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The Van Hove scenario has so far been primarily based on the assumption of s-wave pairing as regards the
treatment of superconducting properties. We investigate the assumption that pairing is d,2_ 2 symmetry in an
investigation of transition temperature, gap, and specific-heat jump at the BCS level of approximation. It is
found that the effect of the Van Hove singularity on these properties is similar to, and at least as strong as, the
effect in s wave. The d-wave version of the Van Hove scenario is found to be fully viable.

I. INTRODUCTION

The idea of the Van Hove scenario' in its essence is that
many of the special properties of the cuprate superconductors
are attributable to the presence close to the Fermi level of
saddle points in the band-structure energy surface. These are
found to have strong implications in two-dimensional (2D)
or nearly 2D electron systems such as the cuprate materials
are known to be. Associated with the saddle points (SP’s),
which are flat regions of the energy dispersion, is the loga-
rithmic (in two dimensions) singularity in the density of
state! (DOS), known as the Van Hove singularity (VHS).

Three basic effects (at least) of the SP’s on electronic
properties have been detailed. First, the superconducting
transition temperature is enhanced by having a DOS peak
near the Fermi energy,l"3 so that as the Fermi energy (ex-
perimentally, this can be controlled by doping) is swept
through the VHS, the transition temperature goes through a
maximum'~* at the point where the VHS and the Fermi en-
ergy coincide.

Secondly, there is a qualitative enhancement in the scat-
tering between quasiparticles.'* In a conventional metal, di-
rect quasiparticle-quasiparticle scattering is almost com-
pletely suppressed, because it is nearly impossible to find
significant phase space for a pair of quasiparticles to scatter
into, given the thinness of the shell of thermally excited qua-
siparticles around the Fermi surface, relative to the Fermi
energy Ep. But analysis shows'* that when the VHS and
E coincide, or the relative energy4 of the VHS and E are
within ~temperature 7, the phase space for scattering is
much less restricted, leading to the ‘““marginal-Fermi-liquid”
(MFL) property!* that lifetime broadening for quasiparticles
is of order their energy measured from E.

The third effect! of having the VHS close to E is that for
realistic models the Fermi surface (see Fig. 1) does not have
a significant flat portion (note the area inside the surface
differs from that outside by 2 X doping, building in the type
of asymmetry seen in the figure and restricting any flat por-
tion). This absence of flat portions inhibits “nesting” scatter-
ing which, in the metallic phase, enhances antiferromagnetic
spin-density-wave (SDW) or charge-density-wave (CDW)
instabilities. These are the strongest competing instabilities
for superconductivity.
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Experimentally, the saddle points near E are indeed seen
directly in angle-resolved photoemission spectroscopy
experiments™ on maximal-7, materials. Analysis of
specific-heat-jump data' supports the presence of the VHS in
the DOS. The MFL behavior seems to underlie transport
anomalies such as the linear resistivity!* and T-independent
thermopower,* which also are associated with the vicinity of
maximal 7,. And the correlation length for the SDW insta-
bility (expected to dominate CDW for repulsive interactions)
is short, of order one lattice spacing,7 near maximal 7'.. This
experimental picture is entirely consistent with the Van Hove
scenario.

However, while the superconducting aspects of the sce-
nario (transition temperature,! ™ isotope shift,! specific-heat
jump'...) have been worked out on the basis of s-wave pair-
ing, recent experiments®™!! seem to increasingly favor
d-wave, in particular d,2>_,2, pairing. For example,
measurements® of the NMR 1/T, below 7., the low-
temperature magnetic penetration depth,” and recently mea-
surements of the phase of the order parameter,lo’11 seem to
pose insurmountable problems for an s-wave interpretation.

Is the Van Hove scenario consistent with d-wave pairing
symmetry? This paper revisits the Van Hove issue from a
d-wave point of view, within a simplistic BCS-type level of
approximation. We calculate the effects of the VHS on a few

FIG. 1. Idealized Fermi surface in Van Hove scenario, showing
saddle points (full circles) and lobes of d,2_,2 order parameter.
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key properties, transition temperature, gap, and specific-heat
jump, and find that this is extremely strong, just as in s wave.
The reason is easily seen from Fig. 1. The lobes of the
d,2 2 order parameter point towards ‘the high-DOS regions
around the SP’s. The zeroes of the order parameter lie in
low-DOS regions away from the SP’s. Hence the gap equa-
tion is dominated by what is happening to the SP’s, which
act to stablize the d,2_,2 order parameter, and is not much
affected by the other parts of the Fermi surface. Destabiliza-
tion of s-wave pairing is caused by the presence of the large
on-site Coulomb repulsion U, which is fatal in the s-wave
channel, but which drops out of the d-wave gap equation.

In an earlier study of pairing induced by spin fluctuations,
Radtke et al.'? came to a negative conclusion about the sig-
nificance of the Van Hove singularity. In a recent paper, Dag-
otto et al.,'’® in a BCS calculation, come independently to
similar, though not identical, conclusions to the present
‘work.

The driving force for d-wave pairing is an interaction of
the type which is attractive for electrons on nearest-neighbor
sites. Perhaps the most plausible candidate is the antiferro-
magnetic superexchange J, which is known to be a huge
effect (J~120 meV) in the undoped insulator. We have ear-
lier drawn attention to the requirement! for an interaction J
in order to explain the nearly 7-independent static long-
wavelength susceptibility. The short-wavelength susceptibil-
ity (coming for example into'*!> the NMR 1/T;) is also
strongly effected by J. Note that these effects are opposite
because of the dispersion of J [see below (10) in the follow-
ing], the uniform susceptibility is reduced' and rendered T
independent by J, while the short-wavelength one is en-
hanced and acquires a broad peak as a function of wave
vector. 1413

Recently one of us and co-workers have implemented
Monte Carlo simulations'® on the 7z’ model in the presence
of the repulsive on-site interaction U. We found that
d,>_,2 pairing was present, but only when the Fermi level
lay in the close vicinity of the VHS. This supports not only
the Van Hove scenario but also an essentially electronic ori-
gin of the pairing interaction.

However, we also consider the possibility that the inter-
action may be charge mediated, in particular phononic, in
type. For this case we calculate the isotope shift which quali-
tatively resembles (and even improves with regard to the
comparison with data) the s-wave result.

II. THEORETICAL APPROACH

Before considering in detail the implications of d-wave
pairing for the Van Hove scenario, it is useful to discuss
briefly the relevant normal-state effects of the electronic in-
teractions. Let us start by considering self-energy effects.

The superexchange interaction J is a nonretarded interac-
tion; however, its k-dependence results in a contribution to
the effective mass to O(J). To specify this contribution to
O(J), consider the decomposition of J into separable terms
[carried out in Eq. (11) below]. Only the vy term contributes
to the self-energy, which has the k¥ dependence of vy,, and
thus merely renormalizes the ¢ term in the Hamiltonian (5)
by an amount of order J. This renormalization of ¢ can be
absorbed into the parametrization of the model.
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FIG. 2. Dashed curve: dispersion for hyperbolic model
ek:ki—k§/5 plotted vs k(=k, or k). Full curve: dispersion from
maximum of Eq. (2) with a=1.0.

The more important effect which we wish to discuss
arises from the interaction responsible for the anomalous
(linear in energy from the Fermi surface) lifetime broadening
of the quasiparticles in cuprates. In the Van Hove scenario,
this arises naturally from the short-range screened interelec-
tronic interaction plus the anomalous phase space around the
VHS, and is found on calculating the imaginary part of the
self-energy to second order in the interaction. As discussed in
Appendix A, we can most simply model the imaginary part
B(w) of the self-energy by the ansatz Im3 = B(w) = a|w|,
where a parametrizes the strength of the interaction and is of
order 0.5. The real part of the self-energy A(w)
=Re3 =(— aw/7)In|(D*— w?)/w?, is then obtained by Hil-
bert transforming the imaginary part.

The single-particle Green’s function

1

Glw)= w—¢g;—A(w)+iB(w) 1)
leads to the spectral density
7 'B(w)
Si(w)= @

[w—e,—A(w)]*+B(w)?"
The true maximum in (2), approximately given by
51(28](/[1+(2a/7T)1H|D/8kl],

is plotted as a function of k in Fig. 2 for the hyperbolic
model

We see from Fig. 2 that the renormalized dispersion is
flatter at low energies, relative to the pure hyperbola, essen-
tially due to the divergence of the effective mass at low
energies. Note that this flattened dispersion strongly re-
sembles the “‘extended saddle point” type of dispersion seen
in experimental data such as angle-resolved photoemission.’
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FIG. 3. Densities of states, dashed curve simple hyperbolic dis-
persion £,=k,k,, full curve Eq. (4), with «=0.5, dot-dash curve
analytic approximation (A5) with same value of a.

The renormalized density of states

1
plo)=—5> Siw) @)

is also of interest and is illustrated in Fig. 3 for the simplest
dispersion g;=k,k,. Because of the mass enhancement at
low g, illustrated in Fig. 2, the density-of-states peak is
seen in Fig. 3 to be narrower than the pure Van Hove loga-
rithmic form. However, the peak is not higher than in the
logarithmic case. The feature that the peak is not higher,
though it is narrower, than in the noninteracting case, may be
attributed to the z-factor effect: the DOS as defined is mul-
tiplied by a z factor approximately given by
1/[1+(2a/m)In|D/w|], which cancels the DOS enhance-
ment. It is sometimes appropriate to define a quasiparticle
density of states p==p/z, derived from giving the quasiparti-
cle approximation to the spectral density peak in (1) unit
weight. In the present problem the quasiparticle density of
states would have a peak that is both higher and narrower
than the noninteracting DOS peak.

The effective-mass corrections in superconductivity are a
more complex issue: the z factor enters explicitly, and the
vertex correction may not necessarily be neglected. In the
well-studied case of phonon-mediated pairing, in a flat re-
gion of the density of states, the vertex correction is negli-
gible (Migdal theorem) if the phonon frequencies are much
lower than any band-structure energy scale near the Fermi
energy. In the Eliashberg approximation the k£ dependence is
neglected, and there are constant mass enhancement and z
factors, defined in terms of the dimensionless coupling
strength N, as m*/m=1+\, z=1/(1+\). Since two
single-particle propagators are involved in pairing, the z fac-
tor comes in twice. The factor z25=zp is then the density of
states entering pairing in this approach. The effect of the
interactions is to reduce the density of states by the factor z
relative to the noninteracting one.

A contrary paradigm to the phonon pairing one is found in
the higher-/-wave pairing model for heavy fermion systems.
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In heavy fermion systems, turning on the interaction, which
is an on-site Coulomb repulsion, results in the formation of
spins on the rare-earth sites which turn over slowly due to
the orthogonality catastrophe (Kondo effect) and thus result
in extremely heavy f bands. The pairing interaction is a
Ruderman-Kittel-Kasuya-Yosida interaction K, which
couples to the f bands. In the analysis provided by the slave-
boson mean-field approach, the heavy mass is derived from
self-consistently generated (small) mean-field values of the
f-d hopping integrals. z factors only come in through f-d
hopping processes. Since K only couples to f, there are no z
factors. Hence the DOS which enters at the mean-level is
p. In this case, the effect of the interaction is to enhance the
DOS appearing in the pairing formula.

The present problem, in which the interaction is taken to
be the superexchange J, lacks a Migdal theorem. There is no
frequency dependence of J. The interaction responsible for
the marginal-Fermi-liquid properties exists only due to the
Van Hove singularity itself, and cannot therefore be sup-
posed to contain any different energy scale from the band-
structure feature, also the VHS. Hence there is no a priori
reason to believe in a Migdal theorem in this context. The
DOS entering into the pairing problem may then not neces-
sarily be z2p, as in the Migdal case, in fact a study of
phonon-mediated pairing including vertex corrections'’
found a tendency for the z factor to revert towards unity.
Without a careful calculation at the vertex correction level,
we cannot be sure how the z factors do enter in the present
case. Note that purely formal attempts to treat the problem,
say on the basis of the Hubbard model, require going up to
order U,* which has not yet been attempted.

The conclusion that may be drawn is that in a treatment of
pairing the DOS singularity (VHS) may be narrowed due to
the interaction effects, but we find no reason to think it
broadened. There may be some z-factor effects, which can be
to a certain extent absorbed into the definition of J. By pro-
ceeding using the BCS theory, we have no reason to doubt
that the effects of the VHS may be underestimated, while the
value of J needed to achieve a given pairing strength may be
underestimated (if the ultimate many-body theory is phonon-
like) or overestimated (if it is heavy fermion like). Hence the
following BCS investigation should give a feeling for the
importance of the VHS for d-wave pairing, but would be less
reliable in indicating a correct value for the interaction J.

III. MODEL

We wish to discuss models which are compatible with the
Van Hove scenario. The requirement is that when the saddle
points in the band structure g, surface (=the Van Hove sin-
gularities in the density of states) lie near the Fermi surface,
the system be hole doped. In a single-band model this en-
sures that the band will be less than half-filled, and thus that
the Fermi surface be qualitatively of the asymmetric (with
regard to the electron and hole regions) type' illustrated in
Fig. 1.

The simplest such model on a single orbital per site
square lattice is the #¢’ model

T=—12, (cfcijotHe)+t 2 (cihejptHe).
(i iy ®)
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FIG. 4. Full curve: variation of doping x required to keep the
saddle points at the Fermi level as ¢’ is turned on in 7z’ model.
Dashed curve: line x=1¢'/t.

Here ( ) implies nearest neighbors, and {(({ )) implies next-
nearest neighbors. We are interested in the regime
0<t'<0.5t, in which the saddle points lie at (7,0) and
(0,7) and at energy —4t’, as can be seen from the disper-
sion of the energy band g,

£,=—2t(cosk,+cosk,)+4t' cosk,cosk, . (6)

At t'=0, the saddle point is at the band center, the Fermi
level coincides with it for the half-filled (zero doping) case.
As t' is increased, the doping required to keep the saddle
point (SP) at E also increases, the plot of filling vs ¢’ is
shown in Fig. 4; up to a doping of nearly 0.4, the doping and
the corresponding value of ¢'/¢ are approximately equal.

Near the saddle points, the energy surface is approxi-
mately hyperbolic, for example around (7,0) (6) may be
expanded as

er=—dt' —K2[1—2t' T+ K 1+21']. ™

The surface (7) is seen to be downwardly convex in the k,
direction, with a heavy mass m,~ 1/(z—2t'), and to be up-
wardly convex in the k, direction, with a light mass
m,~1/(t+2¢t"). In the limit #'/r—0.5, the mass ratio
mgl/m,=(t+2t")/(t+—2¢") actually diverges, a form of the
extended saddle point® situation. At the other saddle point,
(0,7), the k, and k, directions in (7) are interchanged.

An example of the Fermi surface is shown in Fig. 1; near
the saddle point the Fermi surface forms the asymptotes of
the hyperbolas in (7), notice that they are nonrectangular.
This is seen in Eq. (7) to be again due to the presence of the
interaction ¢’, in whose absence the energy surface is repre-
sented by the rectangular hyperbolic form t(ki— kf).

The nonrectangularity of the hyperbolic surfaces around
the two saddle points is in qualitative agreement with angle-
resolved photoemission, where the mass ratio is seen clearly
to be very large.’ It is believed in the Van Hove scenario to
have important physical implications for electron-hole insta-
bilities in the SDW or CDW channels. For these electron-
hole instabilities to diverge most strongly at the wave vector
(m,) in the metallic phase, it is necessary to have the two
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saddle points mapping onto each other by a displacive trans-
formation in k space (nesting). The mapping occurs in the
idealized ¢’ =0, half-filled case, leading to very strong SDW
and CDW instabilities. But in the case ¢’ #0, even with the
SP’s at E, the mapping (nesting) is greatly reduced. This
allows the superconducting instability, which is not weak-
ened by eliminating nesting (to which it is insensitive), but is
strongly enhanced by the density of states peak associated
with the Van Hove singularity lying at the Fermi surface, to
become the leading instability. Pairing in cuprate supercon-
ductors is believed to benefit from the strong DOS peak due
to the VHS, and the absence of competing instabilities.

We wish to consider interactions favoring d,2_ > pairing.
These are of the type tending to stabilize a configuration of
two electrons sitting on nearest-neighbor sites, and an attrac-
tive nearest-neighbor interaction is the simplest to assume. A
nearest-neighbor antiferromagnetic exchange interaction is
the most natural assumption and takes the form

Fm=102 Si°S;. ®)
(i)
where S=1/2, J,>0, and the sum is over all nearest-
neighbor bonds. A similar effect can be produced by an in-
teraction in the charge channel, e.g.,

*%imz Vv 2 NigNjgs (9)
(ijyoo’

where V<<0. We adopt the notation (8) in the following. The
resulting BCS gap equation is

’ Ak’ Ek ’

Ak_; J(k—k )2Ek,tanh(ﬁ>’ (10)

where J(gq)=2J(cosg,+cosq,) is derived from the Fourier

transformation of (8), E,%= (g,— m)?+ A%, and J= 3J /4.
Equation (10) is exactly soluble!® for this form of J, be-

cause of its separability:

J(k—k,):Jnk'rlk!+J'yk’ykl+Oddterms, (ll)

where 7, = (cosk,—cosk,) and v;=(cosk,+cosk,) are the
d,2_ 2 and extended-s form factors. The odd solutions have
nodes through the high-DOS saddle-point regions of k space,
and are not expected to play a role in the present context.

The relative stability of the extended-s and d,2_,2 solu-
tions has been discussed extensively'® by Wheatley and
Xiang, who found that only the d,2_,2 solution is stable in
the region of the phase diagram of interest in the present
paper. The d,2>_ > gap equation is given by

2
E
—n—ktanh( —k) , (12)

where A ;= A 7, defines the gap parameter A. The gap varies
from a maximum of 2A at the (7,0) SP to a minimum of
—2A at the other SP (0,7).

In Fig. 5 we plot both the transition temperature and the
zero-T gap as a function of the position of the Fermi level
with respect to the Van Hove singularity, equivalently the
doping. It is seen that the ratio of 2 X maximum gap to tran-
sition temperature is about 4.2 (slightly higher than the
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FIG. 5. Plot of T, and gap parameter A in zt’ model, for
d,2_ 2 pairing, vs energy u of the Fermi level relative to the VHS
(lower scale) and doping (upper scale). Parameters t=2500 K,
t'=1715 K, J=1200 K, the VHS being then located at —2860 K.

s-wave BCS ratio of 3.5), and that both the gap and transi-
tion temperature peak extremely strongly around the point
where the Fermi level lies at the saddle point. It is clear that,
at least in BCS theory, strong d-wave pairing, as s-wave
pairing, is a phenomenon mainly confined to the vicinity of
the Van Hove singularity. This singularity survives in the
presence of the marginal-Fermi-liquid lifetime broadening
(see Sec. II), so that our conclusions about the Van Hove
induced peak in 7, should remain valid in a more general
treatment.

In Fig. 6 we illustrate the zero-T density of states. The
linear behavior at low energies is characteristic of d-wave
symmetry in two dimensions,!” and contrasts with the
s-wave situation where there are no states in the gap; the
states in the d-wave case come from the part of the Fermi

1.E-03 ,
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«n 0.5£-03 -
&
=
d
0 I i |
0 100 200 300 400

E (K)

FIG. 6. Density of states at T=0 for s- and d-wave pairing
compared. The band structure parameters are as in the previous
figure, with the Fermi level located at the VHS. In the d-wave case
the gap parameter is A= 100 K, while in the s-wave case the gap is
200 K.
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FIG. 7. Full curve, plot of gap parameter A vs temperature in
the d-wave case, parameters correspond to ‘“‘extended” saddle
point, =2500 K, #'=1125 K, J=1100 K. Dashed curve, BCS
gap/2 for on-site attraction W=2140 K. with cutoff frequency 700
K, other parameters the same.

surface around the node in the gap function (see Fig. 1). The
peak at the maximum gap, 2A, is similar to the well-known
peak in the s-wave BCS density of states, but when ap-
proached from above it is seen to be a weaker singularity in
the d-wave case.

A gap vs temperature plot is illustrated in Fig. 7, obtained
by solving the gap equation (12). The case selected is the
extended SP situation with a ratio m,/m,=19. Comparison
with conventional BCS s-wave shows the somewhat greater
maximum gap in the d-wave case for the same transition
temperature, otherwise the curve is unremarkable.

To complete this section, we imagine that the interaction
was in fact of the charge-coupled type (9), mediated by
phonons. In that case, there would be an isotope shift,!> and
in Fig. 8 we illustrate 7. and isotope shift « as a function of
doping. It is seen that as in the s-wave case, there is a pro-
nounced minimum in the isotope shift at the place where the
transition temperature has a maximum. The minimum « is

120 T T T
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80

Te(K)

60 |-

40

20

| | 1 0
-500 0 500

w

FIG. 8. T, and isotope shift « plotted vs energy of the Fermi
level relative to the VHS, for the case of an interaction like (9)
mediated by phonons. Parameters r=2500 K, #'=715 K,
V=1700 K, phonon cutoff w,=700 K.
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somewhat lower than in the s-wave case (in better agreement
with experimental data); the isotope shift minimum may be
further lowered by anharmonic and z factor (see Sec. II)
effects.

IV. SPECIFIC HEAT

One of the key features in the Van Hove scenario, estab-
lished in previous work,"? was the peak in the specific-heat
jump occurring when the doping corresponded to the maxi-
mum transition temperature. The underlying reason was that
the DOS peak at Ep is maximum at that point, which is
reflected in the specific-heat jump, as calculated both in the
BCS and Eliashberg' formalisms. There is a lot of experi-
mental support] for this correlation between the maximum
transition temperature and the maximum in the specific-heat
jump, providing support for the Van Hove scenario.

In this section we address two issues arising from this
previously established correlation. The first is to establish
that the specific-heat jump also correlates with maximum
T, in d-wave symmetry. Secondly we address the issue of
the specific-heat behavior in the normal state at temperatures
well above the transition temperature, our motivation being
that measurements?® do not show any sign of the Van Hove
peak in the DOS in the normal state, giving rise to criticism
of the entire Van Hove scenario.

To anticipate our conclusion, we find that the specific-heat
jump has a pronounced maximum, in pairing of d,2_,2 sym-
metry, at the doping corresponding to maximum 7., analo-
gous to the s-wave case. However no significant structure is
found in the normal-state specific heat. These results are in
agreement with experiment and support the scenario.

We shall stick to the BCS level of approximation in this
paper, and follow the method of Fetter and Walecka®' in
calculating the specific-heat jump. The free-energy differ-
ence between normal and superconducting states is first writ-
ten as a coupling constant integration

ld\
Q‘,—Q,,=j —(NFin) (13)
R

where \ is a coupling constant multiplying J. Using (8) this
may be rewritten

0.-Q, = JdJAZ
s n— 0]2 ’
or
A4
Q- Q,=-X(1), (14)
where
4
_ Mk ) & L &
X(T)—g Py tanh(zT) Spsech (2T . (15)

and é‘k =& M.

Using the gap equation (12), which is expanded for A
small and T close to T, (14) can be expressed as an expan-
sion in T.—T. Differentiating twice, we obtain the specific-
heat jump
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FIG. 9. Specific-heat jump AC, (dashed curve) in 7z’ model, for
d,>_,2 pairing, vs energy of the Fermi level relative to the VHS
(lower scale) and doping (upper scale). Parameters ¢=2500 K,
t'=715 K, J=1200 K. Also illustrated are transition temperature
(dotted curve, right-hand scale) and normal-state specific-heat coef-
ficient y at 300 K (full curve).

ki YX(T,)
where
1 &x
_ 2 2 Sk
Y(T) 4§ n2sech (2T). (17)

We may also calculate the normal-state electronic specific
heat above T,

1
Cy(T)= Z—ﬁ; §,%sech2(§—;). (18)

In Fig. 9 we illustrate the variation of 7., specific-heat jump,
and normal-state specific heat at 300 K, as a function of
Fermi level relative to the VHS. We see that the specific-heat
jump has a sharp maximum just at the place where the tran-
sition temperature peaks, as in the s-wave case. However the
normal-state specific-heat jump does not peak at this point—
due to the 52 factor in (18), there is instead a weak minimum.
Experimental data®® given in Fig. 10 are seen to have a close
qualitative resemblance to the results of Fig. 9. Note that in
the experimental figure doping goes to the right (somewhat
qualitatively in terms of the oxygen concentration), while in
Fig. 9 it goes to the left. In both figures the peak in transition
temperature is associated with a narrower peak in the
specific-heat jump, but a rather featureless normal-state spe-
cific heat.

A more quantitative calculation attempting to reproduce
the data is limited by (a) our restriction to a one-band model,
(b) the difficulty in reproducing the complicated extended
saddle-point feature seen in the 123 material experimentally,
and (c) neglect of the renormalization effects reproduced in
the Eliashberg treatment. In Fig. 11 we do, however, present
a semiquantitative attempt to reproduce the data, using pa-
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FIG. 10. Specific-heat jump A C, (dashed curve), transition tem-
perature (dotted curve, left-hand scale) and normal-state specific-
heat coefficient y at 280 K (full curve), for YBa,Cu3Og 5 plotted
vs 6.

rameters partly reproducing the extended saddle-point situa-
tion (but not as effectively as done in Ref. 22). The main
discrepancy from the experiment?? is that the latter has about
a factor of 2 higher specific heat. While this might be due to
our choice of mass being too low, it is also possible that the
v value in the real material is raised by the contribution of
multiple bands, while the specific-heat jump is enhanced by
mass enhancement effects (Sec. II). The broad features of the
experiment are reproduced, however.

V. CONCLUSION

The BCS calculations in the present paper suggest that the
d-wave version of the Van Hove scenario is as compelling as
the earlier s-wave version. Key properties such as transition

100 5 T 5

Cy/T (md/q at K?)

.0 .0
—-1000 —~2000

FIG. 11. Specific-heat jump AC, (dashed curve) in ##’ model,
for d,2_ 2 pairing, vs energy of the Fermi level (lower scale) and
doping (upper scale). Parameters = 1000 K, t' =450 K, /=720 K.
Also illustrated are transition temperature (dotted curve—left-hand
scale) and normal-state specific-heat coefficient y at 300 K (full
curve).
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temperature, gap, and specific-heat jump are dominated by
the saddle points just as in the s-wave case. The phase space
effects underlying this 7. enhancement should survive the
introduction of a marginal Fermi liquid-type lifetime broad-
ening, as demonstrated from a modelistic standpoint in Sec.
II and the Appendix. The interaction we have assumed to
drive the pairing is a nearest-neighbor attraction, most prob-
ably an antiferromagnetic exchange interaction. This interac-
tion is also important in generating the 7-independent bulk
susceptibility, and in generating a broad peak in the magnetic
S(g) at (7r,7r), which is measured directly in neutron scat-
tering and indirectly in NMR experiments. In this case the
isotope shift is zero, however, posing a problem for the ob-
served doping dependence of the isotope shift. In the case
where the nearest-neighbor attractive interaction is phononic,
the behavior of the isotope shift (minimum where the transi-
tion temperature is maximum) is the same as in the s-wave
case.

The exchange interaction within the single-band model
has a direct origin as a superexchange interaction from trans-
forming away the oxygen bands, as in the #J model. How-
ever, even in the single-band Hubbard model an exchange
interaction of order t>/U is present, and the exchange con-
cept can be extended to smaller U by invoking perturbation
theory in U which also generates exchange-type diagrams,
starting at order U2. Experimentally, measurements of J,, in
the insulating phase suggest values*> on the order of 120
meV.

Converting J values quantitatively into 7', values for cu-
prates is not possible using the BCS approximation because
the vertex corrections, arising as a result of higher-order scat-
tering in the repulsive Coulomb interaction U are ignored, as
discussed in Sec. II.

In a quantum Monte Carlo study of the two-dimensional
tt' Hubbard model some of the present authors and
co-workers'® found strong evidence for d,2_y2 symmetry
pairing in the range of interaction strengths 0.5:t<<U<3t,
when the Fermi level lies close to the energy of the saddle
points, consistent with the Van Hove scenario. This purely
electronic pairing effect is probably of exchange origin. By
extracting a J value in a manner making allowance for
z-factor effects, it was possible to estimate an approximate
value of T, which at U=3¢ was found to be approximately
40 K.

An adequate ab initio investigation of the possible
phononic contribution to d-wave pairing is so far not avail-
able. We can only briefly comment here on probabilities
based on conceptually simple models. The breathing-type
modes of in-plane oxygens (the result should also apply to
‘“apex” oxygens), in which the oxygen motion lies along the
bond joining it to its copper neighbors, tend to favor configu-
rations in which a pair is localized on a site rather than in a
bond, and thus favor s-wave pairing. On the other hand, in a
buckled configuration of the “in-plane” oxygens, where
these lie somewhat out of plane, motion of the oxygens nor-
mal to the plane promotes localization of electrons at oppo-
site ends of a Cu-Cu bond, and thus should favor d-wave
pairing. The degree of buckling is also strongly coupled to
the electronic structure of the saddle points,?* and in particu-
lar to their “‘extended” character. It remains for a detailed

!
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calculation to investigate the possible consequences for pair-
ing of this type of buckling-unbuckling motion of the “in-
plane” oxygens.

At the present time the nearest-neighbor antiferromag-
netic exchange supported by the VHS seems likely to under-
lie the pairing, which links up the Van Hove and the mag-
netic scenarios, without the implausibility of assuming that
maximal 7. cuprates are on the verge of an antiferromag-
netic instability. However, a synergic interaction involving,
for example, the buckling-unbuckling motion of the planar
oxygens, together with the antiferromagnetic exchange, may
be significant, enabling retention of the standard Van Hove
explanation of the anomalous isotope shift.

Note added in proof: Recently T. Hotta (private commu-
nication), has derived similar results to those of Sec. II in a
fully k-dependent manner. In a renormalization group calcu-
lation, I. Ye. Dzyaloshinskii (private communication) has ex-
amined mass enhancement effects beyond perturbation
theory, with interesting results including a non-Fermi liquid
phase.

APPENDIX

Misgivings are sometimes expressed as to whether the
Van Hove density of states singularity, which plays a key
role for superconductivity, survives the presence of lifetime
broadening of the quasiparticles. To investigate this, we may
start from a general definition of the density of states p(w)

1
plw)= ﬁ; Im G(k,w)

1 S [Im 3 (k, )|
T aN% [w—g,—Re 3(k,w)]*+[Im S (k,0) >’
(A1)

In the case of quasiparticle scattering around a Van Hove
singularity, the lifetime broadening has been shown analyti-
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cally and numerically4 to have an anomalous marginal Fermi
liquid behavior, in which the on-shell lifetime broadening
takes the form (assuming E = Eyyg)

Im 3 (k,e;)~agy. (A2)

The lifetime broadening is proportional to the quasiparticle
energy measured from the Fermi level, instead of its square
as in a normal Fermi liquid. The quantity « is of order 1/2.
This MFL-enhanced lifetime broadening is the cause of the
concern as to the survival of the Van Hove singularity.

With the ansatz Im2 (k, w) = a[w| = B(w), which extends
the on-shell result (A2), an analytically tractable
treatment of the effect of lifetime broadening on the DOS
can be implemented. The real part of the self-energy,
obtained from the Hilbert transform of B, is A(w)=
—(a/m) o In|(D*— v/’

The normal-state DOS (A1) at a single saddle point with
dispersion &, =k,k, takes the form

. l kc kL‘ B(O))
plw)= z‘zﬁfo ‘”‘*LC‘”‘Y[w—kxky—A(w>]2+B(w>2’
(A3)

here k. is related to the bandwidth cutoff D by kf=D.
In terms of spectral density

__JD po(&)B(w)
p(w)—Tr -D e[w—e—A(w)]2+B(w)2

where py(&) is the bare DOS 1/(2D)In|D/e|.

This integral can be done by extending the contour to
form a semicircle in the upper half plane. The result is ap-
proximately

(A4)

(A5)

1 D
Pana( @) = 2*5111( m)

with corrections of order B/D?.
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