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Magnetoresistance of multiply connected Al samples
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The magnetoresistance in pure Al samples with interconnected Hall contacts has been investi-
gated. The current in the loop connecting the Hall probes leads to an additional magnetoresistance
with both quadratic and linear terms in the magnetic field.

I. INTRODUCTION

The conventional theory of magnetoresistance in
metals predicts that the intrinsic transverse magnetore-
sistance of a simple metal like, e.g. , Al, In, and K, which
have a closed Fermi surface and are uncompensated sat-
urates at high magnetic fields. The criterion of a high
magnetic Geld is given by u w )) 1 for the product of
the cyclotron frequency w, = eB/m and the mean scat-
tering time 7. In practice, experiment reveals a small
linear term in the magnetoresistance. This linear term
can be understood as an extrinsic effect for which the
importance of thickness variations parallel to the mag-
netic field has been pointed out experimentally. In
this work we investigate another geometrical efFect on
the measured magnetoresistance. For a ring structure
short circuiting the Hall contacts of the sample, contri-
butions are observed in the magnetoresistance, which are
not only linear in the magnetic field but also quadratic.

The phenomenon of linear magnetoresistance can be
explained using Kirchhoff rules of classical electrodynam-
ics for the electrical transport. ' For a stepped. sample
with different thicknesses parallel to the magnetic Geld
the Hall voltage VII = BI/ned, where n is the charge
carrier concentration, e the electronic charge, and d the
thickness of the sample, will be difFerent on both sides of
the step. Prom the time-independent Maxwell equation
V' x E = 0 follows $Eds = 0 for the path integral of
the electric field E over a closed loop in the metal. To
reconcile the difference in Hall Gelds on both sides of the
step with this condition, the current in the sample will be
deviated towards one side of the sample at the step such
that an ad.ditional voltage drop at that sid.e of the sample
compensates the d.ifference in Hall voltages. Such a cur-
rent diversion in a sample with inhomogeneous thickness
explains the observed linear magnetoresistance.

Recently, an alternative explanation for the linear
magnetoresistance ' has been given in terms of a
quantum-mechanical theory based on the transmission
approach for electrical transport. In this model, the
carrier transport in a magnetic field is described using
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FIG. 1. Schematic representation of a sample with a ring
connecting the two Hall-voltage probes. The applied current I
causes a Hall voltage V~ which drives a current Il p through
the ring. The Hall voltage of Il p yields an additional resis-
tive voltage V„, along the sample.

the formalism of skipping orbits along the sample sides.
The number of quantum channels varies linearly with the
sample thickness parallel to the magnetic field. Consid-
ering the reflection and transmission of skipping orbit
channels at a step in the sample thickness, a multitermi-
nal description for the electrical transport between the
contact probes yields the same result as obtained with
the classical theory. Both theories have in common that
the origin of the linear magnetoresistance is closely re-
lated to the Hall effect.

In order to study the edge-state transport in a two-
dimensional electron system, the Hall effect has been re-
cently investigated in a Hall bar geometry with a hole
in the two-dimensional sample. Such doubly connected
samples showed interesting phenomena in the Hall effect,
like, for instance, a measurement of the classical Hall ef-
fect under null net current injection. These effects have
been explained by the topology of the multiply connected
sample.

Following the consideration of interconnected cur-
rent channels in the magnetotransport of a percolating
medium by Sarychev, Bergman, and Strelniker, we be-
came interested in studying the influence of a short cir-
cuit between the Hall-voltage probes on the magnetore-
sistance of a pure metallic sample. In Fig. 1 we have
schematically drawn a sample with a ring connecting the
Hall probes. For an applied current I with the indicated
Geld orientation, the Hall voltage VH can drive a current
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I] p through the loop of the sample. This lo op current
would cause an additional Hall voltage across the sam-
ple. Because the magnetic Geld acts twice in this simple
description, a quadratic term would be expected in the
transverse magnetoresistance (measured by the resistive
voltage V„, in Fig. 1). The aim of this paper is to in-
vestigate such a phenomenon in multiply connected Al
samples.

II. EXPERIMENT

The magnetotransport experiments were carried out
on two pure Al samples in the geometry as given in
Fig. 2 [sample (a) and sample (b)]. For the indicated
magnetic field orientation, the Hall probes have been in-
terconnected with a loop cut out of the same piece of
the starting material. The essential difFerence of the two
samples is the fact that the plane of the ring lays for one
sample parallel to the magnetic field B [sample (a)], for
the other perpendicular to the field [sample (b)].

Sample (a) was cut out of a 99.999% pure Al rod by
spark erosion in the dimensions given in Fig. 2(a). With
the indicated contact conGguration a current I~2 can be
introduced in the sample (contacts 1-2). Not only the
resulting transverse magnetoresistance (contacts 3-4) can
be measured but also the Hall voltage (4-5) belonging to
the applied current and the Hall voltage (6-7) belonging
to the current Bowing through the loop.

Sample (b) was cut with a scalpel out of a 99.999% pure
Al foil of O. l-mm thickness. Its dimensions are given in
Fig. 2 as well. The contact conG.guration allows us to
again measure the magnetotransport properties in vari-
ous parts of the sample.

Contacts were made by attaching droplets of molten
Woods metal in a diluted etching solution. Measure-
ments were done at 2 K in magnetic fields up to 10 T
produced by a superconducting solenoid. dc currents up
to 200 mA were applied through the samples, resulting
in voltages up to roughly 20 pV. To eliminate the ther-
mal emf's generated in the leads, the voltage averaged
for both current polarities was taken. For sample (a) the
residual resistance ratio R(300 K)/R(4. 2 K) was equal
to 4300. For sample (b) the residual resistance ratio was
determined to be 930. From these values for the residual

resistance ratio one reaches the high-field limit cu w = 1
at 0.17 T for sample (a), and at 0.76 T for sample
(b).

In some experiments we measured a difTerence in the
voltage measurements of the resistance at magnetic G.elds
of equal magnitude but opposite direction. This behavior
can be understood in the frame of the above-mentioned
current deviation for samples with thickness variations
parallel to the magnetic Geld. . To average over this ef-
fect the magnetoresistance B;~ of the transport data was
determined from the even part of the measured voltages
between contacts i and j, i.e. ,

V,, (+B) + V, (—B)U— u . 1
2Ig2

Hall resistances were obtained from the odd part of the
measured voltage.

III. MAGNETORESISTANCE OF SAMPLE (a)

Prom the measured Hall resistance B45 between con-
tacts 4 and 5 of sample (a), the slope dR4s/dB
245 nA/T is obtained. In the high-Beld limit this slope
equals 1/ned for a metal with charge carrier density n
and thickness d. In Al, the concentration of charge car-
riers in the Hall constant RJI = 1/ne changes from 3
electrons per atom at low magnetic fields (u, 7 (( 1) to
1 hole per atom in the limit of high fields (cu, v. )) 1).
With n = 6.10 x 10 cm in the high-Beld limit,
and d = 0.42 mm of sample (a), the obtained Hall
slope 244 nO/T is in excellent agreement with the ex-
periment (the tolerances for the machining are within
+2 x 10 mm).

For sample (a) we have plotted in Fig. 3 the transverse
magnetoresistance B34 and the Hall resistance of the loop
B67 ~ The measured Hall resistance B67 proves clearly
that a current Bows through the ring short circuiting the
Hall-voltage probes. Because the measured value R67 is
about half of the normal Hall resistance B45, approxi-
mately half of the injected. current Iq2 passes through
the loop. In Fig. 3 we have also plotted the intrinsic
transverse magnetoresistance of the sample with the loop
interrupted. This transverse magnetoresistance B34 for
the interrupted loop can be compared with the diR'er-

2

FIG. 2. Geometry of the investigated sam-
ples vrith the dimensions in mm as indicated.
For sample (a) the applied magnetic field is
parallel to the plane of the ring, and for sam-
ple (b) perpendicular.
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FIG. 3. Magnetoresistance data of sample (a) with the in-
dicated contact configuration. Rs4 = V34/Ii2 is the transverse
magnetoresistance, Rs7 ——V57/Ii2 the Hall resistance corre-
sponding to the current through the ring, and R54 ——V54/I12
the transverse magnetoresistance after interrupting the ring.
The crossed data points give the difFerence R34 R67.
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FIG. 4. (a) Current diversion in a ring in an unfolded repre-
sentation of the ring explaining the linear magnetoresistance
for the magnetic field parallel to the plane of the ring. (h)
Schematic representation of the current paths near the cross
point of the Hall contacts interconnected by means of a ring
in a plane parallel to the magnetic Beld. The corresponding
resistive and Hall voltages at the borders of the samples are
indicated (ignoring the residual resistivity of the sample).

ence between the magnetoresistance and Hall resistance
for the closed loop represented by crossed data points,
i.e., B34 R34 B67.

Although the Hall Beld drives a current through the
closed loop, the quadratic magnetoresistance mentioned
in the Introduction is not observed. To understand the
observed linear magnetoresistance wc have to consider
the electronic transport through a folded sample. For a
folded sample in an applied magnetic Beld a linear mag-
netoresistance has been observed, ' an efI'ect known
as the zig-zag effect. Following the analysis for the ob-
served linear magnetoresistance of a folded sample, we
have plotted in Fig. 4(a) the ring in an unfolded rep-

a) Bt3

resentation (conducting strip with difFerent orientations
of the magnetic field). In the unfolded representation of
sample (a) in Fig. 4(a) we have ignored the parts of the
rectangular-shaped. ring with the current fIow parallel to
the magnetic field. In analogy to the explanation of linear
magnetoresistance for stepped samples, ' ' the changing
sign of the Hall voltage leads to current diversions to one
side of the sample resulting in voltage drops along the
strip just equal to the difference of two Hall voltages. In
this way the integral over the electric Geld along a closed
path [as given by the dashed line in Fig. 4(a)] is zero
and Maxwell equations in static fields are obeyed. As a
consequence of the current diversion in a magnetic field,
the resistance of the ring is linear in the magnetic Beld.
Due to this linear term in the magnetoresistance seen by
the current fIowing in the ring, the resulting transverse
magnetoresistance contains only a linear term instead of
the quadratic term mentioned in the Introduction. In
the following we will give a quantitative evaluation of
the measured transverse magnetoresistance.

The Hall voltage V45 caused by the current II2 and
the magnetic Beld B' is driving a current Ii p thIough
the loop generating a second Hall voltage V67 measured
between the contacts (6-7). The current Ii p depends
on the resistance R~ p of the loop through

Iloop V45/+loop &l (2)

The resistance of the loop results from intrinsic as well
as geometric efI'ects, i.e.,

Rloop Rintrinsic + Rgeometry ~ (4)

The residual intrinsic resistance R;„t„-„„., is constant at
high magnetic fields (u,7 )) 1) and can be determined
from the specific resistivity of Al at room temperature
(p = 2.65 pO cm), the measured residual resistance ratio
(RRR equal to 4300), and the geometric dimensions of
the ring [see Fig. 2(a)]. For the investigated sample (a)
wc obtain Rintrinsic —870 nO. The geometric I'csistaIlcc
Rg t y follows from the above-mentioned zig-zag efI'ect
and equals twice the Hall resistance, i.e., Rg
2B/ned

Due to an artifact in the spark-erosion procedure
the rectangular ring had two tiny grooves with depth

0.05 mm in the upper and lower parts. These grooves
yield additional linear terms in the geometrical part of
the magnetoresistancc of the ring as studied in detail by
Bruls et al. ' To take account for these efI'ects we used
the thickness of the sample as a free parameter d g in the
expression for the geometry-related part of the resistance
Rg t,y of the loop. In Fig. 3 we have plotted the calcu-
lated curve of R67 for the optimized d,g ——0.36 mm. This
value has to be compared with the thickness d = 0.42 mm
of sample (a). The difFerence can be explained by the

with the Hall voltage V45 ——Ii2B/ned The Ha. ll resis-
tance R67 belonging to the current through the loop is
then given by

RQ7 —V@7/I] 2
——(B/ned)Ii p/I&2

= (B/ned) /RI
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IV. MAGNETORESISTANCE OF SAMPLE (b)

For sample (b), the measured slope dR4s/dB of the
Hall resistance equals 1090 nB/T close to the expected
value 1020 nA/T for the uniform thickness d = 100 pm
of sample (b).

In Fig. 5 the magnetoresistance B34 and the Hall re-
sistance Rsy have been plotted for sample (b) where the
magnetic field is now perpendicular to the plane of the
ring. For this orientation of the magnetic Geld with re-
spect to the ring the expected quadratic term in the mag-

$Q s I i I s I

9- R34
a

presence of the grooves leading to a correction in the
linear magnetoresistance as expected &om the zig-zag ef-
fect. The deviation between theory and experiment at
magnetic fields smaller than 2 T is not surprising since
then the condition for high magnetic fields (d 'T && 1 is
not fulfilled.

In Fig. 3, the crossed data points obtained by subtract-
ing the Hall resistance B67 of the loop kom the magne-
toresistance B34 for sample (a) show that the additional
magnetoresistance B34 —B34 due to the ring structure
can be directly compared with the Hall resistance B67.
In Fig. 4(b) we have drawn the current paths close to the
cross point of the attached Hall probes. In the simplified
solution of the problem where we ignored the resistive
voltages compared to the Hall voltages, half of the ap-
plied main current is deviated through the ring. The
indicated potentials at the borders show that the addi-
tional resistive voltage along the sample equals the Hall
voltage belonging to the current Ii2/2 through the ring.
The contribution of the loop to the magnetoresistance of
the sample is expressed by B34 B34 —B67~ The ob-
served small difFerence between B34 —B67 and B34 can
be explained by a mechanical deformation in interrupting
the ring, which also lowered the RRR of the sample.

netoresistance is clearly observed. Again the plotted dif-
ference B34 —B67 can be compared with the magnetore-
sistance B34 measured after interruption of the loop. In
the following we will give a quantitative estimation of the
measured quadratic magnetoresistance.

Also in this configuration, the Hall voltage V45 caused
by the current Iq2 and the magnetic field B is driving a
current I~ z through the loop. As in the case of sample

(a), in the high-field limit (w, v )) 1) the resistance of the
loop consists of a constant term B;„t„-„„,and a geometri-
cal term Bg o t,y. Because the current through the ring
flows through a flat foil of homogeneous thickness, the
linear magnetoresistance term As,-,i,„——2B/ned, ~ is
now much smaller compared to the intrinsic magnetore-
sistance of the Al loop. A small contribution to Bgeo~etzy
could still result from the nonuniform thickness or the
nonflatness of the foil. Finally this term should be ex-
pressed in an efFective thickness decisively larger than the
thickness of the foil.

From the geometry of the loop, from the resistivity
at room temperature, and &om the RRR (=930) we get
for B;„q„„„-,——17100 nO. Using this value we can fit
our data for the Hall resistance B67 belonging to the
current through the loop in the high-field regime B & 2.5
T using Eqs. (3) and (4). The dashed curve in Fig. 5
has been obtained for d,g ——330 pm being more than
3 times bigger as the thickness d of the foil. The Hall
efFect belonging to this efFective thickness is only twice
as large as the intrinsic linear magnetoresistance found in
the residual value B34 in the high-field limit. This larger
value for the linear magnetoresistance of the loop is in
agreement with the longer length of the loop compared
to the length of sample (b) (between contacts 3 and 4).

In Fig. 6 we show the current pattern in the limit of
very strong fields. The injected current circles first one or
more times around the loop before arriving at the drain.
In the same figure we have indicated the Hall voltages at
the border of the sample. It is readily shown that the
additional resistive voltage across the sample due to the
ring structure equals the Hall voltage belonging to the
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FIG. 5. Magnetoresistance data of sample (b) with the in-
dicated contact configuration. R34 ——V34/Ii2 is the transverse
magnetoresistance, Rny = Vsq/Ii2 the Hall resistance corre-
sponding to the current through the ring, and R34 = V34/Ii2
the transverse magnetoresistance after interrupting the ring.
The crossed data points give the difference B34 B67.

FIG. 6. Schematic representation of the current paths
through a sample with a ring perpendicular to the magnetic
field. The current I& p, driven by the Hall voltage V~, ex-
periences a resistive voltage drop U~ (0 & U~ ( V~) along
the loop and generates the Hall voltage V„,. This Hall volt-
age V, , equals the resistive voltage drop between the current
contacts.
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current through the ring. Therefore we observed in the
experiment R34 R34 —Rs~ [see Fig. 5].

In Fig. 7 we have plotted the experimental magnetore-
sistance data for the same ring but now with a fold in
the ring that short circuits the Hall contacts (see the in-
set of Fig. 7). The magnetoresistance data show again
a quadratic term, but the linear contribution is much
stronger. This can be explained by the fold in the ring,
which yields a linear contribution to the resistance of the
ring. As for sample (a) the current in the ring experi-
ences a resistance linear in the field due to the zig-zag
efFect. Fitting the data of R67 with the expression fol-
lowing from Eqs. (3) and (4) yields an effective thickness
de@ ——88 pm. The difFerence in Rgeo~etzy of the folded
loop and unfolded loop should reveal the zig-zag efFect,
such that

2B
ACdeg

2B 2B
nedeg unfolded %Cd

This equality of the last equation is only confirmed
within 20/o. The discrepancy could probably be ex-
plained by a change in the RRR or by a further change
in the geometric linear magnetoresistance of the loop in
addition to the zig-zag efFect due to bending the foil in
the folding procedure.

FIG. 7. Magnetoresistance data of sample (b) with a
fold in the loop w ith the indicated contact con6gura-
tion. R34 ——V34/Iqq is the transverse magnetoresistance,
R67 —V@7/Iy2 the Hall resistance corresponding to the cur-
rent through the ring, and R34 —V34/Iq2 the transverse mag-
netoresistance after interrupting the ring. The crossed data
points give the difference R34 R67.

The magnetoresistance of a multiply connected sample
is influenced by the loop interconnecting the Hall-voltage
probes. For a loop structure in the plane perpendicular to
the applied magnetic field, a quadratic magnetoresistance
is observed and can be explained by a current flow in the
loop driven by the Hall field. The magnetic field acts
twice in a linear way to get the flnal resistive contribution
quadratic in the magnetic field: once through the current
through the loop driven by a Hall 6eld, which is linear in
the field and depends on the resistance of the loop, and
once by the Hall field resulting &om the current through
the ring. In this geometry the current through the loop
can be much larger than the injected current.

For ring structures where the loop current does not
only flow in a plane perpendicular to the magnetic field,
the zig-zag efFect yields a linear term in the resistance
seen by the electrons Bowing through the loop. This
zig-zag efFect suppresses the amount of current flowing
through the loop in a linear way, yielding only a linear
magnetoresistance of the sample with half of injected cur-
rent flowing through the loop.

In the limit of very high magnetic flelds, the linear de-
pendence will always dominate the quadratic one. This
can be seen &om the expression for the Hall resistance
Rsr [Eqs. (3) and (4)] and the loop-related magnetore-
sistance in R34, once a linear geometric contribution
Bg, q„., exists due to thickness variations.

The magnetoresistance due to the loop structures can
be understood in terms of a longer path the electrons
have to go through the sample passing one or more times
around the loop. Our geometry with the loop in a plane
perpendicular to the magnetic Beld resembles the well-
known Corbino geometry (a disk with a central contact
and a contact on the periphery). For such a geometry a
quadratic magnetoresistance is found corresponding to
electrons circling around the disk before reaching the
outer contact.

The observed magnetoresistance follows from the
boundary conditions imposed by the sample geometry.
It may be clear that the conductivity tensor, describing
the relation between local fields and currents in the sam-
ple in a strong magnetic field, is not influenced by these
boundary conditions.
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