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Field-induced aging effects in inhomogeneous superconductors
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A domain theory for aging effects in inhomogeneous superconductors with oxygen-defects-induced intra-

grain granularity is considered within the superconducting glass model. A qualitative comparison of the model
predictions with the observed memory effects in high-T, single crystals is discussed.

I. INTRODUCTION

According to recent findings, ' single crystals of high-
T, superconductors (HTS) exhibit an anomalous behavior in
applied magnetic field, which has been attributed to the
"held-induced intragrain granularity" in oxygen-dehcient
samples and interpreted in terms of the field-induced decou-
pling of regions of oxygen-rich material by boundaries of
oxygen-poor material. The granular behavior has been re-
lated to the clusters of oxygen defects (within the CuO
plane) that restrict supercurrent flow and allow excess Aux to
enter the crystal. At the same time, in the so-called "field
jump" experiments, pronounced memory effects in magneti-
zation of YBa2Cus07 s (YBCO) single crystals have been
observed. The following successive steps have been per-
formed in the above-mentioned experiments on field-cooled
(FC) relaxation of magnetization. As soon as the sample is
stabilized at its measuring temperature T after the FC pro-
cess at the initial magnetic field H through T, , the aging
time t, of the system is measured. The system is then left in
its quasiequilibrium state (T,H) for a certain waiting time
t before the applied magnetic field H is increased by AH to
the measuring field H . Just at this time one can start mea-
suring the relaxation of the trapped magnetic Aux, with the
total measuring time t related to the aging time t, by
t =t+t . The relaxation curves were found to be not
uniquely determined: they turned out to depend drastically
on the waiting time t that had elapsed between the moment
t=o at which the temperature T,„was reached, and the mo-
ment t=t at which the initial field H was increased by
b, H (in FC-type experiments). The response of the system to
the field jump at t=t became slower as t was getting
larger, indicating that during the waiting time the system was
not in equilibrium but only slowly evolved toward it: it ~as
aging. The main peculiarities of the memory effect observed
are the appearance of a characteristic inAection point in the
magnetization M(t) at t=t and the strong dependence of
M(t) vs actual measuring time t on the waiting time t

Incorporating the ideas of the domain theory in spin
glasses' " into the so-called "superconducting glass" (SG)
model, ' ' in the present paper the main features of the
above-mentioned field-induced memory effects observed in
single crystals of high-T, superconductors are discussed.

J; (8,T,H) =J(B,T)exp[iA;/(H)],

4;,(H) = 4;—0, —&,,(H),
(2)

A; (H)= (HXR;J)r, , r;t=r; —r,
0

R;/=(r;+r )/2.

This model describes the interaction between oxygen-rich
superconducting grains [with phases @;(t) or Josephson
pseudospins S, =exp(+i/, )], arranged in a random two-
dimensional (2D) lattice (modeling the CuO plane of
oxygen-depleted YBa2Cu307 z, where a glasslike picture is

established' ) with coordinates r, = (x;,y;,0). The grains
are separated by oxygen-poor insulating boundaries produc-
ing Josephson coupling with energy J(8', T). The system is
under the influence of a frustrating applied magnetic field

H, which is assumed to be normal to the CuO plane of HTS.
The increase of the oxygen deficiency, 6, leads to the de-
crease of the Josephson energy (via the increase of the insu-
lating layer between oxygen-rich grains). For small 6 (such
that 8(&1) we can approximate the 8 dependence of the
Josephson energy by a linear law, namely, J(6,T)
=J(O,T)(1—8). The superconducting current through the
Josephson junction (JJ) between grains i and j

2eJ 2e
I',,(H) = sin@;,(H) —= Im(J;, S,+S

induces a diamagnetic moment of the weak-link network'

N

p, = erg I',,(H)(r, , XR;,). (5)

found in Refs. 12—19. The SG model is based on the well-
known Hamiltonian of a granular superconductor which in
the so-called pseudospin representation has the form

N N

WYo= —g J(B,T)cos@;,(H)=——Re g J;,S, S
1,J

(1)
where

II. THE SG MODEL: EQUILIBRIUM RELAXATION

Let us first briefly consider the equilibrium relaxation of
magnetization within the SG model. More details can be

To study dynamic (relaxation) behavior of the model (1),
let us assume that in addition to the constant frustrating field

H, the superconducting grains are under the influence. of a
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small time-varying field H,t( t) (&H, so that cos(P,
A—,gH+H„&(t)] f=cosp;, (H)+A j[Ht(t)]sin@,,(H). In

view of Eqs. (1)—(5), the total (perturbed) Hamiltonian can
be cast into the form

16edN J(6'T) H t H
X(~ T,H)= p 1+

B Ho

Here we have introduced the spin-spin correlator

(13)

M(t) = Mo(H) —pH„t(t). (6)

If the perturbation is applied continuously from t = —oo up to
t = 0 and is cut off at t = 0, then the linear [with respect to the

small perturbation field H„t(t)] response of the system (mag-

netization) M(t) —= (p,,)/V will relax to its equilibrium value

M,q=lim, „M(t) according to the formula"'

1
D, (t) = Ng (S, (t)S, (0)),

IJ

the nonergodicity (order) parameter

L(8', T,H) = lim D,q(t),

(14)

(15)

M(t) —M, =
eq

dH+t')
dt'R(t, t') dt' (7)

Here t, = t + t, t is a waiting time, t is a time of aging,
and t is an actual measuring time.

According to Eq. (7), the excess magnetization in this
case reads

AM(t. ) =M(t. ) M—,„=AHR(t—., t )

In general, for relaxation of magnetization in a single do-
main of size o. (see Sec. III) we can write' "

Therefore, the function R(t, t') describes the relaxation of
magnetization M(t) after removal of the outer disturbance.

Let us consider now the field jump experiment at constant
temperature assuming that "

and have made use of the fact that due to Eq. (3),

iso~ a
(x;y~ —x y;)exp(iA, ) =

~ exp(iA; ).m)8H (16)

Here Ho= Po/rrd is a characteristic Josephson field with d
an average grain size, and N is the number of grains.

To obtain the explicit form of the field dependence of
susceptibility given by Eq. (13), we have assumed, for sim-
plicity, a site-type positional disorder allowing for weak dis-
placements of the grain sites from their positions of the origi-
nal 2D lattice, i.e., within a radius d the new position is
chosen randomly according to the normalized separable

Gaussian distribution function P(r;) = P(x;)P(y, ), where

1 t x'
P(x) = exp-

2nd

Using the above distribution function, the average value of
the Josephson energy [see Eq. (2)] reads

where

R(t, t') =R,q(t t')exp[ —(t t'—)/r ], —(10)
where

J(6,T,H) =J;/(6', T,H) =J(B,T)exp(iA; ),

1
R q(t) = (~p, (t) ~p, (0)).

B

R,q(t) =y(8', T,H) [~D,q(t) ~

—L ( 8, T,H) ], (12)

where

Here r (a.) is the maximum relaxation time in the
relaxation spectrum of a size cr domain, and

Bp,(t)=p,,(t) —(p,,(—t)). The bar denotes the configura-
tional averaging over the randomly distributed grain coordi-
nates (see below), ( ) means the thermodynamic averag-

ing with the Hamiltonian Mo(H), and we have assumed that

H=(O, O, H) and H&=(O, O, H, ). tTo find the equilibrium re-
laxation of magnetization, we have to calculate the relaxation
function R,„(t). Using the so-called random-field approxi-
mation for quenched disordered systems„' ' ' ' which al-
lows us to decouple the averaging of the "grain distribution"
(represented by the "scattering potentials" 1;J) from the
"carriers" (or Josephson pseudospins), i.e., assuming that

A(r, )B(r/) =A(r;) B(rj), we obtain for the equilibrium re-
laxation of magnetization

f +oo

exp(iA, )—= dr;dr P(r;)P(r )e~'

H2 —l

1+ 2
Ho

(19)

By analogy with the case of slightly defected thin films,
considered by de Gennes and Tinkham, we assume that up
to some critical value of oxygen deficiency, Bg, HTS single
crystals exhibit nonergodic (phase-coherent) behavior, while
for oxygen-defect concentration greater than 6, the above-
mentioned coherence (within the CuO plane) is destroyed
and the crystal undergoes a phase transition to an ergodic
(paracoherent) state where oxygen-rich superconducting
"grains" are separated by oxygen-poor insulating boundaries
so that there is no superconducting path through the sample.
To find the long-time (low-frequency) behavior of the corr-
elator D,q(t) [and thus of the magnetization M(t)], we need
the equation of motion for the Josephson pseudospins
S, (t). By accounting for the Kirchhoff law, Z, I;~ = 0, for the
total Josephson currents, I; =I', +I", , where the supercon-
ducting current, I, is given by Eq. (4) and I",

=(It/2eR)(d@, /dt) is a normal current with R being the
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resistance between grains in their normal state, the approxi-
mate (valid for N&) 1) equation of motion for the supercon-
ducting phase reads' '

fi, N dP; 2eJ
+ g sing; =0.

2eR dt 6 (20)

Taking into account that (d/d t) exp(+ iP) = i(d@;/
dt) exp(+ iP;), the pseudospin representation [with
5,+ =exp(+ i/;)] brings about the approximate equation of
motion for Josephson pseudospins

N

5, =PQQ J,,S,
+ . (21)

I' + ce

D,,(z) = i —dte'"D;, (t) (22)

Then the continued fraction expansion for D,J(z) leads to the
expression' '

Here A(o.) =2e dR/A, o.P is a characteristic frequency of
the JJ network, and P—= liksT In the . so-called "mode-
coupling approximation, ' which is based on the Mori-like
projection technique, ' the self-consistent master
equation on the isothermal correlation function D;,(t)
=(5,+(t)S, (0)) can be constructed. Let us introduce the
Laplace transform,

pzfI2 N N

K,(t)—= g g J;„J,, (S„+(t)S, (0))
ij kl

—=P'O'J'( 8, T,H) D„(t) (27)

N

K„(t)=K„(t)+——g K',,(t) =20 8(t)
I.J

+ A„h(B,T,H)D,q(t). (28)

Here A„h(8', T,H) = PA J(8,T,H) and the field dependence
of the Josephson energy is given by Eqs. (18) and (19). In
view of Eq. (15), a zero frequency (t—+~) solution of the
master Eq. (25) with the memory kernel (28) results in the
nontrivial order parameter for the intragranular JJ
network'

When there is no temporal correlation between grains
("paracoherent state") the memory kernel has a "white
noise" form K,q(t)=—K„(t)=2A8'(t), where 6(t) is the
Dirac 8' function. In this case the master equation results in a
Debye-like decay of uncorrelated paracoherent state, namely,
D,q(t) = exp( —tl r), where 1/r= A. Such a situation is real-
ized above some critical (phase-locking) temperature Tg
when the coherent state within the JJ network is destroyed
completely, so that the order parameter L—=0. Below T, the
situation changes drastically due to the superconducting cor-
relations occurring between grains. Taking into account Eq.
(27), the memory kernel below T can be presented in the
form

where

D (z)= — z— (23) k,T
L(B,T,H) = 1 —

J(b', T, H)
(29)

1
D,(z)=NX e"" "'D, (z)N jk

(24)

Alternatively, using the inverse Laplace transform, Eq. (23)
can be cast into the self-consistent master equation

d'D„(t), I'~ dD„(t')+II'D, (t)+ dt'K, q(t t'), =0, —
dt J p

'q dt'
(25)

with D,„(t)—= (1IN)X;,D;,(t), and K,„(t)=(1IN)X,,K,J(t)—
being a memory (feedback) kernel. Using the mode-coupling
approximation scheme, ' ' the coherent part of the memory
kernel can be represented by a set of "current-current" cor-
relators

K',,(t) =(5,+(t)5, (0))+0,'(5, (t)5, (0))+O(A').
(26)

Since 5,+~A, [see Eq. (21)], due to a rather strong depen-
dence of the characteristic frequency 0 on the number of
grains (A~1/N), we can restrict ourselves to a linear ap-

proximation, K', (t) =(5, (t)5 (0)), assuming that N&) 1.
Taking into account the equation of motion (21),
K, (t) =—(1/N) X, .K', (t) can be pr. esented in the form' ' D,„(t)=L+(1 L)@(t). —(30)

The phase-locking temperature T (8',H), below which the
ensemble of grains undergoes the phase transition into the
coherent state, is defined by the equation L(8', Ts,H)=0
which, due to Eq. (29), gives rise to implicit equation, viz. ,

Ts(8', H) =J(B,Tg, H)/kti. The Josephson energy depends
on the temperature through the Ambegaokar-Baratoff rela-
tion, which near the single grain superconducting tem-
perature, T, , reads J(T) =J(0)(1—T/T, ) . Assuming
that for high magnetic fields (when frustration is strong
enough) J(6,0,H) (& kti T,~J(8,0,0), we get finally

Tg(B,H) =J(B,O, H)/ks. As a result, the order parameter
L= 1 —[TITg(B,H)] gradually changes from 0 at
T~T (B,H) to 1 at T=O, thus describing the continuous
phase transition.

Here we have introduced the critical oxygen deficiency,
8g(T,H), which is defined as the solution of the
equation L(8g, T,H) =0 and has the form Bg(T,H) = 1
—TITg(0, H). For 8~ Bg(T,H) oxygen-rich superconduct-
ing grains are separated by oxygen-poor insulating bound-
aries so that there is no percolative path through the sample.

It is important to mention that the correlator D,q(t) fol-
lows a simple Debye-like decay law only above Tg(B,H),
i.e., when the system of "grains" is in the ergodic state (see
above). Below Tg (where the order parameter LAO), relax-
ation of D,q(t) can be presented in the form'
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FIG. 1. The dependence of the power-law relaxation exponent,
n, on the oxygen-deficiency parameter, 6, calculated according to
Eq. (33).

( t )
—u

C(t)=4(0)~ 1+—
to)

(31)

Substitution of Eqs. (30) and (31) into Eq. (25) with the
kernel (28) results in the implicit equation on the power ex-
ponent u(8', T,H),

1 t2 L—
I (1-n) =- tI&(0).

2 I, 1 —L (32)

Here I is the y function, and &P(0) =I (1/2)= +sr Near.
T we have approximately

1 L(B,T,H)
2 2 P(1/2)

(33)

Of course, in principle, one can find D,~(t) as a numerical
solution of the master equation. But it seems more interest-
ing to try and get some analytical results concerning the time
behavior of D,q(t) .

Let us consider a powerlike law as an example of a non-
Debye relaxation,

nearly identical up to their overlapping length
l(T, —T~, H, —Hz) such that l~~ as (Tz, Hz) ~(T, ,H, ).

(iii) At any time, a nonequilibrium SG state can be ana-
lyzed with respect to its (Ti,Hi) correlations for an arbitrary
choice of (Ti,Hi). It means that the system is composed of
the (Ti,Ht) domains within which there exist (T, ,Hi) cor-
relations but beyond which these correlations are destroyed.
For a system in equilibrium at (T,H) there is a single infinite

(T,H) domain with a distribution of the sizes a of the

(T, ,H, ) domains centered around l(Ti —T,H, H)—
(iv) In the nonequilibrium system placed at a certain time

in a heat bath of constant temperature T and in a constant
magnetic field H, the (T,H) domains will start growing
without limit. For any (Ti,Hi) A(T, H), the (Ti,Hi) do-
mains will grow until they reach the "overlapping" length
l(T1 —T,HI —H).

(v) Magnetic relaxation within a domain is assumed to be
described by a linear response theory. Small (large) domains
are associated with short (long) relaxation times of magneti-
zation.

Due to the pseudospin coherence within a domain, the
maximum relaxation time r,„(a) will increase with the do-
main linear size a. In view of Eqs. (10) and (21),

r (a)=A '( a)=t, ( ad/), ti =PA /2e R. (35)

Here t& is a first microscopic time of the system, and we
have assumed that o.=dN, with d an average grain size and
N the number of phase-correlated (oxygen-rich) regions
within a domain. According to the mesoscopic domainlike
theory, " when the domain size varies with time, the mag-
netic response of a pseudospin S; (t) is still determined by
linear response law (9) but with a relaxation function which
is a functional of the time-dependent size a(t') of the

(T,H(t, )) domain (with t ~t'~t, ). As a result, a small
(large) domain is associated with short (long) relaxation time
of the magnetization. This leads in turn to a natural generali-
zation of the relaxation function (10) as a weighted sum over
all possible (T,H(t„)) histories of the Josephson pseudospin
(i.e., grain phase) in the system

where

P(1/2) = —2 ln2+ P(1), P(1)= —0.577. . . . (34)
R(t, , t ) =

] da(t')g(T, H(t, );[a(t')])R(t, , t;[a(t')]).
(36)

Notice that in view of the explicit dependence of the order
parameter on 8, Eq. (33) suggests a rather strong dependence
of a on the oxygen-deficiency parameter (see Fig. 1).

III. THE SG MODEL: AGING EFFECTS

To describe the field-induced memory (aging) effects in
deoxygenated YBCO single crystals, we will follow the so-
called domain theory proposed by Koper and Hilhorst" for
treating the aging effects in spin glasses. Their approach is
based on the following main principles:

(i) It is assumed that a thermodynamic state of a SG at a
temperature TI in magnetic field HI is characterized by a
specific set of (Ti,Hi) spin correlations (or Josephson pseu-
dospin correlations in our case).

(ii) The correlations of two different thermodynamic equi-
librium states, one at (T, ,Hi) and one at (Tz, Hz), are

Notice that a relationship between magnetization and mag-
netic field, suggested by Eqs. (9) and (10), is linear only in
appearance since the nonlinearity comes in explicitly via the
mechanism which governs the evolution of the domain size
which in turn is field dependent (see below).

In analogy to the equilibrium case (10) we put'o"

R(t. , t;[a(t')])=D,„(t.—t ) F(t. ,t;[ a( t)]),
(37)

where

F(t, , t;[o(t')])= exp
ft„

dt'r '[o(t')] . (38)

According to the experimental observations in HTS single
crystals, ' the characteristic size of a growing domain (in-



13 62352 INH0MOGENG EppECTS INpIpLD--INDUCED AGIN

0.00 0.3

-0.20
0.25

0.2

-0.40

-0.60

0.15

0. 1

O. Q5

0.0
0 10 20 3Q 40 50

-0.80

I I I II I I-1.00
5 6 789103 4 5 20 30 40 506070

0.25

0.2

rmalize mrm d magnetization,

1times (indicated by ve
and (3) t It —15.

in he basal CuOin rocess in the ash xygen-ordering pAuenced y
plane) increases as a powe

O. 15

0. 1

0.05

0.0

0 10 20

a(t) =d(tlt2)". (39)

e L(~1) will dec y

—2n8, T,H) QH[1+ (t-t-t )Ito]AM(t) =(1 L)y(, , t-

Xexp —2~tq(gt ~t)tt, & (4o)

lot of relaxation curvesglo ar thmic p o o re rve
a AM(t)/AM(0) fora netization

rres onds to t e("" o p
eFi 1

sa
arameter 8= 0.0;

time scale the magne s
= t h ch xperien

g

1

p
s itwin r ith increasing, q

o o ic time, n =0.5 for the ortho-
h -I od

1 t d t th
n coefficient Dab

h hd further we assumeto proceed u

g
')]) ~( ( ') — (

th interval (O, t ) the
han the "overlapp gg

the SG mo AHWithin

'
h r linear or1 th I lt.between thesee two eng" Let us conside

' erfirsttec
nch toAf h

ase according to Eq.g
)

et that the excess magne iz(36)—(39) we get that
wher

(t), vs reduced timerelaxation, s, d timeg
'"'"g '

& otltp for i
t oxygen conten=15 and differen ot ftp=

(b) 8'= 0.2.

st ca

o(t) =d.~~H

d j t2
(41)

e i
'

still iven by Eqs.g"etization is sti s.
6 — 'h () gi by Eq.

case o arg
ibit a m'll h b'

oft ere. It means t a
ith increase of

7rb, HDIIb) .
um shifts to sma

nonlinear regimeslinear andthe crossov er betwee
f AH which saisa value o

single crysta Is. Thu n
the

enmental a a
AMIt) between

'"""-"'""-"-„].[, ,]decay rate s(t) dlo arithmic ecay
ifferent oxygen contimes and i

h'b't a maximum
differen t waiting i

s i s easurement times
6—0.0

ed state ~ hen 8for a high y
e field ~umps, wg

, .f,h'. d.
' ....,growowth kinetics o e



13 624 SERGEI SERGEENKOV AND MARCEL AUSLOOS 52

tion implies that the larger is the waiting time, the smaller is
the field jump needed to provoke nonlinear relaxation. It
would be very interesting to observe experimentally the
manifestation (if any) of nonlinear aging effects in HTS
single crystals.

In summary, the me so scopic domain theory of spin
glasses" adapted to the description of the networks of Jo-
sephson junction arrays was shown to be quite adequate for
modeling the memory (aging) effects in inhomogeneous su-

perconductors with field-induced intragrain granularity. The

model predictions were found to be in a reasonable agree-
ment with some experimental data on high-T, single crystals.
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