-electron interaction always leads to a
decrease in the local DOS, the random potential can in
general lead to an increase in the local DOS as well. The
competition between these two eKects leads to &ustration
and to, for example, large insulating clusters within the
metallic phase. Delocalizing these large clusters requires
energy barriers to be overcome, which again grow like (@
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as the transition is approached.
Another question that arises is the scaling behavior of

an external magnetic Geld. In a spin system the mag-
netic Geld, just like the temperature, obviously sets an
energy scale and thus should depend exponentially on
the length scale. In an itinerant electron system, on the
other hand, the magnetic Geld plays a dual role: It in-
fj.uences the orbital motion of the electrons, and in that
capacity it acts like a length. However, it also couples to
the electron spin via the Zeeman term, and there it acts
like an energy. We therefore expect the slowest depen-
dence of a given observable on the magnetic Geld to be
a logarithmic one, with power-law corrections. A further
consequence of the barrier model is that the &equency
or temperature argument of scaling functions is expected
to be ln(7/70)/ln(Tp/T), rather than 7 T as in Eqs. (2.1)
and (2.2). The reason is that one expects a very broad
distribution of energy barriers and hence of relaxation
times w. The natural variable is therefore lnw rather
than 7.3 This is often referred to as activated scaling.

We next face the question of which observables can
be expected to obey homogeneity laws analogous to the
ones given by Eqs. (2.1) and (2.2). First of all, we
have to remember that the homogeneity laws hold for
averaged quantities, with the average including both a
quantum-mechanical and an impurity or ensemble av-
erage, and that we have to distinguish between self-
averaging and non-self-averaging quantities. For the
former, their probability distribution for the ensemble
average becomes normal with a vanishing variance in the
thermodynamic limit, so their average value coincides
with the most probable or typical one. For the latter,
either the probability distribution remains broad (e.g. ,
log-normal), or the most probable value is different from
the average one, or both. If the observable in question is
non-self-averaging due to a log-normal distribution, then
one expects its logarithm to be a self-averaging quantity.

It is well known that in a system with quenched disor-
der the &ee energy is self-averaging, while the partition
function is not, and correlation functions in general are
not, either. ' Therefore, all thermodynamic quantities,
which can be obtained as partial derivatives of the &ee
energy, are self-averaging. For a general thermodynamic
quantity, Q, one might therefore expect a homogeneity
law

(3.2)

where xq is the scale dimension of Q, Eg is a scaling
function, and To is a microscopic temperature scale, e.g. ,
the Fermi temperature. A finite &equency will have the
same effect as a Gnite temperature; as mentioned above,
&equency and temperature are interchangeable in a scal-
ing sense. A magnetic Geld dependence will be added
later, when we discuss the magnetization.

It is obvious, however, that Eq. (3.2) cannot hold for
all self-averaging quantities, or even for all thermody-
namic ones. Suppose Q is some self-averaging quantity,
and suppose Eq. (3.2) holds for Q. Then P:—Q/T is
also self-averaging, but since Eg is not a homogeneous
function of T, Eq. (3.2) will not hold for P. While this is

a rather trivial "breakdown of scaling, " it has observable
consequences as we will see below. Here we assume that
whether or not a given thermodynamic quantity obeys
Eq. (3.2) can be decided by dimensional analysis: If the
quantity contains scale dimensions of time or energy, then
it does not obey Eq. (3.2), otherwise it does. For in-
stance, the &ee-energy density cannot be written in this
form, while the entropy density can, etc. However, the
question whether or not a particular energy acts like an
inverse time in a scaling sense can be a nontrivial one.
We will further consider this point when we explicitly
discuss various observables in Sec. III B below.

A rather different class of observables is formed by
transport coeKcients, like, e.g. , the charge or heat diffu-
sivity. Since they are directly related to a relaxation time,
we expect them to be non-self-averaging, while their log-
arithms should be self-averaging. Let = be an unaveraged
tranport coeKcient, i.e., its value for a particular sample
or impurity arrangement. Then we expect its logarithm
to obey

b0
ln = t T =b ~F= tb~",

with F~ a scaling function. Notice that Eq. (3.3) de-
scribes only the leading, i.e., logarithmic, scaling behav-
ior, and neglects power-law corrections to scaling. The
"scale dimension" of (ln=) is necessarily plus or minus
g, with the sign depending on whether the quantity van-
ishes or diverges at the transition.

As with conventional scaling at ordinary phase transi-
tions, Eqs. (3.2) and (3.3) hold only for the singular parts
of the respective quantities, and in general there will be
nonvanishing, analytic background contributions. In the
case of Eq. (3.3) another complication is to be expected.
A general transport coefBcient = is related, by means of
an Einstein relation, to the corresponding diffusivity 4
via " = yL, with y an unaveraged susceptibility. Since
y is a thermodynamic quantity, lny is not expected to
show scaling behavior. If y is critical, one therefore ex-
pects a critical, nonscaling background contribution to
(ln=), in addition to the scaling part given by Eq. (3.3).
We will come back to this.

In the above paragraphs we have stated all of the as-
sumptions that enter our scaling theory of a quantum
glass. In the remainder of this paper we explicitly discuss
the behavior of a number of specific observables that are
of interest in the context of the AMT. We work out the
consequences of our assumptions, and compare the re-
sults with those obtained &om conventional scaling, Sec.
II, and with the experiments on Si:P discussed above.

B. Discussion of observables

In this section we discuss explicitly the consequences
of our scaling assumptions for various observables. We
start with thermodynamic quantities, for which Eq. (3.2)
and the related discussion above are relevant. Then we
turn to the electrical and the thermal conductivity as ex-
amples of transport coeKcients which realize the scaling
behavior shown in Eq. (3.3).
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Zbnneling density of states

Let us Grst discuss the tunneling density of states, N,
as a function of t and T. We restrict ourselves to the
density of states at the Fermi level, since according to the
discussion in connection with Eq. (3.2) a finite frequency
or energy, which measures the bias voltage or the distance
&om the chemical potential, will have the same effect as
T. In the theory put forward in Refs. 4—6, N is the
order parameter for the AMT, and its scale dimension
follows directly from the order parameter field theory to
be x~ = d —8 —2 + xI. Comparison with Eq. (2.1) gives
the exponent relation '

P = —(d —8 —2+ xj)
2

(3.4a)

From Eq. (3.2) we then obtain the generalization of Eq.
(2.1) to the case of activated scaling as

b0
N(t, T) = b ~~"F~

~

tb ~",'
ln(TO/T) )

(3.4b)

Here EN is a scaling function, and 0 is an exponent re-
lated to a dangerous irrelevant variable that is character-
istic of the random-Geld problem. In a classical random-
Geld problem thermal fluctuations are dangerously irrele-
vant, and 0 is minus the scale dimension of temperature.
In the present context 8 expresses the fact that quantum
fluctuations are dangerously irrelevant at the AMT.

A fundamental question that arises in this context is
how many independent exponents are needed to describe
the AMT. In a classical random-field problem there are
three independent static exponents, e.g. , v, g, and 0. In
the AMT theory developed in Refs. 5 and 6 it turned out
that the dynamical exponent z was not independent, re-
flecting the irrelevancy of quantum fluctuations, so that
there were still three independent exponents. Here @ has
taken over the role of z, and the question is whether or
not it; is independent. In order to decide this, let us re-
call the physical meaning of the two exponents 0 and @.
As noted above, 0 is related to a dangerous irrelevant
variable, u, which vanishes as a function of length scale
I like u L . The random-Beld Gxed point is charac-
terized by uL scaling to a constant, with 4 the random
potential energy scale. Hence 4 must diverge as L
The &ee-energy landscape of the random-field problem
is a complicated one, with many near-degenerate valleys
that are separated by energy barriers with saddle points.
As a function of length scale L, one expects a typical val-
ley elevation to be related to the random potential and
therefore grow like L . The typical saddle-point elevation
grows like L~, which defines the exponent @. In order
for this picture to be consistent, one must have @ & 8,
as pointed out by Fisher in Ref. 38. Classically, only the
valleys contribute to the free energy, so one expects the
exponent characterizing the dangerously irrelevant ther-
mal fluctuations to be 0, and the barrier exponent to be
vP, and in general the two will be independent. Quantum
mechanically, however, the saddle points also contribute
to the &ee energy, and one cannot distinguish between
the barrier exponent and the exponent that expresses

the fact that quantum fluctuations are dangerously irrel-
evant. We therefore expect 8 = @ in the quantuxn case,
although in our notation we will continue to distinguish
between the two exponents. This leaves us with three
independent exponents, e.g. , v, g, and g = g. A fourth
one will be necessary when we discuss sytems in external
magnetic fields in Secs. III B4 and III B 5 below.

As in the case of ordinary power-law scaling, we can
eliminate the arbitrary parameter b froxn Eq. (3.4b) and
write N(t, T) in two different scaling forms to emphasize
either the static or the dynamic aspects of the scaling
law. The crossover between the two types of scaling oc-
curs at a temperature Tx for which the two arguments of
FN are equal. Ordinarily, this criterion would lead to a
power-law dependence of T„on t, but activated scaling
implies T&& exp( —I/t"+). As a result, the static scaling
region will be very small unless vi) is very small. Since
v is bounded from below, v & 2/d, this would require
@ to be very small. 4s Whether or not the static scaling
behavior, N(t, T) = N(t, T = 0) t~, is observable will
then strongly depend on the precise value of v@, on the
size of the critical region, and, to a lesser extent, on t;he
value of the microscopic temperature scale To. We thus
put b+ = ln(TO/T), and write Eq. (3.4b) as

(3.5)

The scaling function GN is related to the function EN in
Eq. (3.4b) by Giv(z) = Fxv (z ~"@,1), and has the prop-
erties Gxv(x -+ oo) x~~ ~, and Gxv(x —+ 0) -+ const.

Equatioxi (3.5) makes a qualitative prediction that can
be used to check experimentally for glassy aspects of the
AMT: Measurements of the tunneling density of states
very close to the transition should show an anomalously
slow temperature dependence, i.e., N should vanish as
some power of lnT rather than as a power of T. While
this is a straightforward check in principle, in practice it
may require a very large T range to distinguish between
the two possibilities. For instance, in classical magnets
the &equency had to be varied over seven decades in
order to convincingly demonstrate the presence of ac-
tivated scaling. However, measurements over a smaller
dynamic range would also be of interest, since they would
put experimental bounds on possible values of @. This
is particularly important since in the absence of any in-
formation about the value of vP it is impossible to tell
whether at a given temperature one is in the static or
the dynamic scaling regime. Unfortunately, to our knowl-
edge all measurements of N close to metal-insulator tran-
sitions have been performed at fixed (and rather high)
temperatures, so that no T-dependent data are available
for analysis.

Order par ameter susceptibility

We now turn to fluctuations of the order parameter.
We Grst give a statistical argument that N is indeed, as
assumed above, a self-averaging quantity. This also sheds
some light on the crucial role played by the electron-
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N =AC t, L, (3.6)

electron interaction in our theory for the AMT.
I et us write the unaveraged order parameter, N, as its

average plus fluctuations, N = N+ bN, and consider the
xnean-square Quctuation ((bN) ). At T = 0 in a system
of size L one has

correlation function at nonzero wave number is likely to
not be normally distributed, while at q = 0 no such
complications are expected to occur. Moreover, in our
quantum system a small-q divergence would be cut off
by a Gnite temperature. We therefore restrict ourselves
to a discussion of the homogeneous correlation function,
i.e. , the order parameter susceptibility, which obeys

with 4 some function of t and L. Far away &om the
critical point we expect 4 = const, which leads to
[((bN)2)/N2]x/z 1/~N as usual. In the critical region,
on the other hand, we expect 4 to scale,

C(t, T;q = O, u))

4'(t, L) = b~~"4(tb ~" Ib ) (3.7)

with p the critical exponent for the order parameter sus-
ceptibility. At criticality, Eq. (3.7) implies ((hN)2)

~ L"+ ~, where we have used the exponent
relation p = v(2 —q), and N L" For t.he root-mean-
square order parameter fluctuations this means

((bN) ) /N (3.8)

For the last relation in Eq. (3.8) we have assumed hyper-
scaling to be valid. In its absence the argument needs a
trivial modification, but the end result is still given by
the far right-hand side of Eq. (3.8).

Equation (3.8) implies that order parameter fiuctua-
tions at the critical point become small in large systems
provided )7 ) 2 —d, or P ) 0 (the first condition depends
on hyperscaling, while the second one does not). This has
some interesting consequences. In the noninteracting lo-
calization problem, one has q = 2 —d, and P = 0. '44 As
can be seen &om the above discussion, this means more
than simply that the order parameter is uncritical in the
localization problem: It indicates that the fluctuations of
the density of states are independent of the system size,
and as large as the average. Consequently, one expects
that the density of states in a system of noninteracting
disordered electrons has a very broad distribution, and
that the Anderson transition is pathological &om a sta-
tistical mechanics point of view. All of this is consistent
with explicit studies of the Anderson transition. Our
order parameter description of the AMT, on the other
hand, leads to p ) 0. Therefore the density of states
will be self-averaging in accord with our assumptions in
Sec. IIIA above, and there are no obvious obstacles for
the description of the AMT in terms of the standard con-
cepts for continous phase transitions.

We now discuss the order parameter correlation func-
tion, which we define as

At criticality, the order parameter susceptibility diverges
as the temperature goes to zero, but only as a power of
lnT,

C(t = O, T;q = O, cu = 0) [ln(TO/T)]
+ " . (3.11)

The local density of states is measurable (on a perfect
surface) with a scanning tunneling xnicroscope, or STM.
By measuring the density of states both by means of a
tunnel junction and by means of an STM one can there-
fore check whether it is indeed a self-averaging quantity:
If it is, then in a large system fluctuations of the local
density of states should be small, and both the local and
the junction measurements should give the same result.
Furthermore, by measuring N(x) across a sample at pairs
of points with a fixed separation it should be possible to
measure the correlation function C, and to check the pre-
diction of Eq. (3.11).

We conclude this subsection by noting that C, at
least away &om the AMT, contains an uncritical, "meso-
scopic" power-law singularity due to hydrodynamic diffu-
sion modes. In order to distinguish this singularity &om
the one given by Eq. (3.11) one can use arguxnents like
those used for the classical random-field problem with a
conserved order parameter. The key idea is to consider
a small but finite wave number q, subject to a number
of constraints. First we require a self-averaging quantity,
which according to the discussion above Eq. (3.10) re-
quires q( « 1. Second, we require the critical part of
C to effectively be at q = 0, which leads to the restric-
tion Eq « 1/(lnTO/T) ~+, with I. a microscopic length
on the order of the inverse Fermi wave number. Third,
the noncritical mesoscopic contribution should be T in-
dependent. This will be the case if qI )) (T/To) /, since
this singularity is due to diffusion. It can be readily ver-
ified that these three conditions can be simultaneously
satisfied.

C(tT;» —y, ~) = (N(», ,e» ~ »/2) N(y, e» —~/2))

(3.9)

or its spatial Fourier transform, C(t, T; q, u). Here
N(x, e) denotes the unaveraged, local density of states
at energy e. Froxn an analogy with Eq. (2.6) one expects
C to scale, and to show an anomalously strong diver-
gence as q ~ 0. However, in random-Geld systems the

8. Specific heat

let us now consider the entropy density, s(t, T)
Of/BT, where f is the free-energy density. As a ther-
modynamic quantity, s is expected to be self-averaging,
and since its dimension is that of an inverse volume (in
units chosen such that kxx = 1) we can write for the sin-
gular part of s,
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b4
(3.12)

The specific heat is obtained &om 8 by means of a log-
arithmic derivative with respect to T, cv = Bs/Bin T,
which yields for the singular part of c~,

b4
c (t, T) = b-&'-'+~& F. !

tbx~",

G. T Tp
'"'

Pn(T /T)1"'" "' (s.13)

Here the scaling functions G ~ and E ~ are related by
G~ (z) = F, (—lnz) ~"~, 1 .

The fact that the speci6c heat must vanish at T = 0
puts constraints on the possible behaviors of the func-
tion G ~ at small values of its argument. One possibility
is G,~(x —+ 0) +cons-t . However, a more natural as-
sumption is that G,~ (x ~ 0) vanishes like a power of its
argument. This possibility is realized, e.g. , in the model
studied recently by Fisher. In that case, the specific
heat in the critical region goes like

T const x t"@

cv t, T
P (T/T)j'+'" "' (3.14)

If we substitute the exponent values that are appropri-
ate for the model of Ref. 35, viz. , v = 2, g = 1/2,
0 = 0, d = 1 and const = 2, then we recover &om
Eq. (3.14) Fisher's result for the transverse random-field
Ising chain. The most interesting aspect of this result
is the continuously varying exponent in the numerator,
which leads to successive derivatives of c~ becoming di-
vergent as the critical point is approached. This behavior
means that there is a GrifFiths phase, or rather GriKths
region, away &om the critical point within which cer-
tain observables become divergent at various values of
t.4s Regardless of the behavior of G,~(x ~ 0), we have
a non-Fermi-liquid behavior of the system in a Gnite re-
gion around the critical point: The speci6c-heat coefEi-
cient p(t, T) = cv(t, T)/T diverges as T +0, even awa-y

I

&om criticality.
For a discussion of the experimental consequences of

Eqs. (3.13) and (3.14) one must keep in mind that the
singular contribution to c~ is additive to the noncriti-
cal Fermi-liquid background. that is linear in T, and that
the singular part will dominate only at suKciently low
temperatures. Measurements of the specific heat in Si:P
(Refs. 18 and 19) have indeed observed non-Fermi-liquid
behavior both near the critical point, and rather far away
&om it in either phase. This has been interpreted in
terms of local magnetic moments. The relation between
the local moment and quantum glass pictures is currently
unclear. It is interesting to note that both predict sin-
gular behavior of thermodynamic quantities away &om
the critical point, and. it is conceivable that the glass
picture is related to an interacting local moment descrip-
tion. Also, &om the discussion in Sec. II we suspect that
the lowest temperatures reached in the Si:P experiments
(= 30 mK) were not low enough to be in the critical re-
gion. Since going to substantially lower temperatures is
not realistic, it would be desirable to have similar mea-
surements performed on a system with a higher Fermi
temperature than Si:P, which has T~ 100 K near the
critical P concentration.

Magnetisati ore

In order to discuss the magnetization, and the mag-
netic susceptibility in the next subsection, we need to
add an external magnetic Geld H to our discussion. As
discussed in Sec. IIIA, the leading efFect of a magnetic
6eld will come &om its coupling to the electron spin, and
will scale the same way as the temperature does, viz.
T exp(b+), H exp(b&), both up to multiplicative
power-law corrections. In general one therefore expects
T/H b«, with P an exponent that characterizes dif-
ferences in the corrections to scaling of T and H. Di-
mensionally, the magnetization m = 0f/OH is an inverse
volume times a temperature divided by a magnetic 6eld,
and therefore the scale dixnension of m is d —8 —P@.
Therefore we have

b0
m(t, T, H) = b "+'+«F-!tbx~", (H/T)b«,'

ln(Tp/T)
'

ln(Tp/(T + Hb«)) j (3.15)

Here the last argument of the scaling function F ex-
presses the fact that the Zeeman energy provided by the
magnetic Geld helps the system to overcome &ee energy
barriers, and its functional form is motivated by the fact
that the effect of a nonzero H will always be cut off by a
nonzero T. However, the reverse is not true, which is why
one still needs the second argument containing only T.
The third argument contains the physics due to fIuctua-
tions within a given &ee-energy valley, with no attempts
to climb over barriers.

The most interesting consequence of Eq. (3.15) is the
leading H dependence of m at T = 0 at criticality, which
1s

1
m(t 0 T 0 H)

( )y
(3 16)

where we have assumed that F (0, 0, oo, 1) is a finite
number. If we substitute the exponent values that are ap-
propriate for the model of Ref. 35, namely, P = (1+~5)/2
and d, 0, and @ as given after Eq. (3.14), then we recover
Fisher's result for the transverse Ising chain.

The physical interpretation of Eq. (3.16) is as follows.
Equation (3.15) says that the magnetic degrees of free-
dom are glassy, and relax slowly just as the singlet or
DOS degrees of freedom. If the system is cooled in a
magnetic field then as the magnetic 6eld is turned off,
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the magnetization vanishes slowly as a function of both
Geld and time. This behavior is reminiscent of that found
in random-field magnets. The di8'erence is that here no
long-range magnetic order develops across the transition.
However, we do expect that experiments that examine
the di6'erence between field cooling and zero-field cool-
ing will be very interesting, as they are in randoln-field
magnetic systems.

5. Magnetic susceptibility

So far all quantities we have discussed have been both
self-averaging (except for the order parameter correlation
function at nonzero wave number) and scaling; i.e. , they
obey homogeneity laws of the type given in Eq. (3.2).
The magnetic susceptibility, y = Om/OII, is clearly
self-averaging, but does not obey a homogeneity law for
the reasons explained after Eq. (3.2). Nevertheless, we
can obtain the functional form of y by difFerentiating
Eq. (3.15) with respect to II. The leading behavior of the
zero-field susceptibility, which is produced by the third
argument of the scaling function E, is

x —Gx (T/To)' (3.1V)

X (tT)= T —1+canstxf"+

[ln(TO/T) ]
~

(3.18)

Clearly, this is another manifestation of the GriKths phe-
nomenon discussed above in Secs. III B3 and III B 4, and
again our result is consistent with that of Ref. 35 for the
transverse random-Geld Ising chain.

As mentioned below Eq. (3.14), there is some similar-
ity between our results and those obtained &om the lo-
cal moment picture. Both lead to a divergent magnetic
susceptibility and specific-heat coeKcient in the metallic
phase, in qualitative agreement with experiments on Si:P
and Si:P,B. The main difFerence is that we predict a
critical singularity for either quantity, while the local mo-
ment picture yields thermodynamic anomalies that are
decoupled &om the AMT. Several points should be kept
in mind, however. First, the coupling, or absence of it,
of local moments to the AMT is an unsolved problem.
Second, Bhatt and Fisher have pointed out that inter-
actions between local moments may considerably weaken
the efFects found in Ref. 18.

In an ordinary, power-law scaling scenario one would ex-
pect the scaling function G~ to behave such that at
T = 0 the susceptibility is finite for t g 0. Here this is
not possible since y is not a homogeneous function of
T. Rather, we conclude that the magnetic susceptibility
will diverge as T —+ 0 in a region of finite size around
the critical point. This divergence is power law with log-
arithmic corrections, and the exponent of the power law
is a continuous function of t,

8. Density susceptibility

The thermodynamic density susceptibility, On/Op, is
not directly measurable in a three-dimensional system.
However, it is of interest since it enters the Einstein re-
lation between the electrical conductivity and the mass
difFusion coeKcient and can therefore inhuence the criti-
cal behavior of the conductivity.

As a thermodynamic quantity, On/Op = O2f/Op2 is
self-averaging, but it is not a scaling quantity in the
sense of Eq. (3.2) since f is not. On/Op thus belongs in
the same category as the magnetic susceptibility, namely,
that of self-averaging, nonscaling observables. In order
to determine the critical behavior of On/Op, , we first note
that the chemical potential p in this derivative does not
scale like an energy, but rather like the correlation length
to some power. This can be seen &om the explicit formu-
lation of the order parameter field theory for the AMT,
whose only dependence on the chemical potential is in
the p dependence of t. We thus write

On/Op = O2 f/Op = (O' f/Ot')(Ot/Op)'
+(Of/Ot)(O t/Op, )

At an ordinary quantum phase transition one would ex-
pect f b ~ + l. At glassy quantum phase transitions,
z eH'ectively diverges so that the free energy does not sat-
isfy a simple homogeneneity law. Instead, one expects,
schematically, b ' T exp( —b~) exp( —1/t ~), i.e. ,
the singular part of the &ee energy has an essential sin-
gularity in t at zero temperature. This argument is con-
sistent with the results in Secs. IIIB3—IIIB5 where we
showed that the thermodynamics of our model is quali-
tatively the same as that of the transverse random-Geld
Ising chain. At T = 0, the latter in turn is equivalent
to the model considered by Shankar and Murthy, who
found the singular part of the &ee energy to behave like
f(t, T = 0) t ~'. We therefore expect this behavior to
qualitatively hold in our case as well, which means that
Of/Ot and O2 f/Ot vanish exponentially as t m 0. Ot/Op,
and O2t/Op, on the other hand, can diverge at most like
a power of 1/t. This can be seen as follows. Let p, be
the critical value of p at a given value of the disorder.
t must vanish as p —+ p, and it can do so either as a
power or as an exponential function of of p —p . In the
latter case all of the derivatives of t with respect to p,
also vanish exponentially, while in the former case they
may at most diverge like a power of 1/(p —p, ). Conse-
quently, the singular part of On/Op at zero temperature
must vanish exponentially as t —+ 0. This is in contrast to
the conventional scaling scenario, which yields a power-
law dependence of On/Op on t in the framework of the
order parameter field theory, and an uncritical On/Op
in the 2+ e expansion. '

In addition to this singular part, one expects in gen-
eral a nonvanishing analytic background contribution to
On/Op, . The electrical conductivity will then have the
same critical behavior as the charge or mass di8'usiv-
ity. However, if in a particular system, or for particular
parameter values, that background contribution should
vanish, then the resulting exponential vanishing of On/Op
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will lead to complications in the scaling description of the
conductivity, as was mentioned in the discussion of Eq.
(3.3) above.

V. Electr ical conductieity

We now turn to the behavior of the electrical con-
ductivity. As explained in Sec. IIIA, this is not a self-
averaging quantity. We consider instead the unaveraged
conducitivity, cr, and define l:—(ln(ap/cr)), with op a
suitable conductivity scale, e.g. , the solution of the Boltz-
mann equation. According to Eq. (3.3) and Sec. IIIB6
we expect l to be self-averaging, and to obey

b4

= ln(Tp/T) G t ln(Tp/T) (3.19)

Z(t, T = O) - exp( —1/t"~) (3.20a)

and

(3.20b)

-Note that at zero temperature E vanishes exponentially
with t, and that at the critical point Z vanishes like a
nonuniversal power of T.

The conclusion that is most important with respect
to the interpretation of experimental results is that the
conductivity, 0, is not self-averaging, while lno is self-
averaging and (lno) scales. While in Sec. II we have
shown that the existing data for the conductivity do
allow for scaling plots, we have also seen that many
"strange" features in the experimental results, especially
in the ultralow-temperature results of the Bell experi-
ment, must be ignored in order to reach that conclusion.
Also, it was necessary to let all exponents and the posi-
tion of the critical point Goat. Within our current acti-
vated scaling scenario there is no reason to believe that 0
would scale if one obtained bounds on the exponents and
on n, by measuring thermodynamic quantities (which do

This holds if the density susceptibility has a nonvanish-
ing uncritical background contribution, as one usually
expects to be the case. If On/Bp, vanishes at critical-
ity, then there will be a critical, nonscaling background
contribution to l, as explained in connection with Eq.
(3 3).

As in the case of Eq. (3.13) or (3.17), the behavior of
the scaling function G for large values of its argument is
a priori unclear How. ever, we can use physical arguments
to determine it. Let us define E = harp exp( —l ) as a mea-
sure of the conductivity. If G (x -+ oo) vanished faster
than 1/x, than Z would approach o.p even for arbitrarily
small t g 0 as T -+ 0. Since o'p is a noncritical quantity,
this is unphysical. On the other hand, if G (x + oo)
vanished more slowly than 1/x, then Z(T = 0) would
vanish even for t g 0. However, for t g 0 there are no in-
finite &ee-energy barriers, and hence density Buctuations
are able to relax and Z must be nonzero. We therefore
conclude that G (x -+ oo) 1/x . This yields 8. Therm al conductivity

We finally consider the electronic contribution to the
thermal conductivity, which is the product of the speci6c
heat and the heat di8'usivity. For the same reasons as in
the case of the electrical conductivity we expect the ther-
mal conductivity, K, , not to be a self-averaging quantity.
We define l„= (ln(rp/r)), with ep the Boltzmann value,
and expects

(3.21)

This equation can be discussed analogously to Eq. (3.19)
for the conductivity. If we define K—:exp( —l„) as a mea-
sure of the thermal conductivity, then we obtain an inter-
esting prediction for the generalized Wiedemann-Franz
ratio K/Z at criticality:

K(t = 0, T)/Z(t = O, T) -T- (3.22)

with G„and G nonvniversal numbers [see Eq. (3.20b)].
This is in sharp contrast to the conventional scal-
ing description of the AMT, which predicts that the

scale even under the current scenario) at the same low
temperatures as the conductivity. (ln0') does scale, but
would be hard to measure. In other words, if activated
scaling is present but conventional scaling is used for an-
alyzing experiments, then better experiments will make
things worse rather than better. Furthermore, 8 is pre-
dicted to not be a self-averaging quantity, but to have
a broad probability distribution. Measurements of & at
su%ciently low temperatures should therefore show large
sample-to-sample Quctuations.

We propose that the unusual features that were ob-
served in the experiments on Si:P, particularly in the
ultra1ow-temperature Bell experiment, and which we
have reviewed in Secs. I and II, are manifestations of the
"glassy" behavior that we have derived above. The fact
that the observed anomalies became stronger at lower
temperatures is certainly consistent with this. The fact
that other experiments did not provide any indications
for Fr not being a well-behaved quantity is not a valid
counterargument, since they all stayed above, or barely
got below, the 60 mK where there is a clear break in the
T dependence of the conductivity; see Ref. 10 and Fig. 2.
In order to further check this proposal, one should mea-
sure thermodynamic quantities, preferably the tunneling
density of states, together with the conductivity at as
low temperatures, and over as wide a temperature range,
as possible. A system with a higher Fermi temperature
than doped Si would be advantageous, since it would al-
leviate the need for ultralow temperatures. Ni(S, Se)2
may be promising in this respect. In a very recent inter-
esting experiment, Jin et a/. have found that, although
conductivity data down to T = 30 mK do allow for a
conventional dynamical scaling plot, there are hysteresis
effects that may be indicative of a glasslike behavior of
the electrons.
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Wiedemann-Franz law v/cr = (r)/(o) T holds even
at the transition.

IV. SUMMARY

We conclude by briefIy summarizing the results of this
paper. We have employed both conventional and acti-
vated scaling scenarios to analyze experiments on the
metal-insulator transition in doped semiconductors, most
notably Si:P. Our main goals were to understand the dis-
crepancies between different experimental findings, and
to work out and analyze the glassy dynamical features
of the transition that are suggested by recent theoretical
advances.

In Sec. II conventional scaling ideas were used to in-
terpret existing experimental data. The most important
conclusions were that existing experiments for the con-
ductivity are inconsistent with each other and that, at
least in Si:P at very low temperatures, there are large
sample-to-sample fIuctuations, and possibly equilibration
problems, sufFiciently close to the critical point.

In Sec. III we assumed that the AMT is a quantum
glass transition, and we developed a general description
of such a transition. Our chief results are as follows: (1)
The specific heat and spin susceptibility are singular as

T -+ 0 even in the metallic phase; see Eqs. (3.14) and
(3.18). These results are consistent with existing experi-
ments, and the theory given here provides an alternative
to the previous explanation in terms of noninteracting
local moments. (2) The DOS is the order parameter for
the quantum glass transition and it is both self-averaging
and a scaling quantity; see Sec. III B 1. At criticality, it is
predicted to vanish logarithmically with temperature; see
Eq. (3.5). The critical behavior of the OP susceptibility
has also been discussed. (3) The electrical conductivity
o is so broadly distributed that it is not a self-averaging
quantity, but lno. is both self-averaging and a scaling
quantity, see Sec. IIIB7. This result was used to ex-
plain the sample-to-sample fluctuations in o. that were
observed in Si:P. In Sec. III we also suggested a number
of additional experiments to test the hypothesis that the
AMT is a quantum glass transition.
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