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Euler Monte Carlo calculations for liquid He and He
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We present an optimization procedure for Monte Carlo variational calculations and illustrate it by optimizing
pair and triplet correlations in the ground-state wave functions of liquid He and He. We use the optimized
trial functions, with a partially optimized backflow for He, to perform extensive diffusion Monte Carlo
simulations that yield accurate results for the equation of state and structural properties of both liquids. The
agreement with experiments, which is excellent for "He, somewhat deteriorates in going to He, due to the use
of the fixed-node approximation. The remaining appreciable discrepancies between the results of variational
and diffusion Monte Carlo unambiguously point to the increasing importance of n-body correlations, with

n)3, as the density is increased.

I. INTRODUCTION

The optimization of variational wave functions of quan-
tum liquids is a long-standing problem, which has been at-
tacked for many years with hypernetted-chain (HNC, FHNC)
theories' and, more recently, within the variational Monte
Carlo (VMC) method. ' Most calculations using HNC theo-
ries have been mainly devoted to the optimization of the
Jastrow pair factor f2(r) of the trial wave function. Thus it
has been possible to determine the long-range behavior of
f2(r) and, moreover, the optimized f2(r) obtained by solv-

ing numerically the HNC Euler equations has provided im-

proved energy upper bounds with respect to parametrized

f2(r), like the MacMillan ansatz. However, the elementary
diagrams entering the HNC cannot be summed up in any
known closed form and can be accounted for only in ap-
proximate manners. ' Hence, also the HNC Euler equa-
tions are intrinsically approximated. Moreover, if the trial
wave function contains higher-order terms in the Feenberg
expansion, ' like triplets, the corresponding Euler equations
become increasingly involved and difficult to solve
numerically. "

Recently Vitiello and Schmidt have proposed an optimi-
zation procedure for the Jastrow correlation factor f2(r) of
liquid He, which is based on the variational Monte Carlo
method. In their calculation, f2(r) is built up using the first
few eigenfunctions of a suitable Schrodinger-like equation, '

which is quite effective in keeping low the number of basis
components in the expansion of f2(r)

Triplet correlations play an important role in the physics
of both liquid He and He, as Jastrow models provide poor
upper bounds of the energy per particle E(p). For instance,
at the experimental equilibrium density p,q, Jastrow correla-
tions overestimate the total energy by about 1 K for both

He and He with respect to Green function Monte Carlo'

(GFMC) or diffusion Monte Carlo' (DMC) solutions, which
are known to provide virtually exact results for bosons and
variational upper bounds to the total energy of fermions,
within the fixed-node approximation. ' The inclusion of trip-
let correlations is essential in bringing the equilibrium den-

sity p,q
close to the experimental values and considerably

improves the equations of state of the two liquids. However,
non-negligible discrepancies with GFMC or DMC solutions
still remain. It is one of the goals of the present study to
establish whether such discrepancies are due to the use of
nonoptimized triplets or to the need of n-body correlations,
with n~3.

In this paper we implement a basis set method similar to
that of Ref. 5 in order to optimize not only the Jastrow pair
function, but also the triplet correlation functions. By com-
bining the reweighting method' for variance minimization'
with a technique which makes use of the derivatives of the
local energy with respect to the expansion parameters, ' ' it
is possible to deal with a number of basis components which
is large enough that the whole procedure is equivalent to
solve the Euler equations for the pair and the triplet correla-
tion functions.

Using trial wave functions with optimized pair and triplet
correlations, we have calculated the equation of state for both

He and He. The energy upper bounds are lower than those
obtained from trial functions used in previous variational cal-
culations. The improvement becomes significant in the high-
density regime. Variational optimization is important, not
only for the understanding of correlations, but also for Green
function Monte Carlo or diffusion Monte Carlo calculations.
Particularly, when calculating quantities other than energy
per particle F(p), like for instance the pair distribution func-

0163-1829/95/52(1 8)/13547(12)/$06. 00 52 13 547 1995 The American Physical Society



13 548 SAVERIO MORONI, STEFANO FANTONI, AND GAETANO SENATORE 52

tion g(r) or the kinetic energy, a good trial wave function is
very much needed to reduce systematic errors in the extrapo-
lated estimates. Using these optimized variational wave
functions for importance sampling, we could perform fixed
node DMC calculations at an unprecedented accuracy. The
comparison between variational and DMC results shows that
n-body correlations with n~3 definitely play an important
role, particularly at high densities, as also indicated by recent
VMC calculations carried out by using Shadow wave
functions. A preliminary account of our results has been
given elsewhere. '

The plan of the paper is as follows. The VMC method is
discussed in Sec. II and the Euler optimization procedure in
Sec. III. The DMC calculations are discussed in Sec. IV and
the results obtained for liquid He and He are presented in
Sec. V. The last section is devoted to conclusions.

II. VARIATIONAL MONTE CARLO METHOD

It is believed that the Hamiltonian

N

F3 = exp —— g u2(r, I) —— g u3(i,j,k), (8)
i&j=1 i&j&k=1

with f2(r) = exp[ —u2(r)/2] the Jastrow correlation function.
Here, 4 is equal to a constant for "He and a product of the
spin-up and spin-down Slater determinants of plane waves
with backflow correlations for He:

44H,—1,

@3He O'B(T) @B(l),
where PB(n) (n= t, l) are given by

( N

@B(n)=Det; exp ik, r + g rI(r& )rj,
I

the wave vectors k; span the N/2 allowed momenta of the
Fermi sea and j ranges from 1 to NI2 for a= t' and
NI2+ 1 to N for n= l, whereas the sum over k is extended
to all the particles. The backflow correlation is taken in the
form

P R fdR'/'Ifp(R')
/

(2)

where U(r) is the HFDHE2 potential of Aziz et al. ' pro-
vides a realistic description of both the Bose and the Fermi
liquid helium, at relatively low pressure.

The expectation value of the Hamiltonian (H) is com-
puted by generating a set tR) of M configurations R;
sampled from the probability

rI(")= ~Bexp
v rB ' I2r —L,~'—

co~ ~
L (12)

where Xz, rz, and co& are variational parameters, and L is
the side of the simulation box. The evaluation of the deter-
minant and its derivatives entering the kinetic energy is the
most time-consuming part of the algorithm. It is performed
as explained in Ref. 26.

The pair and triplet pseudopotentials in Eq. (8) have been
taken as linear superpositions of suitable basis functions
X (r), to be specified in Sec. V,

by means of a generalized Metropolis algorithm, and aver-
aging the local energy Et(R),

u2(r, ,)=u2(r;, )+g a x (r;,),

tt3( t,j,k) =
tt s(/, J,k)

1 1
EL(R) = H I"p(R) = V(R) + T(R) Pp(R)

0 0

+X X b~.X (r;,)X.(r;t,)P~(r;,"r,k)
cyc m, n, Y

(14)

N
fL2

= X U(r;, )+ 2 X [h, (R) —g;(R) g;(R)];i(j= 1 2m

(4)

where the Feynman ansatz u3, given by

~3(i j k) =X &'(r„)('(r,k)Pi(r„rik)
cyc

(15)

here

h;(R) = —b, , ln'ql'0(R),

g, (R) = —7', ln% 0(R), (6)

is believed to provide a realistic representation of triplet cor-
relations. In the above equations, P~ are Legendre polyno-
mials. The matrices b must be symmetrical in m, n, and
"cyc" denotes a sum over cyclic permutations of (ijk). The
ansatz b „=b b restricts the class of triplet correlation
functions to those of the factorized form

and R denotes the coordinates r1, . . . , rN of a11 particles.
We have used trial functions containing Jastrow and trip-

let correlations for the Bose case, and Jastrow, triplet, and
backflow correlations for the Fermi system, namely,

%0=F34,

where

u3 (i,j,k) = g g g~(r; ) g~(v;k) P~(r; "r;&), (16)
cyc

where (~(r) = X b X (r). This form implies a much
smaller number of variational parameters to be considered
with respect to that of Eq. (11), but has a quadratic depen-
dence on the expansion parameters b„,. We have optimized



52 EULER MONTE CARLO CALCULATIONS FOR LIQUID He AND He 13 549

III. OPTIMIZATION METHOD

The Euler Monte Carlo (EMC) procedure that we propose
in this paper is based on the minimization of a combination
o. of the energy expectation value and its variance, ' using
the reweighting method' and the feature that in+0 is linear
(or quadratic) in the variational parameters. ' ' We pose no
restrictions on the functional form of the pair and triplet cor-
relations, pushing the expansions of Eqs. (13) and (14) to
convergence (within a threshold given by statistical accu-
racy). Thus we solving the variational problem for
o (I u2], tu3]), which is equivalent to solving the Euler
equations

=0 (n =2,3),
Bu„(r, , . . . , r, )

(17)

for the pair and triplet correlations. Note, however, that such
Euler equations do not enter explicitly the Monte Carlo op-
timization scheme.

u3 by retaining only the 8=0,1 components, which are

known to be the most important. The general form of u3 of
Eq. (11) has also been optimized, retaining the 8=0,1 com-
ponent only. Higher order components, in fact, have been
shown to be negligible.

The main problem is to optimize the trial function 9'0,
minimizing (H), or its variance or a combination of them,
under variation of the parameters of the backflow correlation
and the expansion coefficients a and b „ofthe pair and the
triplet correlation functions. It will be shown in the next
section that the optimization of u2 and u3 relies on the fea-
ture that InF& is linear (or quadratic) in the expansion coef-
ficients. This feature does not hold for the backfIow correla-
tion, which, for this reason, we have not attempted to fully
optimize.

function, ' that N„configurations provide N~ conditions,
which in general will be sufficient to fix all the parameters.
Even though the ideal limit is never attained, the better is the
wave function, the smaller the number of needed configura-
tions. Finally, the only way the variance can be small is that
the wave function be accurate in all the configuration space,
making the local energy FL(R) smooth (the local energy is
obviously constant for the exact wave function). Energy
minimization, on the other hand, may be biased by configu-
rations where the local energy is too low: This gives a stron-

ger dependence on the finite sample (R;J used in Eq. (18),
and occasionally may produce less accurate variational pa-
rameters.

Since the form of the trial wave function is not exact,
there is no guarantee that a set of parameters which mini-
mizes the variance so does for the energy as well. We inten-

tionally shift E0 slightly below the average local energy, to
give some weight to the variational energy in the quantity to
be minimized. ' The amount of the shift is chosen to be
—1 K because, in some test cases, this choice produced a
better variational energy with no significant increase of the
variance.

B. Reweighting method

The reweighting technique' is adopted to efficiently
minimize o. with respect to the variational parameters. It
consists of using the set of configurations (R;), obtained
from the distribution qtoI, to estimate (cr )

' corresponding
to a trial wave function 'Po which is not too different from
'pro. This allows one to evaluate the difference o. —(o. )'
much more accurately than the quantity cr itself. An inde-

pendent sampling from iPOI would introduce large Iluctua-
tions in the (often small) difference o. —(o. ) '.

Let us suppose that (R;) is a set of configurations drawn
from I'qt„I . The estimate of (o. )

' is given by

A. Variance minimization

It has become widespread practice to optimize a highly
parametrized wave function by minimizing with respect to
the variational parameters the positive quantity

X;[Ei(R;)—Eo] w(R;)

X;w(R, )

where the weights are given by

(19)

2
1~'= —X I:&i(R;)—~o]', (18)

Ie,'(R) I'
w(R)

I
I2

——exp(2[I(R) —I'(R)]),
0

(20)

rather than the variational energy itself. ' If E0 is the average
local energy, o. is its variance.

Variance minimization has several advantages. Since Eq.
(18) is a sum of squares, it can be minimized by a very
efficient algorithm such as that of Levenberg and
Marquardt. However, in the present work this is only a
marginal bonus because, for a given sample (R;) used in the
evaluation of o. , we can move at basically no cost through
the parameter space (see below) and the efficiency of the
minimization algorithm is not crucial. More importantly,
variance minimization requires a much smaller number of
configurations than energy minimization. In fact, consider
the ideal limit of a wave function that recovers the exact
ground state for a given choice of a finite number N~ of
variational parameters. It is evident, from Eq. (18) and the
property that the variance be zero for the exact wave

l(r) = —ln'Po(R),

and the local energy is given by

(21)

1 A,
2

EL(R)=, H' 0()= V(R)+ g Ih,'(R) —
g,'(R) g (R)].

0 i

(22)

We use a few thousand configurations in the sum (19) to
optimize some tens of variational parameters (detailed values
depend on the form of the wave function). New configura-
tions are generated with the optimized parameters and the
procedure is iterated until the energy and its variance con-
verge within statistical errors. The rate of convergence of the
reweighting procedure at any given density p depends upon
the starting trial wave function 'P0. If we keep the optimized
trial function, obtained at a density p0 close to p, as starting
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'Po, two to three iterations are sufficient to reach conver-
gence. However, even starting from a poor trial function such
as a pure Jastrow form does not require more than —10
iterations. Various tests, done starting from different initial
values of the parameters, using different basis sets„and keep-
ing iterate after convergence, indicate that the final energies
are reliable to within 0.01 K.

l(R)=l (R)+g [a l&(R)+b l3(R)], (23)

where, for brevity, we have used a single index o. in the
coefficients b and quantities l3, which actually depend upon
three indices (m, n, Y ). The expressions of l, l2, and

l3 are given by

and

1
N

l (R)= —— g u2(r;J)+ g u3(i, j,k)
i&j=1 i&j&k=1

(24)

N

I 2(R) = —
2 2 x.(r;, )

/&g=1

C. Linearity of ln&~ on the variational parameters

The reweighting technique is particularly efficient in the
optimization procedure when 1n'Po is linear in the variational
parameters. ' ' According to Eqs. (13) and (14), In+p is lin-

ear in the expansion coefficients a and b „,

with p, =2,3 and v=2, 3. The knowledge of l, as well as of
/

the kinetic energy terms T and T for any configuration
R;, allows us to compute the weights and the local energy in

Eq. (19) for any choice of a and b „by the expansions (23)
and (27). The expensive evaluation of the terms l, g, , h,.

has to be done only once, and the number of evaluations of
o. required by the minimization routine has little effect on
the computational load.

The general form (14) of the triplet pseudopotential is
extremely inefficient in the actual simulation because it re-
quires explicit evaluation of each term m, n in the sum (14).
Its use could cnly be justified by significant improvements
over the factorized form, which turns out not to be the case.

The factorized form (16), on the other hand, is quadratic
in the variational parameters, and the kinetic energy is quar-
tic. This case can be treated by straightforward generaliza-
tion of Eqs. (22)—(29). The scaling of the optimization algo-
rithm with the number of variational parameters becomes
quite unfavorable (fourth power), due to the derivatives to be
added in expansion (27). However, the computational cost is
still moderate for the number of basis functions we use (a
typical optimization for He requires a few hours on an IBM
risc 6000/550 workstation, mostly devoted to generating the
configurations tR,)).

IV. DIFFUSION MONTE CARLO CALCULATIONS

Diffusion Monte Carlo' ' is a stochastic solution of the
(bosonic) imaginary time Schrodinger equation

N

Is(R)= —
2 X X X .(r;,)X..(r;~)p~.(r„r;~)

i&j&k= 1 cyc

84&(R, t)
8f

V'4 (R, r)+ VrIi(R, r) (31)

(26)

Similarly the functions h;(R) and g, (R) are linear in the
expansion coefficients. The expressions of h, (R), h2, (R),
hs, (R) and of g, (R), gz, (R), g3, (R) are obtained by acting
on l (R), l2(R), l3(R) with —b, ; and —V;, respectively.

Inserting the expansions of h;(R) and g;(R) into Eq. (4)
one easily finds an expansion for the kinetic energy T which
is quadratic in the expansion coefficients:

T(R) = T (R)+g [T2(R)a + T&(R)b ]

Since re(t~~) =4p, the lowest-energy eigenstate of the
Hamiltonian not orthogonal to 4(t=O), DMC gives infor-
mation on the exact ground state of the system. The solution
is obtained in principle by simulating the imaginary time
Schrodinger equation (31) as a diffusion equation for the
(positive) density C&(R, t).

In practice, for reasons of computational efficiency, one
has to introduce importance sampling. By multiplying Eq.
(31) by a known trial function Wp and rearranging terms,
one gets a new diffusion equation for the density
f(R, t) ='Pp4'(R, t):

r

+ g (Tzz a a +Tz& a b +T32 b a
oIf(R, 1) 6'

V'f(R, r)+ V' [F(R)f(R, r)]

r

+T33 b b ), (27)
+ [Ei (R) —Er]f(R, t), (32)

where

A'
T (R)= g [h;(R) —g;(R) g;(R)],

T„(R)= g [h, (R) —2g, (R).g, (R)],

A'~': (R)=-2 X g„(R) g.;(R)

(28)

(29)

(30)

where F(R) =2V'Pp(R)/'Ij'p(R), EL(R) is the local energy
defined in Eq. (4), and Er is a normalization constant. This
new diffusion equation has a drift term V'. (Ff) which drives
the density towards regions where 'Po is large. Moreover, the
branching term (EL —Er)f contains the local energy, which
is smooth for a good wave function, instead of the potential
V which has large fluctuations. Both these facts improve the
efficiency because in the actual calculation one has a discrete
representation and a finite sampling of the density f, and
hence wants to sample preferably important regions and
avoid large fluctuations.
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approximation has variational character, and gives the best
energy upper bound consistent with the nodal structure of the
trial function.

—7.15
V. VARIATIONAL AND DMC RESULTS

In the variational calculations, the functions u2(r) and

( (r) in Eqs. (13) and (15) have been taken of the form

—7.20 u2(r) =
7"

(34)

—7.25
( (r) = a,exp—

tr r,)'—
(35)

2
10~ 7 (K ')

FIG. 1. Extrapolation at ~=0 for the total energy E, in He, at
the experimental equilibrium density p,q=0.021 86 A

Since Eqs. (32) and (31) are formally equivalent, the den-

sity f(R, t) will converge to 'Il'pIIIp at large t. The configu-
rations (R;) generated in the Monte Carlo simulation are

asymptotically sampled from WpC p, and can be used to
evaluate the mixed estimator

(Pp~OCp)1'0%p(R)
(~,~e, ) ~~,

~. ,(R, )
(33)

of an operator O. Only for operators which commute with
the Hamiltonian will the mixed estimator coincide with the

ground-state expectation value (IIIp O~IIIp)/(IIIp~Cp). For
other operators, the bias in the mixed estimator is first order
in 8', where ~IIIp) = ~'Pp)+ 8' 'P). One can improve by
computing the extrapolated estimator 0„,=20
—('Pp~0~%"p)/('Pp~+p). The bias in the extrapolated esti-
mator is second order in 8'. Methods to compute unbiased
ground-state expectation values have been proposed; how-
ever, they introduce large statistical errors, and in this paper
we will use the extrapolated estimator.

In the actual simulation one evolves a discrete represen-
tation of the density f(r, t) using a finite time step r and an
approximation for the Green function of the differential
equation (32) which is only exact in the limit r~0. This
introduces a time step error which can be extrapolated out by
repeating the simulation with various time steps. All the en-
ergies calculated in this work are extrapolated to ~=0. A
typical extrapolation is shown in Fig. 1. For the structural
properties, on the other hand, the statistical noise was larger
than the time step bias, and we report results for a fixed 7.
The time step error can be avoided altogether by using the
Green function Monte Carlo method.

An exact practical algorithm for a general many-fermion
problem is not known. For He, we resort to the fixed node
approximation, ' which assumes that the ground state has the
same nodal structure as the trial function. Then the density
f=IIIp%'p is positive and can be sampled by the method
outlined above. In practice one restricts the diffusion process
not to cross the nodes of the trial function. The fixed node

with b = 3.04 A, a, = 0.0827 A ', r, = 2.04 A, and

~,=1.05 A for He, and b=2.94 A, a, =0 for He. The
results reported in this paper have been obtained with the
following basis functions:

t' 2mm
(r) = 1 —cos (r —L/2) r" (r) r, ),

i, L —2r,
=r" (r~r, ), (36)

where L is the side of the simulation box. Variational free-
dom is freezed for r(r, = 1.75, roughly corresponding to the
range of interparticle distances which is never sampled by
MC configurations, to avoid instabilities in the optimization
procedure. The exponent n is taken equal to —5 in the ex-
pansion of u2 and equal to 8 in the 8 component of u3.

The choice of the basis functions is not really crucial,
provided one takes into account the gross features of the
function be optimized. In the present case, for instance, the
choice of n in the expansion of u2 sets the basis functions on
a roughly appropriate scale. We have obtained equivalent
results with a similar number of basis functions using Gaus-
sians instead of cosines in Eq. (36). Most of the present
results are obtained with 20 and 14 basis functions in the
expansion of u2 and u3 . Convergence has been verified in-

cluding up to 30 and 20 basis functions, respectively. In all
cases the parameters in the pair and triplet correlations are
optimized simultaneously.

All simulations presented in this work have been done
with 64 atoms of He or 54 atoms of He in a cubic box
with periodic boundary conditions. To enforce periodicity the
pair potential v(r) was smoothly cutoff at r, =L/2. We ac-
tually used v '(r)—:v(r) —b. v(r),

v
' = v ( r) + v (L r) —2 v (L/2) (—r(r, ) (37)

=0 (r~r, )

A correction AV=(1/2) pfg(r)kv(r)dr was then added to
the computed potential energy, where the pair correlation
function g(r) comes from the simulation and is taken equal
to 1 for r)L/2. The functions u2 and u3 were modified
according to the same prescription as for v(r). In fact it has
been shown that a long-range term -r in the two-body
pseudopotential u2 would give the correct linear behavior of
the structure factor S(q) at small q. However, such a long-
range term has an exceedingly small effect on the total
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-6.804(15)
-6.695(27)
-6.854(2)

-6.51
-7.012(2)

-7.034(37)

-6.915(4)
-6.48

-7.111(5)
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TABLE II. Energy E and kinetic energy T (in K) of He at the

experimental equilibrium density p,q=0.021 86 A . M refers to a
VMC calculation with a McMillan wave function (Ref. 24). Other
notations as in Table I.

30.0 I
I

I I I
I

I I I
I

I

M

OJ
OJT'
OJOT
DMC

'Ref. 5.

-5.702(5)
-6.001(16)
-6.862(16)
-6.901(4)
-7.143(4)

14.712(50)
14.709(20)

14.233(8)
14.049(18)

20.0

10.0

10
X

C3
I

8

function, obtained by using the factorized triplet u3 of Eq.
(16), with 8=1. For quantities other than the energy, the
DMC results that we report are always extrapolated estima-
tors.

0.0
0.022 0.024

P()( ')
0.026

A. Liquid He

The variational energies are compared in Tables I and II
with the exact DMC results and with other variational ' and
Green function Monte Carlo' calculations. At the equilib-
rium density, the optimized Jastrow (OJ) wave function im-

proves the energy by 0.3 K over the McMillan form. A fur-

ther improvement of 0.9 K is obtained including three-body
correlations. The remaining difference of 0.24 K from the
DMC result is due to higher-order correlations, as previously
discussed.

Differences between our results and those of Ref. 5 arise
from the fact that a partial optimization was implemented in

Ref. 5 whereby the two-body part of the wave function was
optimized while keeping a fixed parametrized form of the
triplet. Since three-body effects are more important at higher
densities, the improvement over the results of Ref. 5 in-

creases with the density. The opposite trend is exhibited by
the results of Ref. 20, obtained with a shadow wave function
which contains implicitly correlations to all orders. We also
note that the discrepancies between our results and those of

FIG. 4. Pressure P (left scale) and isothermal compressibility
~ (right scale) of He between equilibrium and freezing density.
Solid line, experiment (Ref. 32); dashed line, DMC.

Ref. 2 are clearly ascribed to higher-order elementary dia-

grams neglected in the HNC treatment.
In contrast with the results of Ref. 31 our DMC energies

agree with the GFMC results of Ref. 13 at all densities with

the exception of p=0.02401 A, the only one for which
the GFMC result does not agree with experimental data. In
fact, our energies are very close to the experimental equa-
tion of state, as it can be seen from Fig. 3. They are statisti-

cally compatible with a polynomial fit of the form

E(P) =Eo+ ~l (P Po)/Pol + Cl(p Po)/Po] By X
mization we get Fp= 7.144 K, B=13.28 K, C=9.65 K,
and po = 0.021 92 A, to be compared to the experimental
values of Fo= —7.14 K, B=13.65 K, C=7.67 K, and

po = 0.02185 A . The resulting pressure P = p BF!8p and

compressibility Ir= (I/p)//p/r/P are displayed in Fig. 4. The

I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I
I

Exp.
1.4—

—7.0
1.0

I I I I I

0.020 0.022 0.024 0.026
PQ ')

FIG. 3. Equation of state of He. Solid circles, DMC; open
circles, VMC; solid line, experiment (Ref. 32); the dashed and dot-

ted lines are polynomial fits to the Monte Carlo data.

I I I I I I I I I I I

3 4 5 6 7
r (L)

FIG. 5. Pair correlation function g(r) of He at equilibrium

density. Solid and dashed lines, DMC and VMC results with an

optimized OJOT trial function; dash-dotted and dotted lines, DMC
and VMC results with a simple McMillan trial function.
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0 GI"MC

1.5

I I I I

l
I I I I

l

I I I I

l
I I I I

l
I I I I

/ ()( ')
0.01964—

1.0

14.0

0.0
I

0.5 1.0 1.5
Ternperat. ure (K)

I

2.0

0.5

FIG. 6. Ground-state and finite-temperature kinetic energy of
He at equilibrium density. Solid circle, DMC (this work); open

circle, GFMC (Ref. 33); stars, PIMC (Ref. 34).

0.0
0 2 3

q ()(-')

small discrepancies we And between DMC and experiment
are in the opposite direction than reported in Ref. 31 with the
HFDHE2 potential.

A good trial wave function provides good energy upper
bounds, but also low variance in both VMC and DMC, and
reliable extrapolated estimators. The variance we obtain in
the case of the optimized Jastrow+Triplet (OJOT) wave
function is significantly lower than for other trial wave func-
tions. It ranges from 0.21 at p=0.01964 A to 0.72 at
p=0.026 27 A . At the equilibrium density peq 0 021 86
A its value 0.34 should be compared with 2.74 of the pure
Jastrow of the McMillan form and 1.71 of the OJ wave func-
tion. In Fig. 5 we give the pair correlation function

FIG. 7. Static structure factor S(q) of He. Dotted, solid, and

long-dashed lines are the DMC results at p=0.019 64, 0.021 86,
and 0.026 22 A, respectively. The short-dashed line in the inset
gives the correct small-q slope for p,q. The dots are the experimen-
tal results at p,q

of Ref. 35 and of Ref. 36 (in the inset).

energy, 14.05 K, is somewhat lower than the GFMC result of
Ref. 33, and much closer to the zero-temperature extrapola-
tion of the path-integral results of Ceperley and Pollock
(see Fig. 6). Table III reports the VMC, DMC, and GFMC
(Ref. 33) kinetic energy values at various densities.

Figure 7 displays the static structure factor

(39)
S(q) = 1+p dr[g(r) —1]e (40)

at p,q. Our best estimate for g (r) is shown by the solid line,
corresponding to a DMC calculation with the good 'Po. One
sees the variational g(r) with the OJOT harp (dashed line) is
very accurate. On the contrary, with a simple McMillan wave
function the variational result (dotted line) is far off, and
even the DMC result (dash-dotted line) has a sizable bias, the
difference between the two DMC results being almost com-
parable to the difference between VMC and DMC with the
good wave function.

An even more striking example is provided by the kinetic
energy: At p, q (see Table II), we obtain VMC and DMC
estimators of 14.7 and 13.3 K with the McMillan wave func-
tion, to be compared with 14.23 and 14.05 K calculated with
the OJOT wave function. Our best estimate of the kinetic

at various densities. We also show the neutron scattering data
of Svensson et al. at equilibrium density. The agreement
with experiment is very good, except at very small q. The
solid lines are obtained from g(r) by Fourier transform. For
r)L/2, we assume that g(r) —1=A[exp( —Br)cos(Cr
+D)]II/r, with parameters fitted to the calculated g(r) in
the range 5(r(L/2 An indepe. ndent estimate of S(q)
is obtained from the average /I/ '(p «pq), with

pq=X;exp( —iq r;) and q a reciprocal lattice vector of the
simulation cell. This estimate agrees with the values obtained
from Fourier transform down to q-1 A '. For q~1 A
we fit a cubic spline to the discrete values at reciprocal lattice
vectors in this q range supplemented by the conditions
S(q) =0, dS(q)/dql~ o= fi/2Mc, with the sound velocity c
taken from the DMC equation of state.

TABLE III. Kinetic energy of He (in K) as a function of the density p (in A ). Same notations as in
Table I.

OJOT
DMC
GFMC'

'Ref. 33.

0.01964

11.936(7)
11.688(11)
12.08(8)

0.02078

13.069(7)
12.881(21)

0.02186

14233(8)
14.049(18)

14.47(9)

0.02401.

16.846(8)
16.428(23)

17.3(1)

0.02622

19.639(13)
19.312(26)

20.1(2)
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OJ
OJB
OJOT
OJTB

OJOTB

DMC

-1.085(34)
-1.233(30)
-1.659(21)
-1.709(17)
-2.055(15)

[-2.123(15)]
-2.095(6)

[-2.163(6)]
-2.299(5)
[-2.37(1)]

12.911(73)
12.920(67)
12.596(57)
12.606(57)
12.338(25)

[12.270(25)]
12.339(8)

[12.271(8)]
12.085(35)
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TABLE V. Energy of He (in K) as a function of the number

density (in A ). OJOTB refers to the VMC result with a wave
function with optimized Jastrow and triplet, and a partially opti-
mized backflow. The fixed-node DMC results are obtained with the
same trial function.

TABLE Vl. Kinetic energy of He (in K) as a function of the
number density (in A ). The fixed-node DMC results are obtained
with the same trial function. Notations as in Table V.

0.01198 0.01413 0.01635 0.01797 0.01946

0.01198 0.01413 0.01635 0.01797 0.01946

OJOTB -1.917(3) -2.099(3) -2.095(6) -1.920(6) -1.617(6)
DMC -2.000(2) -2.258(4) -2.299(5) -2.187(5) -2.006(7)

going from the McMillan wave function to the optimal
Jastrow+triplet (and backtlow). However, the shoulder at
r-4 A is higher in He, and exceeds 1 in the OJOT wave
function. The optimal triplet correlation ((r) also shows the
same trend as in "He, being higher than the parametrized
form of Ref. 25 at r-2 A, and decreasing faster at large r.
However, it has an appreciable density dependence at vari-
ance with the case of He and it is shown in Fig. 10. This
may be tentatively attributed to an interplay between triplet
and backflow correlations in He.

The variational energies for various wave functions and
densities are compared in Tables IV and V, with the DMC
fixed-node results. At the equilibrium density, the optimiza-
tion of u2(r) in a Jastrow wave function with plane waves
determinants improves the energy by only 0.15 K over the
McMillan form. Including triplet and backflow we obtain a
further improvement of 0.86 K. The remaining difference of
0.20 K from the DMC result is due to higher-order correla-
tion. The VMC and DMC equations of state are compared in
Fig. 11.Like in He, the difference between the two predic-
tions increases with density, as higher-order correlations be-
come more important. The effect of the fixed-node approxi-
mation clearly shows up in the sizable discrepancy between
DMC the result and the experimental equation of state.
Total and kinetic energy values as function of the density are
reported in Tables V and VI.

There is a discrepancy between our fixed-node DMC re-
sults for the total energy and the fixed-node GFMC results of
Ref. 37 obtained with the same number of particles. At equi-
librium density, for instance, Ref. 37 quotes a value of
—2.37(1) K, to be compared with our result of

I

[
I I I

)

I I I
[

I I

Exp.

DMC

VMC

—2.299(5). The difference is to be attributed to the slightly
inaccurate value we used for the mass of the He atom„
namely, m=3 a.u. We have verified that with the correct
value of the mass (m=3.016 a.u.) the DMC energy de-
creases by 0.07(1) K, which brings our result in agreement
with Ref. 37, and reduces the discrepancy with the experi-
ment to about 0.1 K. The inaccurate value of the mass also
biases our VMC results. In this case the correction can be
inferred directly from the kinetic energy, and amounts to a
decrease of —0.068 K at equilibrium density. The correction
brings into agreement the variational energy of —2.055(15)
of our OJTB wave function (see Table IV for notation), with
the value of —2.13(2) obtained in Ref. 37 using a presum-
ably equivalent wave function (parametrized triplet and
backflow, and optimal Jastrow correlation). Finally we note
that the same correction would shift the energy of our
OJOTB wave function down to —2.163(6) K, the best varia-
tional upper bound to date.

Figure 12 displays the static structure function at various
densities. For the experimental density, we show also the
experimental x-ray result of Achter and Meyer. Again we
note that the fixed-node approximation results in appreciable
differences between the DMC prediction and the experiment.
Thus we do not perform any small-q fit to the correct linear
behavior in this case, at variance with He.

In calculating pair correlations we have also resolved the
spin components

1.5—

I I I I

J

I I I I

J

I I I I

f

I I I I

(

I I I I

p(J( ')

0.01 198—
0.01635

946

1.0

OJOTB 8.131(7) 9.982(9) 12.339(8) 14.193(12) 16.020(12)
DMC 7.951(19) 9.825(21) 12.085(35) 13.833(31) 15.450(21)

0.5

—2.6
0.012 0.014 0.016

s (J(-')
0.018 0.020

0 0 I I I I I I I I I I 1 I I I I I I I l I I I l I

0 1 2 3 4

q (J(-')

FIG. 11. Equation of state of He. Solid circles, DMC; open
circles, VMC; solid line, experiment (Ref. 38); the dashed and dot-
ted lines are polynomial fits to the Monte Carlo data.

FIG. 12. Static structure factor S(q) of He. Dotted, solid, and
long-dashed lines are the DMC results at p=0.011 98, 0.016 35, and
0.019 46 A, respectively. The dots are the experimental results at

p,„ofRef. 39.
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