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Polaron-pair binding due to interchain coupling in conjugated polymers
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By including both interchain hopping and electron-electron interaction within the context of the
Takayama —Lin-Liu —Maki continuum model, and using the (nearly) degenerate perturbation method, we

have studied characteristics of the interchain polaron-pair state in conjugated polymers, namely, its
binding energy and the transition rate from an intrachain polaron exciton to an interchain polaron pair.
It is found that the polaron-pair binding energy due to interchain Coulomb correlation is typically sma11-

er than that due to interchain hopping. We introduce a small energy difference c between intrachain and
interchain excitations to distinguish their different lattice relaxations; we are then able to establish a
two-level model, which can be solved exactly to obtain the transition probability. When c is small

enough, the solution is just a first-order degenerate perturbation result, i.e., it is proportional to a t

binding term; when c is large, then it becomes dependent on a (t ) -binding term. In both cases, the in-

terchain electron-correlation effect always appears in first order and is found not to inhuence the intra-
chain to interchain transition.

Conjugated polymers are not strictly one-dimensional
arrays. Several experiments indicate that the formation
of interchain polaron pairs is the origin for photoconduc-
tivity' and photoinduced-absorption ' phenomena. Ra-
man studies have shown that in many instances conjugat-
ed polymers consist of many short conjugated segments
separated by defects; in this case, the interchain concept
has also to be taken in a more general sense in order to
comprehend the hopping process between disconnected
segments of the same chain. Bassler et al. have carried
out site-selective luminescence experiments on polypara-
phenylenevinylene (PPV), and found that the incoherent
relaxations of the excitations, due to both interchain and
intrachain inhomogeneous broadenings, are responsible
for the photoluminescence, a feature that indicates the
importance of considering the interchain interactions.

Baeriswyl and Maki, and Danielson and Ball have in-
vestigated the interchain coupling effects via (i) adding
an inter chain hopping term t in the continuum
Takayama —Lin-Liu —Maki (TLM) model and (ii) consid-
ering second-order perturbation (which neglects the con-
tribution of the midgap-state transitions). These authors
concluded that there occurs a strong interchain soliton
confinement, proportional to (t ); however, the
confinement for the polaron is extremely small. From
the study of molecular crystal models, Emin has given an
argument, later on confirmed by Gartstein and Zakhidov,
that even a very small interchain hopping (t lt"-0.01)
could destroy the formation of one-dimensional (1D)
large polarons due to diffusions to other chains. This
point was further demonstrated by Vogl and Campbell on
the basis of a local-density-functional band structure;'
these authors found that in a 3D crystalline structure,
there does not appear any intragap level when polarons
or even bipolaronlike defects are present. Mizes and
Conwell have reproduced this result within a simple
two-chain model; they found, however, that conjugation
defects can stabilize the appearance of polarons. " This

therefore rationalizes the experimental evidence for the
existence of polarons. In light of recent photoexcitation
experiments on PPV, Mizes and Conwell have also stud-
ied the electronic structure of Coulomb-bound interchain
polar on pairs and tried to explain the results of
photoinduced-absorption experiments on the basis of the
formation of such pairs. '

In this paper, we include both interchain electron-
phonon and electron-electron interactions in the TLM
continuum model for two chains, in order to provide ex-
act solutions for a two-level system, which models both
the interchain polaron pair and intrachain polaron exci-
tons. To avoid the complication related to the lattice re-
laxations on the two chains )which would imply to carry
out a Franck-Condon (FC) analysis in the adiabatic ap-
proximation], we introduce a phenomenological parame-
ter that allows us to distinguish the unperturbed intra-
chain polaron-exciton and interchain polaron-pair excita-
tion energies.

The interchain coupling Hamiltonian consists of two
parts:

H, = —gt„(ct~„c,„+H.c.),
n, a.

H2= g V„(ct„c,„——,')(cz„cz„~—
—,'),

n, cr, o''

t„'=t, +( —1)"t, ,

V„=Vi+( —1)"V~,

where c;„ is the destruction operator for an electron at
site n in the ith chain with spin o, and t and V are the
interchain hopping parameter and e -e interaction term,
respectively. Note that either in a P2, la or in a P2&ln
structure, adjacent carbon atoms on one chain couple to
hydrogen atoms in different chains. We assume that the
two chains are in-phase, which corresponds to a P2, /a
structure, as supported by the results of the 3D local-
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density-approximation (LDA) calculations' and by ex-
periment. ' Strickly speaking, a two-chain system cannot
represent a full 3D structure; however, here, we take into
account the major features of the 3D system by simply al-
lowing the interchain parameters to be difFerent for adja-
cent sites.

Making the transformation from a discrete to a contin-
uum model by virtue of

( —1)'
u (Xl. ) — (C2i lc2J+i }1

i( —1)J
V (XJ ) = — (CpJ + ic2J+, )J

where u, v are the two components of the spinor wave
function Vt(x)=[u'(X), v'(x)], we obtain

T = —g f Vt(lx)(i, —t2a2)% (2x),
o'

@=g ~ —,'pi J [+t(lx)% (1X)+t(2X)% (2X)+4 (1X)oi%' (1X)% (2X)o2%' (2x)]
C7, 0'

+ +. Ix 4 1x %. 2x 0.24 2x —4 Ix cy2$~ 1x g~ 2x %~ 2x
2 a

where 0.
2 is the second Pauli matrix and a is the lattice constant.

We construct the interchain (positive and negative) polaron-pair state vector as

I
2

and the intrachain polaron-exciton state as

1
i2) = (c,t,c„—c,t,c.,)iG, G, ),

2

where C„. (C„}is the creation (destruction) operator for an electron in the upper (lower) intragap polaron level on the
ith chain while 6; is the (half-filled) ground state of the ith chain. The states i 1 ) and i2) are unperturbed with respect
to interchain interactions. Note that we have not taken the plus sign in the linear combinations describing the two
states; it can indeed be verified that the t term only couples the above two antibonding forms. The mean-field contri-
bution of V simply renormalizes t, while the Auctuation term is found to have only diagonal elements with the above
two states. We give all the matrix elements below:

T11 T22 V12

r12 —
r22

— " q~ I t, —t2, I, 2 +%i Ix t1 —t2 q. 2
a

Ix % Ix 0 2x % 2x +% Ix 0 1X

+%', ( lx)o 2%, ( lx)%'g (2x)o q%, (2x) +4,"( lx)o 2%, (2x)%~ (2x)o 24, (2x ) )

4', 1x %, 1x %', 2x o.2%', 2x +%', 1x %, 2x 4'4 2x o.2%', 2x
a

+4, ( lx)o 2+, ( lx)+J(2X)%', (2x)+Vt( lx)o.2+, (2X)%',"(2X}%',(2X)],

V22= — 0', 1x %', 2x %', 2x %', 2x +0, Ix 9, Ix 0, 2x %', 2x +%', 1x 0.2%', 1x 0', 2x o 2% 2 2x
a

++t(1X)a@+,(1X)+t(2X)cr2%', (2X)]

Ix %'g Ix 0'g 2x o.2%', 2x +O', Ix %', Ix %'~ 2x 0.2%', 2x +%'g Ix 02%', Ix 0, 2x %', 2x
a

+4,"(1 )crx+, (21 )4xt (2 )%x, (2 )] x.

%,(ix) [%',(ix)] is the spinor wave function for the upper (lower) polaron midgap level in the ith chain. The above V
terms are evaluated in the same way as Wu and Kivelson'" have done in the "g-ology" approach for intrachain e -e in-
teractions. The midgap polaron-state (unperturbed) wave functions, as obtained by Campbell and Bishop, ' are given
below:
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u, (x)=

U, (x)=

[(1 —i)s+ +(1+i)s ],
[(1+i)s++(1—i)s ],

%,(x)=o2%,(x),

s~+~ =sech[a(x+x )],
2xo= Wa/(boV 2)ln(&2+1) —1.24/0', ~=1/(&2') .

After some algebra (see the Appendix), we have

T= T,z=—Tz& =et, f dx s+(1x)s+(2x)

—Kt) f dxsech(~x)seeh[K(x 1 )]

the work of Mizes and Conwell, ' V is on the order of 1

eV. Taking these values, the interchain polaron-pair
binding energy due to V is only about 0.03 eV, which is
much smaller than the contribution due to t . Note that
we have not calculated the mean-field contribution of V
to t . For small c,, the interchain polaron-pair binding
energy is about half that of the intrachain pair. ' '

Suppose that at time t =0, the system corresponds to a
photoexcited intrachain polaron exciton, ~2). Due to in-
terchain coupling, this excitation will evolve to an inter-
chain polaron-pair state

~
1), which is described by the

time-dependent Schrodinger equation. The time-
dependent state vector is

V= V»= V22

2Ii
~l

' sinh(xl)

4
v a fdx [sech(~x)sech[v(x —l)] j

Combining the initial condition c&(0)=0, cz(0)=1, and
the normalization condition ~c, (t)~ +~cz(t)~ =1, we get
the time-dependent transition probability

4T
sin (cot); Aco=+T +e /4 .

e +4T

Vi= —~a; Hl =0

~l coth(~t )
—1= —~a V&

[sinh(lcl ) ]
l is the distance between two polaron centers on adjacent
chains. Note that for a polaron state, both t2 and V2
contributions vanish for in-phase alignment. It is noted
that as l~~, both T and V go to zero, with V more
quickly (exponentially) than T.

With all the matrix elements given above, we obtain a
two-level model: H» =&p+ V~ H22 =p &+ V
=H2& = T, where c is the polaron-pair electronic energy',
c is a parameter that characterizes the difference in the
unperturbed intrachain and interchain polaron-pair ener-

gy due to their different lattice relaxations. (Note that
the lattice relaxation takes a much longer time than the
electronic excitation and we have not taken full account
of both intrachain and interchain relaxations; we have
simply introduced the parameter E to distinguish them. )
The eigenvalues are obtained as

A, =e + V (e++e +4—T2)/2 .

For a~0, A, =a+ V+T, i.e., this corresponds to a degen-
erate first-order perturbation result. For c )&T, the solu-
tion becomes second order in T. In the latter case, one
needs also to consider all the continuum band states, as
calculated previously. ' We define the binding energy of
the interchain polaron pair as the difference between the
total energy of the I =0 case and that of the I~~ case:

Eb= —V(0)++T (0)+~ /4 e/2 . —

The interchain electron-electron correlation gives a con-
tribution on the order of V&/30 and is inversely propor-
tional to the coherence length, as was first demonstrated
in the perturbation calculations of Wu and Kivelson. '
The state-of-the-art LDA 3D band-structure calcula-
tions' provide an estimate for t around 0.12 eV; from

Due to the fact that V» = V22, the transition rate does
not depend on V . The averaged (over one period) transi-
tion probability is T /(T +E /4); this means that the
difference c in lattice-relaxation energy between the intra-
chain and interchain polarons makes the interchain tran-
sition process more difficult.

The interchain transition is thus dependent on the
difference in lattice conformations between intrachain
and interchain excitations. In the case of polyacetylene,
Jeyadev and Schrieffer have studied the interchain pola-
ron hopping bandwidth' and obtained the FC factor to
be about 0.1; this means that the interchain polaron mo-
bility is reduced by a factor of 10 due to lattice relaxa-
tion, in other words, c. is qualitatively large. We have
carried out a similar calculation on PPV and found that
the FC factors are 0.62 for polaron hopping and 0.13 for
bipolaron hopping. ' The former value is much larger
than that of polyacetylene (PA), a fact due to the pres-
ence of phenyl rings, which prevents the lattice to relax
as much. From this, we conclude that the interchain po-
laron mobility in PPV is higher than in PA, i.e., the c.

value is smaller for PPV than PA.
To conclude, we have calculated the interchain

polaron-pair binding energy and transition rate by con-
sidering both interchain hopping and electron-electron
interactions. The latter contribution to the binding ener-

gy of the polaron pair is found to be much less significant
than that due to the former term. The interchain polaron
transition is only determined by the hopping term (which
could take account of a mean-field renormalization due to
electron-electron interactions). The lattice-relaxation
effect, which is less important in PPV than in PA, hinders
the interchain transition. A full consideration of these
effects deserves further studies.
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APPENDIX

Let y =e ~+1 and a =e '—1, then the integral for the
V term can be written as

I=f dx sech (x)sech (x —I)

1

y (y +a)
1 1 1

a y a (y+a) a(y+a)

1 1 1 2 1

y (y+a) a y a y a (y+l) a~(y+a)2

If a =0, (I =0), then I =~4. If a )0, then we can make
the following factorization:

y8 1+a
1

1 1

y (y +a)' y'(y +a)'

It is then possible to perform the integrations for each
term above. Note that the factorization does not permit
an extrapolation to a =-0.
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