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Laughlin wave function and one-dimensional free fermions
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Making use of the well-known phase-space reduction in the lowest Landau level, we show that the
Laughlin wave function for the v=1/m case can be obtained exactly as a coherent-state representation
of a one-dimensional (1D) wave function. The 1D system consists of m copies of free fermions associated
with each of the 1V electrons, confined in a common harmonic well potential. Interestingly, the condition
for this exact correspondence is found to incorporate Jain's parton picture. We argue that this
correspondence between the free fermions and quantum Hall efFect is due to the mapping of the 1D sys-
tem under consideration to the Gaussian unitary ensemble in the random matrix theory.

The Laughlin wave function, which describes the in-
compressible quantum Quid phase of a two-dimensional
(2D) interacting electron gas in a strong magnetic field,
has enjoyed tremendous success in explaining the ob-
served features of the fractional quantum Hall effect
(FQHE). ' Jain has given an interpretation of FQHE in
terms of the integral quantum Hall eff'ect (IQHE) of frac-
tionally charged "partons" and also as the IQHE of
composite fermions —fermions with an even number of
Qux quanta attached. In recent times there have been at-
tempts to relate the quantum Hall effect with a certain
1D model —the Calegero-Sutherland model. This is due
to the similarities between the structures of the ground
state and the excited states of the two systems. Azuma
and Iso, in particular, have shown that a close relation-
ship exists between the two wave functions for a quantum
Hall system under certain restrictions and Iso also has
argued for a universality between the two in the long-
wavelength limit. It is interesting to inquire if such a
construction is possible under more general conditions
and what is the role of Jain's picture in this context. In
this paper, we obtain an exact mapping between the
Laughlin wave function for the v=1/m case and the
wave function for 1D free fermions, making use of an ap-
proach analogous to Jain's parton picture.

In arriving at the Laughlin wave function, it is as-
sumed that the electrons are restricted to the lowest Lan-
dau level (LLL) due to the efFect of the strong magnetic
field and low temperatures. It is well known, as we shall
also show below, that this restriction converts the
configuration space of the electrons to a phase space of a
1D system. Viewed in this way, it is pertinent to ask if
the Laughlin wave function itself can be considered as a
coherent-state representation of a 1D system. We show
that the ground-state wave function for m noninteracting
partons associated with each of the X electrons confined
in a common harmonic well has as its coherent-state rep-
resentation the Laughlin wave function when certain re-
strictions are imposed. Interestingly, these conditions
implement Jain's parton picture quite elegantly. In con-
trast to Ref. 7, we do not have to take the limit of mag-
netic field going to infinity.

Consider a particle of change e and mass mo in two di-

mensions (2D) in a transverse magnetic field 8 and a po-
tential V(x,y). In the gauge A=(8/2)( —x,y),

I.=—,'mo(x +y )+ (
—yx+xy) —V(x,y) .

Since the spectrum is equally spaced with spacings
A'co, =AeB/mac, when the potential is weak the restric-
tion to LLL takes place when zero mass limit is taken. In
this limit, it follows from the Lagrangian that

[x,y] = iltt, — (2)

(q lz ) = —, exp — (zz+z'+q' —2V2qz) .
[ls n ]'~ 21ii

The Laughlin wave function for v= 1/m is given by

(glz, ) = Q (z, —z ) exp —g z, z, , (4)

where l~ =fic le8. Thus the phase space is reduced from
the four variables p, p, x, y to two variables X&, X2
defined below. These can also be seen as the guiding
center coordinates of the cyclotron orbit given by
X;=x;+(lit /irt)e;in J, where n J =pj —(e/c ) AJ, satisfying
the same relation as in (2). Here, x i and xz are the coor-
dinates (x,y) of the electrons before the LLL restriction
is made. When restricted to the LLL, the coordinates of
the electron in 2D are identified with that of the guiding
center coordinates. The two coordinates thus behave like
canonically conjugate variables of a 1D system. The
combination X, + iX2 =&2b (b ), obeying the oscillator
algebra, connects the degenerate angular momentum
states. Thus the wave function of the LLL state is given
by 0'(z)=(~lllz), where z =x+iy is the eigenvalue of
X, +iXz in the state lz ). lz ) is the coherent state associ-
ated with the angular momentum algebra. The coordi-
nate space representation of the coherent state, (qlz),
where lq) is the 1D coordinate basis, follows easily.
Taking the inner product of ( q l, with the defining
coherent-state relation and using a suitable representa-
tion for X&,X2 in terms of 1D variables, the following re-
sult follows:
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(5)

This wave function, which is the ground-state wave
function of free fermions in a common harmonic well, is
antisymmetric in particle index i,j and symmetric in the
"parton" index a. The number of partons m has to be
odd for it to describe electrons in the LLL in 2D. We
show that the coherent-state representation of (5) is (4)
when the partons are constrained to be the same in the
phase space, for each of the N particles and their charges
chosen to be 1/m of electrons.

To find the coherent-space representation of (5), we
need

&g~z)= f (glq)&qlz)dq . (6)

The overlap between the coherent state and the coordi-
nate space is given by

where we have expanded the state (P~ in the coherent-
state basis. We wish to identify the 1D system whose
coherent-state representation gives exactly (4).

Consider the ground-state wave function of m nonin-
teracting fermions associated with each of the N parti-
cles, confined in a harmonic well of frequency co given by
the cyclotron frequency. These m particles are referred
to as "partons" following Jain and the reason for that
will be clear later.

(glq) =g(q'" q™ q'" q™)

i, a

This is a generalization of (3) from the one-particle case
to the many-particle case. This expression in conjunction
with (5) gives the coherent-space representation of a
given wave function. z,.' now has the meaning of coordi-
nates of partons in the LLL in 2D. The chirality associat-
ed with the Laughlin wave function, due to the presence
of the magnetic field, enters in (7): if the direction of the
magnetic field is reversed, then z~z, as ~z) is the
coherent state associated with the angular momentum
lowering operator. Now z,.' are chosen to be the same for
all (a) for a given i:

(8)

Only with this restriction does the Jastrow factor of the
coherent-state representation match that of the Laughlin
wave function. This choice has the physical meaning of
constraining the coordinates of the m partons to be the
same in the 2D coordinate space of the LLL system.
This restriction is analogous to Jain's picture of treating
electrons as composed of m partons. This is the reason
for the term parton used in this paper.

Also as in Jain s picture, each parton having coordi-
nate z; in the LLL is taken to have charge 1/m of elec-
trons. This is needed, as we shall see, to obtain the
Laughlin wave function with the correct Gaussian width.

Evaluating (6), using (8) in (7), requires the following
result:

fQdq;+(q; —
q )exp —g(q —&2q;z;)=const+

i i&j l i&j dz
exp g (z, )=const Q (z, —z )exp g (z; ) . (9)

Using (9) to evaluate (7) by integrating over each 1D
coordinate of the partons for all of the Ã particles, we get

my, /z, /'
(g~z) =const + (z; —z. ) exp—J 2(2

(10)

By choosing the charge of each parton to be 1/m of that
of the electron's charge, the Laughlin wave function re-
sults.

We have thus shown, using the LLL restriction, that
the Laughlin wave function is the holomorphic represen-
tation of a 1D system of free fermions in a harmonic well.
The fact that it is the noninteracting fermions which are
related to FQHE wave functions can possibly be under-
stood as follows. It is well known that the probability
distribution of free fermions in harmonic confinement in
1D is isomorphic to the probability distribution of the ei-
genvalues in a Gaussian unitary ensemble in the random
matrix theory. ' The latter corresponds to time-reversal-
noninvariant Hamiltonian systems. In recent times, " an
intriguing connection has been established between static
and dynamic correlations of eigenvalues in random ma-
trix theory and particle coordinates in the Calegero-
Sutherland model for certain values of the coupling con-

stants, which includes free fermions. Viewed in this light,
therefore, it is not surprising that the eigenvalue distribu-
tion in time-reversal-noninvariant ensemble corresponds
to the probability distribution of coordinates of electrons
in a magnetic field.

Our construction of the Laughlin wave function from
1D fermionic theory is different from that of the con-
struction in Ref. 7: in our construction 1D fermions are
free fermions, but with m of them associated with each of
the 2D electrons; it is an exact correspondence, valid
without taking the 8 —+ ~ limit. The restrictions needed
to obtain it and the value of the parton's charge corre-
spond to Jain's picture. This relation of the Laughlin
wave function and 1D system is possibly related, in gen-
eral, to the edge states of the quantum Hall effect and
specifically to Ref. 12, where the FQHE is related to 1D
free fermions.

Extension to other filling factors involves, in Jain s pic-
ture, the filling up of higher Landau levels. Hence, their
identification to 1D systems through the phase-space pic-
ture is not obvious. It should be interesting to find such
an extension for other filling factors. This correspon-
dence may also be useful to study the symmetry aspects
of the FQHE like W„symmetry, ' since the 1D system
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we have is known to have such a symmetry. ' This can
also possibly o6'er a better calculational procedure to
compute expectation values in quantum Hall states by
converting them to ID problems.
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