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Composite-fermion analysis of the double-layer fractional quantum Hall system
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EKect of interlayer tunneling in the double-layer fractional quantum Hall system at the total
Landau-level filling of v = 1/m (m: odd integer) is analyzed with the composite-fermion approach in
which the Qux attachment is directly applied to the electron-electron interaction. A comparison with
a numerical result indicates that the vertically coupled Laughlin liquids may be regarded as a system
of composite fermions with reduced interparticle interactions and unchanged interlayer tunneling,
which makes the quantum-Hall regime, identified by a gap in the pseudospin-wave excitation mode,
wider as v becomes 1/3, 1/5, . . . .

The &actional quantum Hall (FQH) state is a strongly
correlated quantum liquid realized in a two-dimensional
electron system in strong magnetic fields. Recently,
much attention is focused on what happens when two
such liquids are coupled face to face, as realized in quan-
tum wells, ' and the layer degrees of &eedom in such
double-layer systems are often described by a pseudospin.

Although a (spin-polarized) double-layer system may
at first seem analogous to a single-layer system of spin
1/2 electrons &om the analogy between pseudospin and
real spin, an essential difference does indeed exist, due
to two factors: One is the interlayer tunneling, which
makes single-particle wave functions split into symmet-
ric and antisymmetric (SAS) ones about the center of the
double-layer structure, with an energy separation, LSAS.
The second is the controllability of the intralayer ver-
sus interlayer electron-electron interaction strengths by
the layer separation, which makes the symmetry degrade
&om SU(2) to U(1).

In particular, the double-layer FQH state for the to-
tal Landau level filling of v = 1/m (m=odd integer)
is pseudospin polarized in analogy with an easy-plane
ferromagnet. The two factors above are exactly respon-
sible for the pseudospin polarization: (i) The tunneling
gap acts as a magnetic field along the x axis for the pseu-
dospin, thereby pushing the electrons into the symmetric
band. (ii) The intralayer and interlayer repulsive elec-
tron correlations make the ground state represented by
Halperin's 4,5 an extension of Laughlin's state to
two fermion species, where the same power for intralayer
and interlayer correlations (i.e. , m = n), realized unless
d is too large, represents a pseudospin-polarized state.

Thus the layer separation, d, normalized by the mag-
netic length, E = gch/eB, and the strength of tunnel-
ing, Ls~s, normalized by the Coulomb-interaction en-

ergy, ez/eI. (e=dielectric constant) are the relevant di-
mensionless parameters, and we can think of a phase
diagram on the parameter plane. For an integer
v = 1, the pseudospin-polarized quantum Hall state
evolves continuously &om the correlation-dominated (or
"two-coxnponent") character (xiii) to the tunneling-
dominated (or "one-component" ) character. In the

single-mode approximation (SMA), ~ s this crossover,
with no intervening non-QHE (quantum Hall efFect) re-
gion, is described by a continuous rotation of the pseu-
domagnon vacuum in a Bogoliubov transformation. The
continuity is consistent with an experimental result by
Murphy et aL2

There, the boundary of the QHE region is identified
&om a finite gap in the charge excitations. Since the
ground state is pseudospin polarized, the low-lying ex-
citation is a Goldstone (pseudospin-wave) mode, where
the densities of two layers Quctuate in a correlated
manner. MacDonald et al. have, in fact, obtained the
QHE region for v = 1 &om the gap in the pseudospin-
wave mode with the SMA. The excitation spectrum for
v = 1 has also been examined with the random-phase
approximation (RPA) or Hartree-Fock method. s

A natural question then is how we can extend the
physics of the double-layer system with the interlayer
tunneling to the fractional v = 1/3, 1/5, . . . . The SMA
calculations of the excitation spectrum have only been
done in the absence of interlayer tunneling for 4
with v = 2/(m + n). o An intriguing way that we pro-
pose here is to apply a recent way of looking at the
ordinary (single-layer) FQH system, in terms of the
composite-fermion picture or the Chem-Simons gauge
field theory, ~2 to the fractional double-layer system.

The composite-fermion (CF) picture asserts that a
quantum Hall liquid of electrons in an external magnetic
field B corresponding to v = p/(2mp+ 1) (m, p integers)
is equivalent, in a mean-field sense, to a liquid of compos-
ite fermions each carrying 2m Bux quanta in a magnetic
field B,g = B —B„ i/~ corresponding to an integer
v = ~p~. There is a mounting body of numerical and
experimental evidence supporting this picture.

It is a highly nontrivial problem whether the CF pic-
ture can correctly describe the excitations that is domi-
nated by both interaction and tunneling. As for the exci-
tation spectra, a Chem-Simons (CS) approach, in which
the Huctuation around the mean CS gauge field is treated
with the RPA, has been developed, but there the effec-
tive mass of the particle remains a quantity difBcult to
fix. In fact the Chem-Simons RPA calculations for the
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double-layer system ' " are still some way &om an ac-
curate description of the intra-Landau-level excitations.
In this context it may be desirable to manipulate the in-
teraction, so that we adopt here a particular CF picture
due to the present authors that directly plugs the Qux-
attachment transformation into the electron-electron in-
teraction (Haldane's pseudopotential), which enables us
to obtain parameter-&ee results for the pseudospin-wave
excitation.

We can then identify the QHE region from the charge
(pseudospin-wave) excitation spectrum, calculated &om
such a composite-fermion picture, in the v = 1/m
(m=odd integer) double-layer FQH system of spin-
polarized electrons. A comparison with the exact result
for a finite system shows that the picture indeed gives
quantitatively accurate long-distance physics. This pro-
vides an analytic calculation of the excitation spectrum
for a fractionally filled system with interlayer tunneling.

Let us now mention two issues inherent in the double-
layer FQH system. One is whether there is an essential
difference between a lateral tunneling of composite par-
ticles (in a side-by-side geometry) s and the vertical tun-
neling (in a face-to-face geometry). We shall show that
the v = 1/m double-layer FQH system can be regarded
as a system of composite fermions with the reduced inter-
particle interaction, while the tunneling, when vertical, is
unchanged. The increased relative importance of the tun-
neling makes the QHE region for v = 1/m in the phase
diagram, obtained here for m = 3, 5, wider for larger m.

Second, in the absence of interlayer tunneling, the
pseudospin-polarized state has a broken U(1) symmetry
and may have a spontaneous interlayer phase coherence. 4

The Goldstone (pseudospin-wave) mode restoring this
broken symmetry is, in fact, gapless and k linear in anal-
ogy with a magnon in an XXZ ferromagnet. An in-
troduction of the interlayer tunneling enforces the U(1)
symmetry to break, thereby introducing a gap in the
pseudospin-wave mode. The issue is whether the gap-
less Goldstone mode in the absence of interlayer tunnel-
ing will signify a Josephson-like eKect. ' We shall also
touch upon this problem. Hereafter, we ignore the real
spin degrees of &eedom or the finite thickness of each
layer for simplicity.

The CF picture for the pseudospin wave is as follows.
When we attach (m —1) flux quanta &om the external
field to each electron for an odd m = v i, the relative an-
gular momentum n between electrons translates into the
relative angular momentum n —(m —1) between compos-
ite fermions. 2i Since B ~ = B/m is thereby reduced &om
the bare field by a factor of 1/m, the magnetic length /
changes into E = ~mE in a mean-field sense, while the
number of single-particle states per unit area, 1/2vrE2, is
also reduced by a factor 1/m.

For the motion within a layer, we can work with the
spherical geometry to make the relevant quantum num-
ber the angular momentum. As one maps stereograph-
ically a Hat system onto a spherical one, the transla-
tional symmetry is translated into the rotational symme-
try, where the wave number k relates to the total angular
momentum L as k = L/R with R being the radius of the
sphere. When the total magnetic Aux going out of the

sphere is 2S (an integer due to Dirac's condition) times
the flux quantum, the relation to v is 2S = v iN —b

with N being the number of electrons and b an integer.
The transformation into the CF picture is then given

by
2S=2S/m=N —1,

- =V~s-

where 0 and 0' (= 1, 2) are layer indices, while V2&

V2s „and V2s „——V2s are the intralayer and inter-
layer pseudopotentials for the relative angular momen-
tum n = 2S —J, respectively.

We can now plug this transformation into the v = 1
SMA formula for the pseudospin-wave mode, which is
expressed in terms of 6j symbols, (II+&), in the spherical
geometry. Then we arrive at the desired expression for
the pseudospin-wave spectrum, uL„ for v = 1/m as

(dL, = /eL, (el, + 2AL, ),
2S

eL +sAs + ) (2J+ 1)(—1) V~ 2S+ 1

&~& g( 8 S I
)

2S—J:odd

Al. = ) (2J y 1)(V~" —V~")(—1)2
J

(8 8 I
) (2)

where the range of the total angular momentum now
reduces to 0 & L & 2S. Since the pseudopotentials
are shifted to a higher side of the relative angular mo-
mentum (where the potential is softer), this approach
can be called the pseudopotential-shifted single-mode
approximation. We can confirm that, in the absence
of tunneling (AsAs = 0), the above formula reduces to a
gapless Goldstone mode with (~&&~~&) = (—1)2s ~/(2S +
1). As for the tunneling, we can regard that the flux
attachment (or the singular gauge transformation) does
not a6'ect the vertical interlayer tunneling.

We now compare the composite-fermion SMA result
with numerical ones for finite systems. Figure 1 shows
the low-lying excitation spectrum at v = 1/3 for d/E =
1.0 and Esp, s/(e /eE) = 0.01 (a) or 0.05 (b). For the
numerical diagonalization we take a five-electron system,
the largest size tractable in the presence of tunneling.
The charging energy is naturally included in the diago-
naliz ation.

We can see that the pseudospin-wave mode in the fi-
nite system does indeed appear in the truncated range
0 ( I & 2S = %—1, while naively there is no reason why
the states should not extend for 0 ( I ( 2S = m(N —1).
As for the dispersion curve itself, the CF prediction,
Eq. (2), exhibits a good agreement with the exact re-
sult up to the wave number k E . This is the case
with both Fig. 1(a), where a precursor of the softening of
the pseudospin-wave mode is visible, and Fig. 1(b) with
one-component character (see below). Thus, the mes-
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FIG. 2. The composite-fermion SMA result for the phase
diagram for the v = 1/m pseudospin-polarized quantum
Hall state [the region below solid line (v = 1), broken line
(v = 1/3), or dotted line (v = 1/5)].
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FIG. 1. The excitation spectrum from the ground state
(origin of the figure) for a double-layer five-electron FQH sys-
tem at v = 1/3, which comprises pseudospin-wave excita-
tions (open circles) and other excitations (solid circles), is
shown for d// = 1.0, and As~s/(e /ef) = 0.01 (a) or 0.05 (b).
The results for the pseudospin-wave excitation in the compos-
ite-fermion SMA for the same number of electrons (crosses)
and for a 51-electron system (solid line) are also shown. In
(b), the roton excitations within the symmetric band are also
displayed by open squares. The roton and pseudospin-wave
excitations are, respectively, connected by curves as a guide
to the eye.

sage here is that the v = 1/m double-layer FQH system
may be mimicked by a system of composite fermions at
v = 1 with effectively reduced interparticle interactions
for pseudospin waves even in the presence of tunneling.
Et may be interesting if these collective modes are exper-
imentally observed, e.g. , with grated samples.

If we have a closer look at Fig. 1(b), we can see that
Ds~s/(e /el) = 0.05 is large enough to make the ground
state almost a v = 1/3 Laughlin liquid within the sym-
metric band with little mixing of the antisymmetric band.
This is signaled by the fact that the lowest-lying excita-
tion is a magnetoroton mode within the symmetric band
(identified by its pseudospin), where the intraband roton
costs less energy than the interband pseudospin wave.
The increased importance of Ls~s relative to the inter-
particle interaction is responsible for the situation.

The increased importance of Ls~s also appears in the
phase diagram on the AsAs —d plane for the v = 1/m
double-layer FQH state. The result (Fig. 2), obtained by
identifying the softening of the pseudospin-wave mode
as the disappearance of the @HE gap, shows that the
@HE region widens as v becomes 1/3, 1/5, . . . . This is

again because the electron-electron interaction is effec-
tively weakened as we attach two, four, . . . Huxes, which
in turn reduces the mixing of the antisymmetric state
in the ground state to push the system toward the one-
component FQH state. Thus, the CF picture gives a nat-
ural explanation of the persistence of the one-component
character of the v = 1/3 FQH state observed in a wide
single quantum well, where LSAS is intrinsically large,
while the reduction of the interaction, due to the expan-
sion of the wave function in wide wells, evoked in Ref. 3,
will be quantitatively a secondary contribution.

Now we comment on the possibility of the "Josephson-
like" interlayer current in the v = 1/m double-layer sys-
tem, as discussed by several authors. ' Since this effect
should be related to the transition between Halperin's

states [Ki(= 0, 1, . . . , N): the number of elec-
trons in layer 1], which are the k = 0 states, attention
should be paid on the gap at k = 0. When the inter-
layer transfer of electrons occurs over the whole two-
dimensional area, a finite gap emerges at k = 0 [explicitly,
Ap = QAs~s(AsAs + 2Ap) &om Eq. (2)], and this will,
as pointed out by MacDonald and Zhang, refute the dc
Josephson-like effect. The suppression of the "Josephson
effect" is also discussed in the side-by-side geometry by
Feng et al, who pointed out that a composite particle
leaves behind phase fluctuations of the CS field when it
tunnels laterally. By contrast, in a vertical tunneling in
a double-layer geometry, a composite particle can readily
tunnel since it does not have to shake off the Aux quanta
as seen in the present result. Therefore, the "Josephson
effect" may still be possible in a geometry where the two
layers have only a weak (e.g. , spatially localized) verti-
cal tunneling that may be regarded as a perturbation,
while the interlayer electron correlation over the whole
area continues to "lock" the CS phase.
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