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A quadratic response theory of the energy loss of charged particles in matter is developed,
following a diagrammatic analysis of the many-body interactions between a moving charge and the
electron gas. The linear and quadratic density response functions of the medium are evaluated in
the random-phase approximation (RPA), and a result for the stopping power is obtained, up to
third order in the ion charge, Z;e, for a wide range of particle velocities. The low- and high-velocity
limits of the full RPA result are also studied, and a local plasma approximation is used to show
that our calculations are in good agreement with measurements of the energy loss of protons and

antiprotons in silicon.

I. INTRODUCTION

It is well known that the Bethe quantal theory of the
electronic stopping power of matter for moving charged
particles,! which is based on the first Born approxima-
tion, yields a result that is proportional to the square of
the projectile charge, Z,e. At lower velocities, where the
Born approximation becomes suspect, the transition to
classical scattering, treated by Bloch,? results in a cor-
rection term that does not depend on the sign of Ze.
However, the measurements of Barkas et al.® revealed
differences between the ranges of positive and negative
pions with the same energy, showing that the stopping
power exhibits a dependence on the sign of the projectile
charge. This dependence was later investigated by com-
paring measured stopping powers for proton, o particles,
and lithium nuclei,*% and, more recently, for protons and
antiprotons,%7? extracting, therefore, the contribution to
the energy loss that is proportional to Z3 after assuming
that other terms proportional to odd powers of Z; are
negligible in the velocity regimes under study.

Ashley, Ritchie, and Brandt® evaluated the contri-
bution to the stopping power that is proportional to
Z3, applying perturbation theory to the Bohr semi-
classical harmonic-oscillator model of the atom.? Since
then, quantal calculations of the so-called Z? effect
using an electron gas model and also a harmonic-
oscillator model of the target have been performed
by several authors.!9~1? The first rigorous many-body
perturbation-theoretic calculation of the Z3 correction
in the full random-phase approximation (RPA) for an
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electron gas, for arbitrary nonrelativistic velocities of the
projectile, has been reported only very recently.?® For
reviews of the experimental and theoretical situation see
Refs. 17, 21, 22.

In this paper we investigate the Z3 correction to the
stopping power of an electron gas for ions, in the full
RPA. In Sec. II, a diagrammatic analysis of the scattering
matrix elements corresponding to processes leading to all
possible momentum transfers to the electron gas is made,
following procedures of many-body perturbation theory,
and the terms of first and second order in the ion charge
are extracted; this analysis allows us to give an inter-
pretation of the different processes involved. In Sec. III,
the linear and quadratic density response functions, rep-
resented in terms of double and triple vertex functions,
are considered, the imaginary part of the triple vertex
function is evaluated analytically in the RPA, and is ex-
pressed in terms of a sum over hole and particle states.
This result is used in Sec. IV to derive an explicit expres-
sion for the Z? correction to the stopping power formula
in terms of both the real and the imaginary part of dou-
ble and triple vertex functions, and the low- and high-
velocity limits are also discussed. In Sec. V, numerical
calculations of the Z} effect are presented, as a function
of the velocity of the penetrating particle, the range of
validity of the previously studied low- and high-velocity
limits is analyzed, and a local plasma approximation is
used in order to compare our results with those deduced
from experimental data on energy loss by protons and
antiprotons in silicon.® In Sec. VI, our conclusions are
presented.
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II. SCATTERING MATRIX:
DIAGRAMMATIC ANALYSIS

‘We consider an electron gas of density n through which
an ion of charge Z;e and velocity v passes. Treating the
heavy particle as a prescribed source of energy and mo-
mentum, let the electron gas be described by an isotropic
homogeneous assembly of electrons immersed in a uni-
form background of positive charge and volume 2, and
take an externally applied potential on an electron at r
due to the field of the penetrating particle:

Z]_e2

—vt|’

u(r,t) = — ir

(2.1)

The scattering matrix can be written as a time-ordered
exponential?®

S=T {exp [—iﬁ—l /: dt e“"'”H}(t)] } . (22

where T is the chronological operator, which indicates
that the product to be integrated must be time ordered,
and H/(t) represents the perturbing Hamiltonian in the
interaction picture, which has been assumed to be ini-
tially zero and slowly switched on. 7 is a positive in-
finitesimal.

In the representation of second quantization, the per-
turbing Hamiltonian reads, in the interaction picture

Hy(t) = ] Bt (2)u(z)()

+%/d3r/d4"”' PH()y' (2")o(z,2")p(2) Y ()

+HPC(2). (2.3)
HBEG represents the interaction between the electron gas
and the positive background, u(z), with z (r,t),
is the electron-heavy ion interaction potential of Eq.
(2.1), v(z,z') represents the electron-electron instanta-
neous Coulomb interaction, and ¥ (z) and 1 (z) are field
operators in the interaction picture destroying and cre-
ating, respectively, a particle at the point r at time ¢:

P(x) =Y e itgi(r)a;

%

(2.4)
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and

YH(a) = Z et} (r)al, (2.5)

where a; and a} are annihilation and creation operators
for fermions, and ¢;(r) represents a complete set of or-
thonormal single-particle wave functions satisfying the
time-independent Schrédinger equation with energy Aw;;
for a homogeneous electron gas, these wave functions can
be taken to be momentum eigenfunctions.

The matrix element

_ (®o|asSal|)

St
7 {®0]5]®0)

(2.6)

corresponding to the process of carrying the system from
an initial state a:-r|<1>0) to a final state a.}|<I>0), |®0) being
the vacuum state, can be expanded with respect to the
coupling constant e? after introduction of the Hamilto-
nian of Eq. (2.3) into Eq. (2.2). Then, one can apply
Wick’s theorem, noting that only normal ordered prod-
ucts with two uncontracted operators contribute, and an
expression for the matrix element can be obtained.

It is well known that for a homogeneous electron gas,
contributions from the uniform positive background are
canceled by the sum of the so-called ”tadpole” contribu-
tions where the average electron density in the unper-
turbed ground state,

p°(z) = —(@o|T[¥ ()" (2)]|®0), (2.7)
is involved. On the other hand,
GO(z,a') = —i(Po|T[3(z)%' (z")]| Bo) (2.8)

represents the free particle propagator, and
(Bolasy! (2)¢(=')al|@o) = ™7 ¢} (r)e ™ ¢u(x'). (2.9)

Consequently, after introduction of standard Fourier
integral representations of the quantities involved and
taking ¢;(r) and ¢¢(r) to be plane-wave states of momen-
tum s and p, respectively, we find, up to second order in
the ion charge:

Sgi= -Sli(—iﬁ"l) / d*q6*(q + 5 — p)Uy[1 + 91(s, p)]

+é(—ih_1)2/d4q54(q4—3—1’)/

1

+§(—ih_1)3/d4‘154(9+S—P)Vq_/

d441

Wuqluq—ql Gy (14 92(5,p,q1))]

d4¢11
Toviha Ug—a Ma,qs 1+ g1(s,P)],

G (2.10)
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FIG. 1. Diagrammatic representation of the matrix ele-
ment of Eq. (2.10). In the first diagram a full dashed line,
representing a screened Coulombic interaction, leads from an
external point corresponding to the external source of momen-
tum and energy to a dressed fermion-scattering vertex. Solid
internal lines in the second and third diagrams are zero-order
propagators, and the dressed triple internal vertex represents
the exact quadratic density response function of the medium.

which can be represented diagrammatically as in Fig. 1.
Here, s = (s,ws) and p = (p,wp), with wi = kk?/(2m.),
and U, and V,, represented in Fig. 1 by full dashed lines,
are screened interaction potentials in the momentum rep-
resentation (see Fig. 2):

Uy = —-212:6(¢° —q- V)V, (2.11)
and
Vo = vq + VqXqVe; (2.12)
or
V, = €, vg, (2.13)

where vgq is the Fourier transform of the electron-electron
bare Coulomb interaction

4me?
Vg =
a 2
q

, (2.14)

and ¢, represents the dielectric function of the medium

€q = (1+vgxq) " (2.15)

Xq> Tepresented in Fig. 2 by a dressed double vertex, is
the exact so-called linear density response function of the
medium, Mg 4, , represented in Fig. 1 by a dressed triple
vertex, is the exact quadratic density response function
of the medium, and GO is the Fourier transform of the
free particle propagator of Eq. (2.8):

FIG. 2. The screened Coulombic interaction, represented
by a full dashed line, is obtained from the exact linear density
response function of the medium, represented by a dressed
double internal vertex, according to Eq. (2.12).
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FIG. 3. Vertex ladder contributions to the matrix element
Sf,i, which have been neglected in Eq. (2.10).

1—n n,
G = 1 1 2.1
q qO—U)q+i77 qO—CUq—i"], ( 6)
where
nq = 0(gr — |al) (2.17)

represents the occupation number, ¢r being the Fermi
momentum, and 6(z), the Heaviside function.

Vertex ladder contributions to the matrix element, rep-
resented diagrammatically in Fig. 3, have been neglected
in Eq. (2.10), and all self-energy and vertex insertions,
included in the dressed vertices of Fig. 1, are introduced
in Eq. (2.10) by means of g1(s,p) and g2(s,p, q1).

The first diagram in Fig. 1, represented by a full
dashed line leading from an external point to a dressed
fermion-scattering vertex, describes a process in which
an electron-hole pair is generated in the electron gas by
the screened ion potential, while the second and third
diagrams correspond to the excitation of an electron-
hole pair by the penetrating charged particle, which is
assumed to interact twice with the electron gas. The
second diagram represents the process in which an elec-
tron or hole scatters twice from the screened potential,
and the third diagram corresponds to the excitation of
an electron-hole pair through two virtual excitations that
combine via a triple vertex into a single screened inter-
action; we refer to this as a quadratically screened inter-
action.

The matrix element

_ <q>0|a’fla’f25a1: aT |<I)0>

S R 11 12
f1f2,i142 <q>0|SI(I)0> ’

(2.18)

corresponding to the process of carrying the system from
an initial state a:fl a;'z |®0) to a final state a}l a,“2 |®o), can
be expanded by noting that only normal ordered prod-
ucts with four uncontracted field operators contribute,
and matrix elements for processes involving higher-order
excitations can be derived in a similar way.

III. LINEAR AND QUADRATIC
RESPONSE FUNCTIONS IN THE RPA

In the so-called random-phase approximation, the ex-
act linear density response function, x4, is approximated
by summing over all ringlike diagrams, as shown in Fig.
4. In this approximation all self-energy and vertex inser-
tions are neglected, and we also replace, therefore, the
exact quadratic density response function M, 4 by the
empty triple vertex, and the dressed scattering vertices
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FIG. 4. Diagrammatic representation of the RPA linear density response function x, approximated by summing over the

infinite set of diagrams containing a string of empty bubbles.

of Fig. 1 by the corresponding undressed ones. Thus,
g1(s,p) and g2(s,p, q1) are set equal to zero in Eq. (2.10),
and, on the other hand, one can write

Xq = Xg + ngqu (3.1)

and
€gg=1

— xqu, (3.2)

where xg is the linear density response function of the
noninteracting electron gas

Xq = —2ih‘1/d4kG°Gk+q (3.3)
and
) d*k o
MQ:QI =2 (2 )4G Gk+qu+q1 (34)
After carrying out the integration of Eq. (3.3) over the
frequency component of k, k°, one finds
o _ Zh—l/ d*k k(1 — nic4q)
¢ (2m)3 | ¢° — (Witq — wK) + 17
_ (1- nk)nk+q (3.5)
7° + (wk — Wik+q) — 0

and noticing that both, in in the first denominator and
—in in the second one, can be written as in, = insgn(q°),
the occupation numbers sum up to give

Mq,q1 = -

d3k 1
(4] -1
= 2h n -
Xq (2m)s - [q" + Wk — Wiktq + 7

1
q° — wk + Wktq + i

(3.6)

The integrals in Eq. (3.6) can be evaluated quite straight-
forwardly, and the time-ordered function of Hubbard?* is
obtained, which is an even function of ¢° and coincides
for positive values of ¢° with the well-known retarded
function of Lindhard.2®

As far as the imaginary part of xg is concerned, the
symbolic identity

lim
n—0t T i

- P-:; + ind(z) (3.7)

can be used, P standing for principal value, to conclude
that Imxg can be represented in terms of a sum over hole

and particle states, as follows:2¢

d3s
Imxg = —(27(')4h_1 (Er—)—s‘ns
A
* [ & ’)’3(1 np)83(q+s — p)

X [6(q° + ws —wp) +8(¢° —ws +wp)] . (3.8)

In order to evaluate the three-point function of Eq.
(3.4), we carry out, first of all, the integration over k° in
the complex plane by always closing the integration path
on the side that displays fewer singularities, and find:

(1 — Nictq) (1 — Nitq,)

&k
2 . .
(2m)? [(q0 + Wk — Wictq + ) (4) + Wk — Wicta, + 1)

(1 — )Nkt qMicta,

(@° + wk — wirq — M) (4 + Wk — Witq, — 1)

Netq(l — 1) (1 — Nt qy)

(—=4° + wktq — wik +7)(—¢° + @) + Wktq — Wktaq; T i70)

1 — Nictq)NkNkta,

(—4° + wtq — Wk — 1) (—¢° + ¢F + Wk tq — Wkta — M)

Nictqy (1 — 1) (1 — Mictq)

(=49 + wkta, — wk +i0)(¢° — @) + Wktay, — Wktq + 1)
(1 — Mitq,)PkNktq

(_q? + Wktqu

Now, we follow the same argument leading from Eq.

—wk —M)(¢° — ¢F + Wirq — Wktq — 1)

(3.5) to Eq.

(3.9)

(3.6), and find, after some rearrangement, the
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following result:
d3
Mg,q = _2/ k3nk ) ! ; ) ! -
(2m) 9° + Wk — Witq +17g 9 + Wk — Wktaq, T g
" 1 1
—¢° + Wk — Wik+q — i1 —(9° — @) + Wk — Wiktq—ar — Vg-a
+ 1 1 _ (3.10)
—q7 + Wk — Wictq, — g, (¢° — @F) + wi — Wk—(a—a;) T Mg—as
Then, an analytical evaluation of the integrations involved gives, for the real part2”
ReMgy,q, = -2 [Iq,ql + I—q,—(q—th) + I—ql,q—qx] ) (3.11)
where
m2h~? A—gr A; —gqrF
I, = € Acosx — A;)In + (Ayjcosxy — A)ln|——| + I 3.12
9 (27)2|q||q1| sin® x [( X 1) A+gqF (4 X ) A +qr ’ B ( )
_ 2 2 o2 AA;—-q"}.cosx-f—qpmm 2 _ 2 oin2
VG g7 sin® xIn A7y —ak cos x—ar /G gL s x for G gisin®x >0
1
aq = (3.13)
— 2 Ci .
\/ g% sin® x — G2 [2 arccos (;‘;—IAZ)(Q;—XA'{) — m|sgn(q®) + sgn(q‘l’)|] for G? — g% sin® x < 0,
[
o d3s d3p
A= mfrll—q;l - I—}I, (3.14)  Hyg, :(2”)4P/(2—7r)_3"5/(2—7r)_3(1 —np)0%(q —p +s)
0 Jf e
Ay = mh_lg—lll — %, (3.15) g1 + Ws — Wstqu
5(q° — ws + wp)
d 5 0 — R (3.18)
an (g q7) + Ws — Wstq-au
and also as
G = /42 — 244, cos x + A2 3.16 Bk [86(g° + wn —
1CO8 X 1 ( ) H,,, = 2msgn(q®)P - (z + Wk — Wktq)
(2m) 97 + Wk — Wkta,

x being the angle between q and q;. Although the ap-
pearance of the sign function in Eq. (3.13) may give rise
to some discontinuities in Iy 4, , ReM, 4, is easily shown
to be continuous, as pointed out in Ref. 27.

As far as the imaginary part of the triple vertex func-
tion is concerned, we take advantage, again, of the iden-
tity of Eq. (3.7), and find from Eq. (3.9) the following
result:

Iqu,th = qulh + th,q + H(q——q;),—ql» (3-17)

where Hg, 4, can be represented in terms of a sum over
hole and particle states:

]

2§52
mZh

foa = —27r|q||q1| sin?

J(qo — Wk + Wktq) :l ‘ (3.19)

—(¢° — aF) + W — Wict(a-a)

Apart from the obvious interest in having ImM, ,, rep-
resented in terms of a sum over hole and particle states,
the representation of Eq. (3.17) happens to be most useful
in order to define the retarded counterpart of the triple
vertex (see the Appendix) and to compare, therefore, an-
alytical representations of the nonlinear stopping power
where both retarded and time-ordered response functions
are involved. Analytical integration of Eq. (3.19) gives

Hg g = sgn(qo) [fq,qx - f—q,—(q—-qx)] ’ (3-20)

where

[(A cosx — A1) —/G? — ¢} sin? x sgn(A cos x — A1)0(G? — ¢%sin’ x)| 0(gr— | A |). (3.21)
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Three-point functions M 4, and Mg 4, , represented di-
agrammatically by empty triangle diagrams with their
lines running in opposite directions, give the same con-
tribution to the matrix element of Eq. (2.10). However,
it is useful to define the symmetrized functions2®

M. =

1
4,91 5 (Mq,ql + Mq,q*qx )v

(3.22)

which is invariant under the change ¢° — —q°, ¢9 —
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—q?, and

. 1
H = i(Hq,tn + Hq,q—q1)7

9 (323)

which is an even function of the frequency component of
0
q, 9 -

In the low-frequency limit, the symmetrized three-
point function gives

|
2g3m2h~?
M. = - -z cos ¢g,
90,0 n2|q||q:||lq — q1| E s |Ch| — 2qF
Iqallku 4% cos ¢q, + 2|ailgr+/1 — 9} /9%
1-q2/q% Zln 0(qr — qr)
V(4¢% —la;1?)(4¢% — |ar|?)

(3.24)

i|lax| — 4% cos dq,
+V<1%/q%z——1|:2arccos (|‘-121||‘I| 2qF2 4
=1

g5 — |a;1?) (49F — |ax[?)

- 27f} 0(gr — QR)}»

201

qr[ReM

FIG. 5. Universal functions, gr[ReMjy ., ]

P T (a) and grH; ,, (b), as a function of hq°/Er,

Er being the Fermi energy, for q? =0,x =0,
la| = gr/2, and three representative val-

s
e

— ues of |qi|. In (a), |qi| = O (solid line),
|ai] = gr (dashed line), and |qi| = 2¢r
(dashed-dotted line). In (b), |q:| = 0.1gr
(solid line), |q1| = qr (dashed line), and
|a1| = 2gr (dashed-dotted line). Dotted lines
in (b) represent the low-frequency limit of
qrHg ., , obtained from Eq. (3.27).

grH

-10
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which coincides with the retarded quadratic density re-
sponse function evaluated by Lloyd and Sholl in the low-
frequency limit.?° q;, q;, and qi (2 # j # k) denote q,
q;, and q — q;, gr is the radius of the circle circum-
scribing the triangle formed by these vectors, and ¢q;
represents the angle facing q; in this triangle.

In particular, if q and q; are parallel, M} o, o is ob-
tained in terms of the linear density response function of
the noninteracting electron gas, Xg,05

13 889

where

q; = max(q,q1,9 — q1). (3.26)

On the other hand, an expansion of the symmetrized
function of Eq. (3.23) in powers of the frequency gives,
after retaining only the first-order terms,

m3p3
H® =~ — e 1— q2 q2 —-1/2
9,91 7"|‘1”‘11Hq—m|( F/ R)

xsgn(cos ¢q)|¢°|0(qr — qr)0(2qr — |a]). (3.27)

In Figs. 5-7, we give plots of universal functions,
| and grH? _ , as a function of Aq°/EFr, Ep

»q1 9,91’
being the Fermi energy, for ¢0 = 0, x = 0, three repre-

2m
M: oo 0= ——————||q:|Rex?.
q,0;q1,0 |q”q1||q“‘h| [l | qi,0
~|a;|Rexg,,0 — qulRex?;,,,o], (3.25)  gr[ReM;

T T T T T

(a)
o~
ags |

qr[ReMg ]

6 FIG. 6. As in Fig. 5, for ¢ = 0, x = 0,
|al = gr, and three representative values of
|q1]|. In (a), |q1| = O (solid line), |q:| = 0.5¢F

s

(dashed line), and |q:| = 2¢Fr (dashed-dotted
line). In (b), |qi|] = 0.1gr (solid line),
|ai| = 0.5gr (dashed line), and |qi| = 2¢F
(dashed-dotted line).

2,91

grH
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sentative values of |q|: |q| = qr/2 (Fig. 5), |q| = qF
(Fig. 6), and |q| = 2gr (Fig. 7), and different values of
|q1|- The dotted lines in Figs. 5(b), 6(b), and 7(b) rep-
resent the low-frequency limit of H; _ , as obtained from
Eq. (3.27), showing that it depends linearly on the fre-
quency in a small range of low frequencies, much smaller
than the frequency range in which the imaginary part of
the linear density response function of the noninteracting
electron gas, Imxg, is linear. The real part of the sym-
metrized three-point function, ReM_ . , happens to be
almost constant in the low-frequency limit, and it goes
to zero as the frequency goes to infinity. Similar results
are obtained for different values of the angle between q
and qj.
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IV. SECOND-ORDER STOPPING POWER

The transition rate, 'y;i“gle, for transferring four-
momentum g to a free-electron gas by moving a particle
from inside the Fermi sea (|s| < gr) to outside (|p| > gr),
thus creating an electron-hole pair, is derived from the
square of the matrix element Sy; of Eq. (2.10), repre-
sented diagrammatically in Fig. 1

S . 2
il g, . @)

single __ :
i =2 i 3 300 )
s p

where tS;q, is the symmetric Kronecker § symbol that

(a)

0.2

2o

q F[RQM

FIG. 7. As in Fig. 5, for ¢ = 0, x = 0,
|a| = 2gF, and three representative values of
|q1l|. In (a), |q1] = O (solid line), |q1| = 0.5gF
(dashed line), and |q:| = gr (dashed-dotted
line). In (b), |qi| = 0.1gr (solid line),

10

]
91

qrH

|qi1| = 0.5gr (dashed line), and |qi| = gF
(dashed-dotted line).
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equals unity if ¢ = ¢’ and is zero otherwise, and ¢ repre-
sents the interaction time.

Within the RPA, gi1(s,p) = g2(s,p,91) = 0 in Eq.
(2.10), and the square of the matrix element correspond-
ing to single excitations gives, therefore, up to third order
in the ion charge

d* ‘II 0
(2 )4 [qulh Ga-f—ql]’
where B, gives the contribution coming from the cre-

ation of an electron-hole pair through one-step interac-
tions, and is represented by the square of the first dia-

|S5il* = By + (4.2)

13 891

This contribution to the absorption probability of Eq.
(4.1) depends, within the RPA, on s and p only through
q = p— s, and is easily shown to be proportional to Imxg.
The second term of Eq. (4.2) gives the contribution com-
ing from the creation of an electron-hole pair through
two-step interactions, represented by the cross product
between the first and second diagrams of Fig. 1, it de-
pends, therefore, on s or p separately through G
and

s+q1?

i%‘am and tfh; ‘cro;s product between the first and third Coar = —é7%—tZ1 VqUq, Vq—a; (€5 1 *eq_lleq:lql
iagrams of Fig. 1:
27!'}1:“2 —2
By = —5— ISE; tZiv qlfql 5(¢°—q-v) x3(¢° —q-v)d(g) —q1-v). (4.49)
_ d*
1+ 4nh 2Z1/ﬁvqu_q1
Then, by summing the square of the matrix element
xRe [ q_11 q_lql M;,ql] 8(¢) —aqi-v)|. (4.3) over initial and final states and using the representations
of Egs. (3.8) and (3.18), we find
J
ingle 47‘-75’*1 s 1
el = — Z1vq5(¢° — - v)0(g") lim ~
I L+ an-2z, [ L0 Re et M2 16(q0 —as-
meg +4m 1 (27‘_)4vq1vq—q1 € [ o “g—aq Q1QI] (¢ —ar-v)
-2 d*qs —1yx —1.~1
+4rh™"Z, W“qlvq—que [(fq )" €q, €q-g, (Hg,q, +1Jg, @)] 86} —a1-v) ¢, (4.5)
where
d3s d3 d°p
Joa = (2#)4/ Wns @) — (1 —np)6*q —p+ 8)ImGy g, - (4.6)

The transition rate 7d°“ble for transferring four-momentum q to a free-electron gas by creating a double excitation,
i.e., by moving two partlcles from inside the Fermi sea (|s1| < gr and |sz| < gr) to outside (|p1| > gF and |p2| > qF),
is derlved from the square of the matrix element Sy, f, ;,;, of Eq. (2.18):

doubl . lsff, | 4 4
Ve e=4t13§°ZZ"sl Znsz Z(l Tipy Z(l Npy) — 20t Oy ,p1—5199—a1,p2— 53"

q1 s1

Neglecting all kind of vertex and self-energy insertions,
as well as vertex ladder contributions, this matrix ele-
ment can be represented diagrammatically, up to second
order in the ion charge, as in Fig. 8. Contributions to the
square of this matrix element that are proportional to Z?
are of higher order in the effective interaction than RPA
Z? contributions to |Sf;|2, and they are neglected, there-
fore, within this approximation. However, contributions
that are proportional to Z3 are of the same order as the

(4.7)

Z3 contributions of Eq. (4.2), and they need, therefore,
to be taken into account:

2 0
|Sf1f2,i1i2l = Dq,lh + Re [Eq,lh Ga+q1] ’ (4'8)
where Dy ,, gives the contribution coming from the cre-
ation of two real excitations through one-step interac-
tions, represented by the cross product between the sec-
ond and third diagrams of Fig. 8, and depends on (s, p1)
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e

S1

(mmumm

and (sz, p2) only through ¢; = p;—s; and g—q; = py—s3:

87l'2ﬁ 5 —92
Dgq =— Q4 tZSqufan N |€q1l |€q—¢h|
xIm[e_qu" ql]é(q —q-v)é(g) —qi-v), (4.9)
and Eg 4, gives the contribution coming from the creation

of two real excitations through one- and two-step interac-
tions, represented by the cross product between the first

double __ 47l'h_1
Yq =Tz

x> 0(a9)6(q°

. 1
o~ av) Jim

—q?){

—8mh 2 Z10q, Vq—q, Im [€ 2 (et

Finally, the stopping power is obtained as the energy
loss per unit path length of the projectile, after multi-
plying the inverse mean free path v,/v by the energy
transfer #¢° and summing over g:

P Zﬁ 0(,Ysmgle + ,y;louble), (4‘12)

and introduction of Egs. (4.5) and (4.11) into Eq. (4.12)
gives, after some algebra, the following result:

dE Z 2 d?

at q
Cde (2m)3

23 d3q Baq
_4;ﬁ (2,")3“”)‘1 (27r)3vQ1Uq—Q1

X[fl(qawa Q17w1) + fZ(q7w7q1,w1)

5 wuqlme, ,0(w)

+f3(q7 w, qlawl)]e(w)v (413)
where
f1(g, 1) = Ime 1Ree'lRee aReM; (4.14)
f2(4,91) = Reeg 1Ree 1Reﬁ e (4.15)
and
fslg, 1) = —21416 Ime, 1Ree e a0 (4.16)

with

...( .
...(p‘

—4Th~ 2Ime 1[m6
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pa FIG. 8. Diagrammatic representation, up
to second order in the ion charge, of the RPA
matrix element of Eq. (2.18), where all ver-
tex and self-energy insertions have been ne-
glected, as well as vertex ladder contribu-
s1 tions.

and third diagrams of Fig. 8:

,87r2ﬁ*4 2
Eqq = —1 Q4 tzquvql Vq-a,€q (6 ) lea- €q— q1|

x8(¢° —q-v)8(q? — a1 - v). (4.10)

Then, by summing the square of the matrix element of
Eq. (4.8) over initial and final states and using again the
representations of Egs. (3.8) and (3.18), we find

a1 Z1Vqy Va—q Im [eg "M |

9,91

*fq_—lql (Hq, at qul,q)] }5(q(1) —q1-V). (4.11)
[
w=q-Vv (4.17)
and
w; =q1°V (418)

The contribution to the stopping power of Eq. (4.13)
that is proportional to Z?2 exactly coincides with the stan-
dard well-known result,3® which in the high-velocity limit
approaches the formula of Bethe.

The Z3 contribution to the stopping power has been
split into three terms. The first one comes from B, of Eq.
(4.3), i.e., from the cross product between the first and
third diagrams of Fig. 1, and gives, therefore, the contri-
bution from losses to one-step excitations generated by
the quadratically screened ion potential, while the second
term comes from Cg 4, of Eq. (4.4), i.e., from the cross
product between the first and second diagrams of Fig. 1,
and gives the contribution from losses to two-step exci-
tations generated by the linearly screened ion potential.
The third term comes from both B, and Cy q,, and from
losses to double excitations, too. Also, we find that there
is no contribution to the Z3 stopping power that is pro-
portional to the product of three imaginary parts of the
dielectric function, as a result of a cancellation between
contributions from Cy 4, and E, 4 , representing losses to
single and double excitations, respectively.

It is well known that the stopping power of an elec-
tron gas can, also, be obtained from the induced retard-
ing force that the polarization charge distribution in the
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vicinity of the projectile exerts on the projectile itself,
and it is found, therefore, to be given by the following
expression:3°

s=Z% 1“’V¢>(r )emve - V

(4.19)
where ¢(r,t) represents the so-called wake potential, that
is, the potential induced by the projectile in the medium.

The wake potential can be calculated as the mean value
of the interaction between a test unit positive charge at

J

3
o(r,t) = Ziet uei(q"—“’t)v [ el
: (27r)3 a q,w

d’q -
(2 )3”‘11'0‘1 ‘h( q,w)

e?and MR
into Eq. (4.19) gives

dE z2 d3q _
- = - —vl/ (27r)3qulm(e§,w) !
Z; [ d% q

R \— -1 —1aR
T k2 (27‘_)3qu (277)3'”‘11”‘1—‘1111“ [(eq,w) (€qpw1)” (€q—ar,w—w:) Mq,w;ql,wl]'

This expression for the stopping power, which is
equivalent3? to the result obtained in Refs. 13, 14, and
16, is shown in the Appendix to be equivalent to Egq.
(4.13) above.

A. Low-velocity limit

Due to the fact that w = q - v and w; = q; - v in Eq.
(4.13), in the low-velocity limit only the low-frequency
forms of the response functions involved enter, thus the

dE _ 4

4
me

- 72
dz 3r 1 A2

a5 /o) [ L (cao)”?

where
L -2 —1 _—1
fi' = Aq€q0€q;,069-a1,0Mq,0,a1,0 (4.24)
and
-1 -1
f2 - B‘lv‘]l qO Q1,0 q—q;,0? (4'25)
with
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r and the electron gas

(Yo|Vh(r,t)|¥o)

é(r,t) = TolTo)

(4.20)

where |W) is the Heisenberg ground state of the inter-
acting system and Vg (r,t) represents the potential of the
interaction between a test positive unit charge at r and
the electron gas, in the Heisenberg picture, and one finds,
up to second order in the ion charge:3!

)—1 — 1] + Z%e p2 —dsq etlar—wit),
' (2m)3
1 ~1p/R
quul) (eq qp,w— ul) q, Q1w ? (4.21)

representing retarded response functions, as defined in the Appendix. Then, introduction of this potential

(4.22)

contribution to the stopping power that is proportional
to Z2 being, in this limit, proportional to the velocity, as
well as contributions to the Z3 stopping power coming
from f; and f; of Egs. (4.14) and (4.15), while contri-
butions to the Z3 stopping power coming from f; of Eq.
(4.16) is proportional to v3. Hence, if one keeps only
the lowest-order terms in the velocity of the projectile,
insertion of the low-frequency limits of both linear and
quadratic response functions into Eq. (4.13) gives the fol-
lowing result for the low-velocity limit of the stopping
power, up to third order in the ion charge:

+
Z1 (v/vo) / dqq”® / dq1/ dx \];1 q]:2|2’ (4.23)
Aq = iﬂ(z -q) (4.26)
q — (qa0)3 qr — ¢ .
and
B.. = 2/ 2\-1/2
9,91 7rq @ Iq Q1|a3( qF/QR)

xsgn(cos ¢q)0(29r — q)0(qr — qF), (4.27)

ao and vg being the radius and the velocity of Bohr, ag =
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h?/m? and vo = €2/, respectively.

From the Z? contribution to the stopping power of Eq.
(4.23), the low-velocity limit of Lindhard and Winther33
can be derived, after expanding €q,0 in powers of ¢/qr,
and in the limit of high densities (vF > vo) the formula
of Fermi and Teller3* is obtained. These formulas can,
also, be obtained on the basis of the free-electron picture,
with the additional assumption of independent, individ-
ual, elastic electron scattering. In this case, the average
energy loss per unit path length for an arbitrary ion mov-
ing with velocity v through an electron gas of a constant
density n is given, in the low-velocity limit, by

dE

—— = nm.vpot(VF)v,

o (4.28)

where

- 2mw/hk
T / dag®|f(@))?  (4.29)

Tu(w) = (mw/k

is the so-called transport cross section, f(q) representing
the scattering amplitude for transferring momentum q.
Since f(q) is obtained in terms of the screened potential
of the ion, once the dielectric function of the medium is
given, the stopping power can be evaluated, within linear
response theory, from Eq. (4.28), and both the formula
of Lindhard and Winther and the formula obtained by
Fermi and Teller can be derived in this way.

Nagy and Echenique3® have gone further to employ the
second Born approximation for the scattering amplitude,
characterizing the screening of the projectile in the elec-
tron gas by a Yukawa potential, and have derived a Z}
correction to the formula of Fermi and Teller, which is,
in the high density limit, in good agreement with the Z3
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contribution to Eq. (4.23). The Z} contribution to Eq.
(4.23) is, also, exactly equivalent to the result derived in
the low-velocity limit by Hu and Zaremba.4

Echenique et al.3¢ extended this method and evaluated
the nonlinear stopping power of an electron gas for slow
ions, from Eq. (4.28), by using the density-functional for-
mulation of Hohenberg and Kohn, and Kohn and Sham37
to calculate the exact scattering amplitude on the basis of
the self-consistent potential generated by a static charge
submerged in an electron gas, and were able, therefore,
to evaluate, within the low-velocity limit, the stopping
power to all orders in Z;.

B. High-velocity limit

For high velocities, the zero-point motion of the elec-
tron gas can be neglected and it can be considered, there-
fore, as if it were at rest. Thus, in this approximation all
k, the momenta of the electrons, become equal to zero,
and Eq. (3.6) leads to the well-known static electron gas
approximation for the dielectric function

2
w
—1_ P
q=1- ", (4.30)
a
where
wp = v/ 4mne2/m, (4.31)

represents the plasma frequency of the electron gas, and

w = ¢q° + ing. (4.32)

Similarly, one can set all k equal to zero in Eq. (3.10)
to obtain

M, = —n{wi(w—w)w2 —ww— wl)w?h - wwlwg_ql (w — w1)wqwq,

a,91 q

2 2
twiwqwq—q, + WWq,Wq—q; ~ WqWq,Wq—q; (Wq + Waq, + “-’q—ql)}

x {(w? — W) (@F —w2,) [(w—w1)? —2_g)]}

qi

which exactly coincides, in the low-q limit, with the low-q
limit of the full three-point function of Eq. (3.4),3% and

. 1
Hg 4, = mnsgn(q’) {5 (¢° = wa) [*qo

17 Way

1
+
—-q7 + Wq — ""q—ql]

1 1
~8(¢° + wq) + :
4 q? +wq —Wq—q, _q(l) — Waq;

(4.34)

Now, introduction of Egs. (4.30) and (4.34) into Egs.
(4.15) and (4.16) results in f» and f; giving no contribu-
tion to the integral of Eq. (4.13), and, we can conclude,

(4.33)

[

therefore, that for the electron gas at rest only the real
part of the three-point function contributes to the Z3 ef-
fect. Then, after substitution of the static electron gas
approximations to both the linear and quadratic response
functions, €5 and My ,,, into Eq. (4.14), and Eq. (4.14)
into Eq. (4.13), one finds

dE _ 4mwnZZe*

—22 = TRAE (Lo+ ZuLy), (4.35)
where
Lo=In Z“‘#, (4.36)

and L; is the Z3 correction to the stopping number,
which coincides with the result obtained in this approxi-
mation in Refs. 12 and 16:
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1 9dmax d
L= / A
Teag q q

'min

Qq q

% dq 'q1
/ "gfla—a@iP[wr — o2 J[(w —w1)? — 0F_o. ]’
_ (4.37)

with

amin = {252 1 = o] Va9

2m2y2 1/2
dmax = {T [1 + 1- (hwp/mvz)z] } ) (439)
ag = /wi +wl, (4.40)
and
Qqqr = —{wi(w — “"1)“"?1 —w(w— “’1)“’?11 - wwlwg_ql

+(w — w1)wqwq, + “-’f‘-"qwq—ql + wzwa“-’q—m
—WqWq, Wq—q, (Wq + wq, + ‘*’q—ql)}- (4.41)

In particular, in the limit as mv? > Aw,, Lo is very
easily found to be given by

2mu?

~1
Lo nmp,

(4.42)

which gives the formula of Bethe for the Z2? contribution
to the stopping power. On the other hand, as far as the
Z3 correction to the stopping number, L1, is concerned,
one can approximate, in the classical limit

0q = wp, (4.43)
the lower g limit being, therefore,
Wp
min = 4.44
q » (4.44)

and choosing the upper limit ¢yax to be the maximum
momentum transfer:

2mv
dmax = —ﬁ—

(4.45)
An analytical evaluation of the integrations involved in
Eq. (4.37) gives

2mu?

" 213w,

5 Tw
(Ll)classical = g ,U3p l:

+0 (v_4)] . (4.46)

Furthermore, numerical study shows that introduction
of the full ag of Eq. (4.40) gives a result for L; with the
same dependence on v as the classical approximation of
Eq. (4.46), though it is smaller than the classical result
by an approximate factor of 1.17, so that the full L; can
be approximated by

2mu?

Sy 47
213w, (4.47)

Ly~ 142752
v
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which is very close to the result obtained by using twice
the prediction of Ashley, Ritchie, and Brandt® with the
minimum impact parameter equal to the radius of the
quantal harmonic oscillator:3°

2mu?

e S TTha,
. P

(L1)s-m = 5—

5 (4.48)

Finally, the velocity distribution of the electron gas,
which is completely neglected in the static electron gas
approximation, can be accounted for approximately by
introducing the plasmon-pole approximation to the re-
sponse functions.*? In this approximation the Z3 correc-
tion to the stopping power is also given by Eq. (4.35),
but now with the plasmon dispersion relation

az = w;‘; + +8%¢% + wg, (4.49)
where
3
o =a (4.50)

represents the so-called mean-square velocity of the elec-
tron gas.

V. RESULTS

First of all, we show in Fig. 9 the low-velocity limit of
the Z3 contribution to the stopping power, as calculated
from Eq. (4.23) and divided by the velocity of the ion, as
a function of the electron density parameter r,. Z3 con-
tributions to the stopping power from f{ and ff of Egs.
(4.24) and (4.25), representing losses to single excitations
generated by the quadratically screened ion potential and
losses from multiply scattered excitations generated by
the linearly screened ion potential, respectively, are also
plotted separately in the same figure (dashed and dashed-
dotted lines), showing that the Z$ term arising from the
quadratically screened interaction is negative, although
it is positive and the dominant contribution at higher ve-
locities, as will be shown below. This is a consequence of
the fact that in the low-velocity limit nonlinear screening
of the ion leads to a weaker potential than that found
in the linear theory. On the other hand, nonlinear cor-
rections are of increasing importance at lower densities,
which is due to the well-known fact that at lower den-
sities the kinetic energy of the electron gas diminishes
and the ion potential becomes a relatively stronger per-
turbation. The Z32 correction accounts, therefore, in the
low-velocity limit, for nonlinear corrections only at high
electron densities and small ion charges.

The stars in Fig. 9 represent, also in the low-velocity
limit, the full nonlinear contribution to the stopping
power, multiplied by a factor of —1, obtained from a
density-functional theory (DFT) calculation for antipro-
tons to all orders in Z;,*! and coincides, as one expected,
with our Z3 correction in the high density limit. The full
nonlinear contribution to the stopping power obtained
from a DFT calculation for protons, represented by cir-
cles in the same figure, also coincides with the Z3 correc-
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—4E /y(a.u.)
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FIG. 9. The contribution to the stopping
power of Eq. (4.23), divided by the velocity
of the projectile, that is proportional to Z3
[solid line labeled (a)], as a function of r,, for
Zy = 1. Z3} contributions from f and fy of
Egs. (4.24) and (4.25) are plotted separately
by lines labeled (b) and (c), respectively. The
stars represent the full nonlinear contribution
to the stopping power for antiprotons, given
in Ref. 41, multiplied by a factor of —1, and
the circles, the full nonlinear contribution to
the stopping power for protons. Both the
stopping power and r, are given in atomic
units, i.e., e=h=m. = 1.

-0.2

0 1 2 3

rs(a.u.)

tion, in the high density limit, although differences are
bigger in this case for lower densities, due to the fact that
electronic states bound to the proton may appear now.
We have also calculated the Z3 correction to the elec-
tronic stopping power for arbitrary velocities of the pro-
jectile, after substitution of the full RPA response func-
tions of Egs. (3.6) and (3.10) into Eq. (4.13). The result
of this calculation for an electron density parameter equal
to that of aluminum, r, = 2.07, is plotted in Fig. 10 by
a solid line labeled (b), as a function of the velocity of
the projectile. Contributions from f;, f2, and f3 of Egs.
(4.14), (4.15), and (4.16) are also plotted separately by
lines labeled (c), (d), and (e), respectively, and the dot-
ted line represents the low-velocity limit from Eq. (4.23).
In the same figure we have also plotted, for comparison,

by a solid line labeled (a), the total Z? contribution to
the stopping power, together with the corresponding low-
velocity limit (dotted line).

It is interesting to notice from Fig. 10 that the range of
validity of the linear velocity dependence of the Z3 cor-
rection persists up to velocities approaching the Fermi
velocity of the electron gas. This is, however, a conse-
quence of two competing effects. First, there is the ef-
fect of single excitations generated by the quadratically
screened ion potential, represented by a dashed line, and,
then, the effect of multiply scattered excitations gener-
ated by the linearly screened ion potential, represented
by a dashed-dotted line, which is very small at high ve-
locities of the ion when the velocity distribution of tar-
get electrons can be neglected. Indeed, in this case the

- FIG. 10. Full RPA contributions to the
stopping power calculated from Eq. (4.13),
for Z;y = 1 and r, = 2.07, as a function of the
velocity of the projectile. Solid curves labeled
(a) and (b) represent Z? and Z3? contribu-
‘ tions, respectively, in atomic units. Z7 con-
tributions from f;, f2, and f3 of Egs. (4.14),
(4.15), and (4.16) are plotted separately by
lines labeled (c), (d), and (e), respectively.
Z? and Z3? contributions to the low-velocity
limit of Eq. (4.23) are represented by dotted

lines.
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so-called static electron gas approximation can be made,
and it follows from this approximation that only f; of Eq.
(4.14) contributes to the Z3 stopping power, as shown in
the preceding section.

The static electron gas and plasmon-pole approxima-
tions to the Z3 effect are plotted in Fig. 11, again for
r, = 2.07, as a function of the velocity of the projec-
tile. The dashed and dashed-dotted lines labeled (b)
and (d) represent the results obtained from Eq. (4.35)
with the Z3 term of Eq. (4.37), in the static electron gas
and plasmon-pole approximations, respectively, and the
dotted line, the result obtained for the Z3 effect when
the Z3 term of Eq. (4.48), (L1)Js—m, is introduced into
Eq. (4.35). Both in the static electron gas and plasmon-
pole approximations contributions to the Z3 effect from
f2 and f3 of Egs. (4.15) and (4.16) are exactly equal to
zero, and we compare, therefore, in this figure, these ap-
proximations with the full RPA contribution to the Z3
effect coming from f; of Eq. (4.14), plotted by a solid
line labeled (a). For comparison, the total ZZ contribu-
tion to the stopping power is plotted in this figure by a
solid line labeled (e), together with the corresponding re-
sults obtained in the static electron gas and plasmon-pole
approximations, dashed and dashed-dotted lines, respec-
tively.

It is obvious from this figure that at high velocities of
the ion both the static electron gas approximation and
twice the semiclassical formula of Jackson and McCarthy
give a good account of the full RPA result, while at in-
termediate velocities this contribution is overestimated in
these approaches, showing that the non-negligible zero-
point motion of the electron gas gives rise to a smaller
contribution from losses to one-step single excitations.
However, this is almost compensated by the nonvanishing
contribution from losses to two-step single excitations.
As a consequence, the static electron gas approximation
happens to be a good approximation of the full RPA
result even at intermediate velocities, down to velocities
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approaching the Fermi velocity of the electron gas, where
the velocity distribution of target electrons is not negli-
gible. This is exhibited in Fig. 12, where the total Z3
contribution to the stopping power, represented in Fig.
10 by a solid line labeled (b), is plotted again together
with the Z3 contribution to the stopping power obtained
after introduction of (Lq)s—a into Eq. (4.35).

The numerical results for the total RPA Z3 contribu-
tion to the stopping power and different values of the
electron density parameter r, are illustrated in Fig. 13
by solid lines, together with the corresponding static elec-
tron gas approximation (dashed lines) and twice the for-
mula of Jackson and McCarthy (dotted lines). At low
velocities the Z7 term gets larger as the electron den-
sity diminishes, and it becomes almost constant at the
lower densities. On the other hand, at velocities higher
than the Fermi velocity, where the static electron gas ap-
proximation is applicable, the magnitude of the Z3 effect
increases with r, at high densities, and it decreases slowly
at the lower densities. This is shown in Fig. 14, where the
Z3 term is plotted for different values of z = 2mev? [ hw,,
against the electron density parameter 7,.

The high-velocity limit of the Z? contribution to Eq.
(4.35) with (L1)s—m, divided by y/w,, becomes veloc-
ity and density dependent through the parameter z =
2mev?/hw,, and this fact allows us, therefore, to plot
a curve for the reduced Z? correction to the stopping
power, (—dE/dz)/,/wp, that is independent of the elec-
tron density at high velocities of the projectile. Our full
RPA calculation of this reduced Z? stopping power is ex-
hibited in Fig. 15 for different values of r, (solid lines),
together with twice the result obtained by using the for-
mula of Jackson and McCarthy, which is represented by a
dotted line. At low velocities, where the stopping power
is proportional to the velocity, the reduced Z3 term in-
creases with r,, and it becomes almost independent of
the electron density for metallic densities.

Finally, in order to account approximately for the Z3
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FIG. 11. Contribution to the Z? stopping
power from f; of Eq. (4.14), as a func-
tion of the velocity of the projectile, for
Zy = 1 and r, = 2.07. (a) Full RPA re-
sult. (b) Static electron gas approximation.
(c) Plasmon-pole approximation. (d) Re-
E sult obtained after introduction of (Li)s—n
of Eq. (4.48) into Eq. (4.35). (e) Z? stop-
ping power, as obtained in the full RPA
(solid line), static electron gas approximation
(dashed line), and plasmon-pole approxima-

tion (dashed-dotted line).
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FIG. 12. Total Z? and Z}? contributions
to the stopping power, as a function of the
velocity of the projectile, for Z; = 1 and
rs = 2.07. (a) Full RPA Z} stopping power.
(e) Z? stopping power obtained after intro-
duction of (Li1)s—m of Eq. (4.48) into Eq.
(4.35); this is the same curve as curve la-
beled (d) in Fig. 11. (f) Full RPA Z? stop-
ping power (solid line), together with the
high-velocity limit obtained with the formula
of Bethe, i.e., by introducing Eq. (4.42) into
Eq. (4.35) (dotted line).

FIG. 13. Total Z? contribution to the
stopping power, as a function of the veloc-
ity of the projectile, for Z; = 1 and 5 rep-
resentative values of r;: r, = 0.1, 7, = 0.4,
rs = 2.0, rs = 3.0, and r; = 6.0. Results
obtained after introduction into Eq. (4.13)
of the full RPA response functions are plot-
ted by solid lines. Dashed and dotted lines
represent results obtained in the static elec-
tron gas approximation, and by introduction
of (L1)s—m of Eq. (4.48) into Eq. (4.35), re-
spectively.

FIG. 14. Full RPA Z3? contribution to the
stopping power, as a function of r,, for six
representative values of z = 2m.v?/fuwy:
z =012z =10,z = 2.0, z = 3.0, z = 4.0,
and z = 5.0.
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FIG. 15. Reduced Z? contribution to the
stopping power, (—dE/dz)/(wp)'/?, as a
function of ¢ = 2m.v?/fw,, for Z; = 1
and 4 representative values of r,: 7, = 0.1,
rs = 0.4, 7, = 2.0, and r; = 6.0. Solid curves
represent the result obtained in the full RPA,
1 and the dotted curve, the result obtained af-
4 ter introduction of (L1)s—a of Eq. (4.48) into
Eq. (4.35), which is independent of the elec-
tron density.

Fu—) L L Lol
0.1 1 10
2v? Jwy(a.u.)

effect coming from all target electrons, we have used a lo-
cal plasma approximation. In this approximation, which
has been used successfully to compute the Z? contribu-
tion to the stopping power of different materials,42:43 it
is assumed that a local Fermi energy can be attributed to
each element of the solid, and the effective Z3 correction
to the stopping power is computed, therefore, from the
following expression:

average
L] )

(3) 3,4
( dE) _ 4mnZie (5.1)

Cdx M2
where the Z? term, L;, is obtained after doing the aver-
age over each atom:

Livereee = Ziz /d3rn(r)L1[n(r)], (5.2)
n(r) represents the local density, which has been com-
puted in the Hartree-Fock approximation by using the
Wigner-Seitz boundary condition,** n is the total elec-
tron density, and Z, is the atomic number of the solid.
In Ref. 20 the Z3 contribution to the stopping power
of silicon, as computed in this way with the full RPA
Ly [n(r)] factor, has been presented, showing that at high
enough velocities, for which all target electrons may be
regarded as free, both the full RPA and the semiclassical
results give a good account of the experimental result.
However, at lower velocities the experimental Z3 correc-
tion cannot be described by the semiclassical result, nor
by results using the static electron gas or plasmon-pole
approximation; indeed, it is easy to see from Fig. 13
that at the highest densities of the target, for which the
local electron density parameter is r, ~ 0.2, the static
electron gas approximation would be applicable only for
velocities higher than v = 10vg, and, consequently, one
needs to compute the full RPA response of the medium
for the local plasma approximation to be applicable. One

sees that the results we obtain in this way are in good
agreement with the experiment.

VI. CONCLUSIONS

First of all, we have developed a many-body perturba-
tion theoretic scheme to derive the transition rate for pro-
cesses leading, as a result of the passage of ions through
matter, to all possible momentum transfers to the elec-
tron gas.

An alternative derivation of the imaginary part of the
three-point Feynman diagram has been presented, and
it has enabled us to give an explicit expression for the
Z3 correction to the stopping power in terms of both the
real and the imaginary part of double and triple vertex
functions.

Then, the Z3? contribution to the stopping power has
been evaluated, for the first time, in the full random-
phase approximation, for a wide range of nonrelativistic
velocities of the penetrating particle.

The previously studied low- and high-velocity limits
have been discussed and their range of validity analyzed.
We have shown that for velocities smaller than the Fermi
velocity the stopping power is, up to third order in the
ion charge, a linear function of the projectile velocity, and
that in the high-velocity limit both the static electron
gas approximation and twice the prediction of Ashley,
Ritchie, and Brandt® with the minimum impact parame-
ter equal to the radius of the quantal harmonic oscillator
give a good account of the full RPA result. We have, also,
shown that the universality of the semiclassical formula
for the Z3 effect can be extended to our full RPA result.

Finally, we have demonstrated that our theory gives
good agreement with experiment when the local plasma
approximation is employed.
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APPENDIX

The Z3 contribution to the stopping power of Eq.
(4.22), derived from the second-order wake potential of
Eq. (4.21), may be represented as

dEN® _ 7 [ d&q
dz N vh2 J (2m)3
X[fl(cbw7qlvw1)+f2(q7w7q1,w1)

d3Q1
(271.)3 v‘h vq_ql
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f2(q,q1) = Re(el) 'Re(ell ) *Re(el , )

[Hf91+H£q+Hf q1,— 41]’ (A3)
fa(q,q1) Z—[Im(f )" *Im(e R) lRe(eq qx)_l
+Im(eR) "Re(ef) " Im(e ff )t
+Re(e, "= 1Im(eR) m(el €q ql)_l]
R R R
[Hq q1 + Hq1 q + Hq q1,— 41] ? (A4)
and

falg,q1) = —Im(ff)_llm(fg)_llm(GR ) 1Rerq1’

(A5)

all response functions being assumed to be retarded:

R O\R
+f3(qaw7 ql,wl)] Eq =1- (Xq) Vg» (AG)
+f4(qawa ql,wl)]e(w)’ (Al) Wlth
where ( . / Bk 1
fi(g,q1) = [Im(ef)""Re(ell )~ "Re(er ;)" xa)" 271')3 q° 4+ wk — Wktq + N
+Re(e R) 1Im( f) 1Re( €q— ql) 1
0 —wk tw +in|’ (A7)
_ — Wi k+
—{—Re(ef) lRe(eq IIm(eq qx) ]Rerql, 4
(A2) and
J
a3k 1
qu = _/ 3"k |5 0 . ;
a (2m) q° + wk — Wkiq + 1 g7 + Wk — Wkiq, + N
n 1 1
—¢% + Wk — Wktq — 1 —(¢° — ¢F) + Wk — Wktq-q, — 7
1 1
+ +(@ = a—a)|. (A8)

The real part of M, R

9,91

of the identity of Eq. (3.7), and find from Eq. (A8)

—‘1?+wk—wk+q1 —in (¢q° “ql)+wk—wk (a—ay) T 7

is invariant under the change ¢° — —¢°, ¢? — —¢?. For the imaginary part, we take advantage

R R R R
ImMgq, = Hgl, + Hy, g+ H(q—qx),—ql’ (A9)
where H, lf o 1S, as well as the imaginary part of the retarded function of Lindhard, (Xq)R, an odd function of ¢°, and
R __ 0rrs

H‘I»‘Il = sgng Hq,ql’ (AlO)

H; , being the time-ordered function of Eq. (3.23), or, in terms of a sum over hole and particle states

d3s d3p 3(q° + ws — wp) 5(q° — ws + wp)
HE 27)4P B3(q—p+s s LA s P ] . (A11

wa: = (27) @re™ ) Gr )3( me)0(@ Pt ) 9]+ ws —Wstq,  —(¢°—q}) +ws —wstq-a (A1D)

Now, we follow Esbensen'? to decompose ¢° into [¢? + (¢° — ¢?)], and due to the symmetry with respect to the
transformation q; — q — q; it can be easily shown that the same contributions from fi, f2, and f; of Egs. (A2),

(A3), and (A4) to the integral of Eq. (A1) come from

file, 1) = 2Ime, 1Ree 1Ree

aReMyq, (A12)
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f2(9,@1) = 2Ree; "Rec;"Ree, g, Hy g (A13)
and

fi(q,q1) = —4Ime; 'Ime_ 'Ree; ' H} (A14)

91,97
respectively, while similar arguments can be used to show that f; of Eq. (A5) does not contribute to the integral. As
a result, it is straightforward to conclude that Egs. (4.13) and (4.22), derived from an open diagrammatic analysis of
scattering matrix elements on the one hand, and from the wake potential, on the other hand, are equivalent.
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