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Subharmonic structure of Shapiro steps in frustrated superconducting arrays
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Two-dimensional superconducting arrays with combined direct and alternating applied currents are studied

both analytically and numerically. In particular, we investigate in detail current-voltage characteristics of a
square array with ~ Aux quantum per plaquette and triangular arrays with 2 and 4 Aux quantum per plaquette.

1 1 1

At zero temperature reduced equations of motion are obtained through the use of the translational symmetry

present in the systems. The reduced equations lead to a series of subharmonic steps in addition to the standard

integer and fractional giant Shapiro steps, producing devil's staircase structure. This devil's staircase structure

rejects the existence of dynamically generated states in addition to the states originating from degenerate

ground states in equilibrium. Widths of the subharmonic steps as functions of the amplitudes of alternating

currents display Bessel-function-type behavior. We also present results of extensive numerical simulations,

which indeed reveal the subharmonic steps together with their stability against small thermal fluctuations.

Implications for topological invariance are also discussed.

I. INTRODUCTION

In the past several years there have been extensive studies
on two-dimensional (2D) NXN arrays of superconductors,
weakly coupled by Josephson junctions, because of their in-

teresting phase transitions and dynamical behaviors. ' While
the initial studies on these systems were devoted to investi-
gate mostly equilibrium properties, more recently growing
interest has centered about their dynamical properties in the
presence of external currents. In this case the system is
known to display characteristic current-voltage (IV) rela-
tions, such as the universal jump in the exponent of the re-
lation under applied direct currents and quantized voltage
plateaus, called giant Shapiro steps, in the presence of com-
bined direct and alternating currents. In particular, in the
presence of an external magnetic field corresponding to

f=p/q flux quanta per plaquette, plateaus are found to occur
at voltages (n/q)NA, to/2e, where n is an integer and co is the
frequency of the applied current. These fractional as well as
integer steps were interpreted as resulting from coherent os-
cillations of the ground-state configurations of field-induced
vortices, and successfully reproduced in numerical simula-
tions performed on arrays of resistively shunted junctions
(RSJ's). Analytical confirmation of these results is rather
difficult due to the nonlinear nature of the coupled equations
of motion for the system, and there have been proposed some
qualitative arguments trying to explain the quantization in
terms of the vortex motion ' and of topological invariance.

In addition to these integer and fractional giant Shapiro
steps, the appearance of subharmonic Shapiro steps was re-
ported in arrays of overdamped junctions, ' which has been
a source of controversy since a single overdamped junction
(with negligible capacitance) is well known not to display
such subharmonic steps. In simulations, on the other hand,
subharmonic steps were found to occur only when free trans-
verse boundary conditions were employed; with periodic
boundary conditions, such structure did not appear, suggest-
ing that the subharmonic steps were merely finite-size ef-

fects. Although subharmonic steps were also predicted in ar-

rays with diagonally injected bias currents, numerical
simulations as well as experiments ruled out such a
possibility. Thus the subharmonic steps, experimentally ob-
served only in arrays with usual in-line current injection,
have been proposed to originate from the self-induced mag-
netic fields. " Subsequent theoretical analysis of arrays with
finite inductance indeed has given results in support of such
interpretation. The existence of such subharmonic steps in
general rejects that the equation of motion cannot be re-
duced to a single (first-order) differential equation, and is
presumably generic in a system governed by a few coupled
equations (instead of a single equation), including the frus-
trated systems, i.e., arrays in external magnetic fields. A re-
cent analytical and numerical study of a fully frustrated

(f= 1/2) array of RSJ's indeed revealed the possibility of a
subharmonic structure in the absence of inductance Further, .
evidence for steps at every rational value of voltages, which
is suggestive of a devil's staircase structure, has been
reported. '

This paper investigates in detail the responses of 2D ar-

rays of Josephson junctions to combined direct and alternat-
ing currents, with regard to the possibility of the subhar-
monic structure of Shapiro steps in the absence of both
capacitance and inductance. We consider square and triangu-
lar arrays of RSJ's whose time evolutions are governed by
sets of coupled Langevin equations. At zero temperature the
translational symmetry in the systems allows us to reduce the
corresponding equations of motion to a few coupled equa-
tions, from which current-voltage characteristics can be cal-
culated. Remarkably, we find a series of subharmonic steps
in addition to the standard integer and fractional steps, which
strongly suggests a devil's staircase structure. Such structure
is formed out of dynamically accessible states: Some of them
are generated dynamically while others originate from de-
generate ground states in equilibrium. Widths of subhar-
monic steps are calculated for various amplitudes of alternat-
ing currents, and found to display Bessel-function-type
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behavior. Extensive numerical simulations indeed reveal the
subharmonic steps together with stability against small ther-
mal fluctuations.

There are six sections in this paper: Section II introduces
the NXN array of RSJ s with usual in-line current injection,
and describes the set of N coupled Langevin equations
which specifies the time evolution of the system. In Sec. III
we consider a fully frustrated square array, for which the
equations of motion are reduced to two coupled equations.
This allows us to calculate the IV characteristic, which ex-
hibits a series of subharmonic steps. The time evolution is
shown to be described by four dynamically accessible states,
two of which correspond to the doubly degenerate ground
states. Sections IV and V are devoted to the IV characteris-
tics of triangular arrays, with f= 1/2 and f= 1/4, respec-
tively. Subharmonic structures similar to that in the square
array are again found, and results of numerical simulations
confirming such subharmonic steps are presented. Finally, a
brief summary is given in Sec. VI.

II. ARRAYS DRIVEN BY EXTERNAL CURRENTS

A, d

+I,sin(P; —P —A; )+L; (4)

where I,'" is the external current fed into grain i, and the
summation is over the nearest neighbors of i. In the model
considered here, we have I,'"'=I(8'~

o
—

8~ ~). Introducing

dimensionless parameters

~ext
A, I,

/ I 71J 2 I T

1/2 L; L;

I, yI, '

we write Eq. (4) in the dimensionless form,

=g G; I, g[si—n(P, —P —A, )+ yg, ]dt

vation at each site then allows us to write Eq. (1) in the form
of a set of N coupled equations:

We consider an NXN array of resistively shunted junc-
tions in the presence of a uniform transverse magnetic field.
We take periodic boundary conditions along the direction
perpendicular to the external current and free boundary con-
ditions along the longitudinal direction. Thus along one edge
of the array (y = 0) a combined direct and alternating current
I=Id, +I„singlet is injected into each node, while along the
opposite edge (y=N) the same current I is extracted from
each node. Neglecting capacitive and inductive effects, we
write the net current from grain i to grain j as the sum of a
Josephson current, a normal current, and a thermal noise cur-
rent:

I;~=I,sin(@;—@
—A;J)+ +L, ,

where P; is the phase of the superconducting order param-
eter at site i = (x;,y, ), I, is—the critical current of the junc-
tion, V;,= V; —V is the potential difference across the junc-
tion, and R is the shunt resistance. In the limit of the large
penetration depth, the bond angle A;, is given by the line
integral of the vector potential A due to the external mag-
netic field:

2' ~i

A;J=@ j
A dl,

p i
(2)

with the Aux quantum 4p —=hc/2e. The plaquette sum of
A; is equal to 27rf, where f is the uniform frustration given
by the Aux per plaquette in units of 4p. The thermal noise
current L;~ at temperature T is assumed to satisfy

where time t has been rescaled in units of fi, l2eRI, , G, is
the lattice Green's function defined by X,

'
( P; —P, )

= XJG,
'
P/, and the noise r/; is characterized by

(r/;J(t+ r) r/k&(t)) = 28'(r)(8;k8&t —6 IB&k).
The set of Langevin equations (6) constitutes the equa-

tions of motion, which govern the time evolution of the sys-
tem. When the array is driven by direct currents (I„=O), it
is convenient to consider the corresponding Fokker-Planck
equation, the stationary solution of which leads to an effec-
tive Hamiltonian in the form of the washboard potential.
Thus the phase transitions as well as the IV characteristics
displayed by the effective Hamiltonian have been
investigated. ' In the case of driving with combined direct
and alternating currents, on the other hand, the explicit time
dependence in general prohibits the equilibrium description,
making it necessary to consider the set of Langevin equa-
tions (6) directly. Obviously, however, the analytical investi-
gation of the N coupled nonlinear equations cannot be per-
formed. We thus use the symmetry at zero temperature to
reduce the number of equations to a few and integrate the
reduced equations. To confirm the results obtained from the
reduced equations, we also perform extensive numerical
simulations directly of Eq. (6).

III. SQUARE ARRAY WITH f= I/2

We begin with a fully frustrated square array, with the
frustration f=1/2. ' ' Using the symmetry present in the
ground state of the system, one can reduce Eq. (6) to two
coupled equations for y—=(n+ y)/2 and P=(n —y)/2:

(3)
2k~T

(L;,(t+ r)Lki(t)) = 8(r)(8;q8) I. 8;tB,I ), '— 1

2
= —( cosy —sing cos P),

dP = I(t) —cosysinP,
dt

where (. . ) denotes an ensemble average. Equation (3) is a
generalization of the noise current used in the discussion of a
single Josephson junction. "

The potential is related to the phase by the Josephson
relation d(@,—@ A,~)/dt=2eV, //fi. The curr—ent conser-

(7)

where we have followed Ref. 9 for the definitions of the
gauge-invariant phase differences n, P, and y. Equations
(7) have been studied to give the standard integer and frac-
tional giant Shapiro steps, ' and further, detailed study with
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high precision has revealed the fine structure: subharmonic

steps at rational values of ( V) in units of Nft ru/2e. It exhibits
not only subharmonic steps but also self-similarity, appar-
ently producing the devil's staircase structure.

In order to understand the nature of the subharmonic
structure, we consider the time evolution of gauge-invariant
phase differences u and y, vortex charge 5=—(tr+ 2P
+ y)/2' at a particular plaquette, potential difference V be-
tween the top and the bottom of the superlattice unit cell, and

quasienergy F,= (cos—n+2cosP+cosy)/2. Here the quasien-

ergy F., corresponds to the (equilibrium) energy in the ab-

sence of external currents, and n, P, and y are defined in the
interval [—~, 7r)

We first consider integer and half-integer steps, and

present in Fig. 1 the time evolution of n, y, 5, V, and E, in

the stationary state on (V) = (a) 1/2, (b) 1, (c) 3/2, and (d) 2.
Figure 1(a) shows that n and y are periodic in time with

period 20 (again in units of ft/2eRI, ), which corresponds to
2(2m/co) since we have taken co= m/5 in the numerical in-

tegration of Eqs. (7). It also reveals that there exist two states
characterized by vortex charge 6= ~1/2: 5=1/2 during
1~t~11 and 5= —1/2 during 11~t~21. Typical configu-
rations of these two states are M and M~ of Fig. 2, respec-
tively, which are precisely the doubly degenerate ground
states in equilibrium. It can also be observed that the system
stays mostly in the states with the quasienergy F.,= —Q2
which is just the ground state energy in equilibrium. While
the system stays in either state, the potential difference Auc-
tuates around zero, which implies that they are not voltage
carrying states. It is thus concluded that the two states origi-
nate from the ground states in equilibrium. The change of the
vortex charge from +1/2 to —1/2 (and vice versa) corre-
sponds to the vortex motion from one ground state to the
other, leading to the half-integer step. Figure 1(b) also dis-
plays the periodic evolution of the system with period
(2 vr/cu), corresponding to the integer step (V) = 1. The vor-
tex charge 6 at the plaquette takes the value —1/2 only
momentarily; it stays with the value 1/2 for the most time.
Whereas the state 5=1/2 has the typical configuration of
A, the state 6 = —1/2 during 9.5~t~11.5 does not corre-
spond to the ground state. The quasienergy and the potential
difference of this state are larger than those of states origi-
nating from the ground state, implying that the state is un-
stable and voltage carrying. This suggests that it should be
interpreted as a transient state involved in the vortex motion.
The typical configuration of such a transient state is shown in
8 of Fig. 2. It is also found that the system starting from
other initial conditions may exhibit different time evolution;
it spends most of the time in state 5 = —1/2 with the typical
configuration given by M, and visits momentarily the state
5 = 1/2 with the typical configuration of W These observa-
tions on integer and half-integer steps are consistent with the
explanations in terms of the vortex motion ' and of topologi-
cal invariance. In Fig. 1(c) we show the time evolution of
u, y, 6, E, , and V on the higher-order half-integer step

( V) = 3/2. Here n and y are periodic with period
2(2m/c0), which is the same as the period on (V)=1/2.
However, there are voltage-carrying transient states in-
volved, and the time evolution during one period
(12 t ~32)~follows the sequence (.MÃ MME. Each
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FIG. 1. Stationary-state time evolution of potential difference V,
quasienergy E, , phase differences n and y, and vortex charge 6 in
a square array with f= 1/2 on half-integer and integer steps, (a)
( V) = 1/2, (b) ( V) = 1, (c) ( V) = 3/2, and (d) ( V) = 2. a represents
n (dotted line), y (thin line), or 6 (thick line).
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FIG. 2. Typical configurations of the states found in Figs. 1 and

3, with arrows denoting the phases. In the gauge chosen here,

A; = ~ for vertical bonds at the center of each diagram; for other
bonds, A;, =0. M and M are doubly degenerate ground states in

equilibrium, while W and M~ are transient states. The phases in c~

and W which are dynamically generated states, are not periodic
under translation by the vortex superlattice constant; however, the
gauge-invariant phase differences are periodic.

state can be identified easily from the time evolution of u,
y, and A. On the step ( V) = 5/2 (not shown here), the period
is also found to be 2(27r/to) with the time evolution

during one period. Figure 1(d) ex-
hibits the time evolution on the higher-order integer step

(V) =2, which reveals that the period is the same as that on

(V) = 1, i.e., (2vrlni) Here more t.ransient states intervene in

the time evolution, which follows the sequence (M~@'WQ~ in
one period. We have also investigated the step (V) =3, and
find that the period is again (2vr/to) together with the time
evolution (.AZi&Z4 g~

We next examine the subharmonic steps (V) =1/q with

q~2, and display in Fig. 3 the time evolution of u, y, 5,
F, , and V on (V) = (a) 1/3 and (b) 1/4. Figure 3{a) reveals
that n and y are periodic with period 3(2vr/co), leading to

( V) = 1/3, and that there appear three different states: Two of
them (the states 5 = 1/2 during 11«t «21 and 5 = —1/2 dur-

ing 30« t «41) correspond to the (doubly degenerate)
ground states in equilibrium, whereas the remaining one (the
state 6 = + 1/2 during 21« t«30) corresponds to neither the
ground state nor the transient states appearing in Fig. 1. This
new state is metastable with the quasienergy F,= —1, and
does not carry a voltage. It has no counterpart in equilibrium,
and originates from dynamics. (See 8'in Fig. 2 for the typi-
cal configuration. ) Here different initial conditions lead to
another new state with the typical configuration given by

FIG. 3. Time evolution of a, y, 6, E, , and V in a square array
with f= I/2 on subharmonic steps, (a) (V) = 1/3 and (b) (V) = 1/4.

o again represents n (dotted line), y (thin line), or 6 (thick line).

,W~ of Fig. 2. Thus on the step (V) = 1/3, there are three
{dynamically) accessible states M, .%, and Z or .A~ leading
to the time evolution {MPM) or (MW~M~). In Fig. 3(b),
n and y are shown to be periodic with period 4(2'/co)
corresponding to the step (V) = 1/4. This step involves four
distinguishable states which are stable and not voltage carry-
ing: While two of them {the states b, = 1/2 during
20«t«31 and 5= —1/2 during 40«t«51) correspond to
the ground states, the other two (the states 5 = ~ 1/2 during
31«t«40 and b = ~1/2 during 51«t«60) are new states
of dynamic origin, the typical configurations of which are
given by 8' and, W~ Thus there exist four accessible states

and, W~; the system evolves with time along
(MH' MM~). We. have also considered the steps (V)=1/5,
1/6, 1/7, and 1/8, which reveal the periods 5 (2 vr/cu),

6(2vr/co), 7(2'/co), and 8(2m/cu), respectively. On these
steps, there again appear four states, M, M, F, and, W~ Un-
like the system on the step (U) = 1/4, however, the system
here visits new states several times in one period, thus effec-
tively increasingthe number of accessible states. The corre-
sponding time evolution is described by ( M~.W~Ah 8'),
(MK'HMW~~+, (KMw~W~MÃQ, nd (.MC'F@Mw~w~w+,
respectively.

Finally, we consider the time evolution on higher-order
subharmonic steps. The behaviors of them are similar to
those on higher-order half-integer and integer steps; i.e., the
period is q(2m/co) for ( V) =p/q, and transient states, which
are characterized by 5 and W of Fig. 2, are introduced. %'e
have observed that the system evolves with time in one pe-
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for ( V) = 1/4, and 0 for ( V) = 1/5) versus the amplitude of the ac
component I„ in a square array with f= 1/2. Lines are merely
guides to the eye
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FIG. 4. Simulated IV characteristics at low temperatures for the
N= 16 square array with f= 1/2, displaying subharmonic steps at

(a) (V) =1/3 at T=001 (in units of eke/foal, ), (b) (V) =1/4 at
T=0.1, and (c) (V) = 1/5 at T=0.001. Lines are merely guides to
the eye.

riod according to (MMMM) on the step (V) =2/3 and
(WMWW~WKMQ on the step (V) =4/3, respectively. On
the step (V) =2/5, on the other hand, the time evolution is
found to be (MMMM', which does not involve any in-

tervening transient states although it is a higher-order sub-
harmonic step. In general no transient states appear in the
time evolution on the step (V) =p/q~ 1/2.

These observations together with investigation of other
subharmonic steps lead to the following conclusion: On the
integer step (V) =p, the period of the time evolution is still

given by (27r/ro) regardless of p. The phase configuration
evolves with time according to (,AFjWQ" ') or

'j in one period, where [+"represents n con-
secutive repetitions of H. On the half-integer step (V) =p/2
with an odd integer p, on the other hand, the period is
2(2 m/co) while the time evolution of the phase configuration
is (M[8~ " ' ' ~W+ " ' ' j. Thus it is concluded that
on integer or half-integer steps the numerator p does not
change the period; for p ~ 1, however, transient states 8 and
W are involved in the time evolution. Similar features can
also be observed on subharmonic steps: With the four differ-
ent dynamically accessible states M, .H, F, and M~ one can
construct arrangements of q states for any positive integer q.
On the subharmonic step (V)=1/q, the system evolves
along such q-state arrangements consisting of four dif-
ferent dynamical states, with period q (2 m/ co) .

IV. TRIANGULAR ARRAY WITH f= 1/2

A triangular array is also described by Eq. (6) with the
triangular lattice Green's function G;, . The Landau gauge
may be chosen such that

~ mf(4x;+1) for r = r;+x/2~ Q3/2y,

~ 7rf(4x; 1) for r, = r; ——x/2~ +3/2y,

otherwise., 0

Using the symmetry of the doubly degenerate ground states,
which form 1 X 1 rhombic vortex superlattices, ' we reduce
Eq. (6) to the two coupled equations

1

dt 3
= —( sin2y —sinycos P),

dP 1

dt 2
I(t) —cosysinP, —

(8)

where y —= (n+ y) /2 and P—= (n —y) /2 with appropriate
gauge-invariant phase differences n, P, and y. (See Fig. 6.)
Equations (8) allow us to calculate the time-averaged voltage

The time evolution of the phase configuration within
one period is described by (~.M J ',A[ FJ
or (Q.Xg ~ ' ' A[@ 1' ) for odd q and
(~M]q/ 'M[@~' 'j for even q. In general, on steps

( V) =p/q with relative primes p and q, the time evolution of
the phase configuration is also described by q states con-
structed of four different dynamical states together with
voltage-carrying transient states.

The devil's staircase structure obtained from the analysis
of Eqs. (7) has been confirmed by numerical simulations. In
this paper, the stability against thermal fluctuations has also
been studied by numerical simulations at finite temperatures
(TWO) for system size N= 16. Figure 4 shows the subhar-
monic steps are stable against thermal fluctuations if they are
sufficiently small. Further, the widths of subharmonic steps
for various amplitudes of alternating currents are computed:
Figure 5 shows the width fl of the steps (V) = 1/3, 1/4, and
1/5, which apparently follow the Bessel-function-type behav-
ior, similarly to the case of integer and half-integer steps. '
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FIG. 9. Time evolution of u, y, 5, F, , and V in a triangular
array with f= 1/2 on subharmonic steps, (a) (V) =1/3 and (b)
(V) = 1/4.

are of dynamical origin. In one period, the system may visit
the dynamically generated states many times, thus effectively
increasing the number of accessible states. With these four
different dynamical states, one can again construct arrange-
ments of q states for any positive integer q'. On the subhar-
monic step (V) =p/q, the system evolves along such q-state
arrangements with period q(2m/cu).

To confirm the subharmonic structure, we have performed
numerical simulations of Eq. (6) on a 12X 12 triangular array
with f= 1/2, using the method in Ref. 9. Results of simula-
tions are presented in Fig. 10, which displays the subhar-
monic steps at (V) = (a) 1/3 and (b) 1/4. We also calculated
widths of subharmonic steps for various amplitudes of the ac
component and present them in Fig. 11, which again displays
Bessel-function-type behavior.

FIG. 10. Simulated IV characteristics for a 12X12 triangular
array with f= 1/2, displaying subharmonic steps at (a) (V) =1/3
and (b) (V) = 1/4. Lines are merely guides to the eye.

dP 1

dt 4
= —(sins+ siny —2sinP —sin8 —sine),

dr=1
dt 4

= —[2I(t) —sing —sin8' —2siny —sinn+ sinp], (9)

with j= 7r/2+ y —n, e = p+ y —n —vr, and 6= p+ y—vr/2. Numerical integration of Eqs. (9) again leads to sub-
harmonic steps as well as the standard integer and fractional
steps, and suggests a devil's staircase structure, similarly to

0.03

V. TRIANGULAR ARRAY WITH f= I/O

The triangular array with f= 1/4 is of particular interest
with regard to its properties associated with the infinitely
degenerate ground states (in the absence of external
currents). ' In the presence of external currents, on the other
hand, zero-temperature simulations reveal the symmetry un-
der the 2X2 vortex superlattice translation (see Fig. 12),
which allows us to seek the solution of the reduced equations
in terms of gauge-invariant phase differences n, p, y, 8',

e, and/:

de
dt 4

= —(sine+ sing —siny —sin8+ 2sinn),

0.02

0.01

0
0

FIG. 11. Widths of the subharmonic steps ( for (V) = 1/3, and
E for (V) = 1/4) versus the amplitude of the ac component /„ in a
triangular array with f= 1/2. Lines are merely guides to the eye.
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FIG. 12. Gauge-invariant phase differences on a vortex super-
lattice unit cell of a triangular array with f= 1/4. The direction of
external current I(t) is also indicated.

d(V)
dIdc

0
0 0.1

I

0.2

(U)

I

0.3 0.4 0.5

FIG. 13. Dynamic resistance d(V)/dI&, (in units of Nttco/2e)
versus time-averaged voltage ( V) in a triangular array with

f= 1/4. The frequency and the amplitude of the ac component are
cu = m/5 and I„=1, respectively.

the case of f= 1/2. Figure 13 shows the resulting dynamic
resistance d(V)/dI&, versus (V), where zeros of the resis-
tance or steps in the IU characteristic can be observed at
various rational voltages including ( V) = 1/12, 1/10, 1/8, 1/7,
1/6, 1/5, 1/4, 1/3, 3/8, 2/5, and 1/2.

To study the nature of the subharmonic structure, we
again investigate the time evolution of vortex configuration,
quasienergy E,= —(cosn—+cosp+cos7+cos6+cose+cosQ,
and potential difference V between the top and the bottom of
the superlattice unit cell. Since the value of the vortex charge
at a particular plaquette cannot classify the vortex configu-
ration of the superlattice, we label the vortex configuration as
shown in Fig. 14. Figure 15 displays the time evolution of
5, E, , and V on some fractional and integer steps (V) = (a)
1/4, (b) 1/2, (c) 1, and (d) 3/4. The period is again given by
q(2mlro) on the step (V) =p/q. On the step (V) = 1/4 [Fig.
15(a)], the time evolution of the system is characterized by
four successive states, each of which can be identified easily
with the help of the value of A. The quasienergy E, of these
four states are the same as the ground state energy

Eg 3 indicating that they originate from the ground
states in equilibrium. Figure 15(b) on the step (V)=1/2
shows that 5 stays with the value 2 and 4 for the most time,
taking the value 1 and 3 only momentarily. The states
4 = 2 and 4 have the quasienergy E,= —3, again suggesting
the ground states as their origin. The states 5 = 1 and 3, on
the other hand, have higher values of the quasienergy and

carry voltages, which suggests that they are transient states.
Different initial conditions also lead to different time evolu-
tion, where the role of the states 5 = 1 and 3 and that of the
states b, = 2 and 4 are reversed. Figure 15(c) shows that 5
takes the value 1 for the most time and the values 2, 3, and 4
momentarily. Here the states 5=2, 3, and 4 have the

quasienergy E,= —2, corresponding to the transient states.

FIG. 14. Vortex configurations labeled by 6= 1, 2, 3, and 4 in a
triangular array with f= 1/4. Solid boxes represent the positions of
vortices.

Figure 15(d) describing the step (V)=3/4 shows that the
system evolves with time among eight states: four originat-
ing from the ground states and four voltage-carrying tran-
sient states. Additional consideration of the higher-order
steps suggests the conclusion that on the integer step

(V) =p, the triangular array with f= 1/4 stays in one state,
corresponding to a ground state while the voltage-carrying
transient states intervene momentarily. On the half-integer
step (U) =p/2, the system moves from one state to the other
(both originating from ground states), between which
voltage-carrying transient states intervene. On the fractional
step (V) =p/4, the system moves among the four states, all
of which originate from ground states; the voltage-carrying
transient states are involved for p)1.

Figure 16 shows the time evolution on subharmonic steps

(V) = (a) 1/3 and (b) 1/6. In Fig. 16(a), there appear four
different states: While two of them (the states 5 = 3 during
4~ts12 and 5=4 during 12~t~21) correspond to the

ground states in equilibrium with E,= —3, one (the state
5 = 2 during 0~ t~4) is a transient state carrying a voltage.
The remaining one (the state 5 = 1 and 2 during
21~t~30) has the quasienergy E,= —2.8 and does not
carry a voltage; it is a new metastable state of dynamical
origin. Thus on the step (V) = 1/3 there appear three dynami-
cally accessible states in addition to one transient state. On
the step (U) =1/6 [Fig. 16(b)], there appear six dynamical
states, two of which (the states 5 = 3 during 13~t ~ 25 and
5=1 during 42~t~54) correspond to ground states with
the quasienergy E,= —3. The remaining four (the states
5=4 during 25~t~35, 5=4 during 35~t~42, 6=2 dur-

ing 54~ t ~64, and 5 = 2 during 64~ t S73) have the
quasienergy E,= —2.8 which is the same as that of the dy-
namical state in Fig. 16(a). Thus on the step (V) = 1/6, there
exist six accessible states, among which four originate from
dynamics. We also find six states originating from dynamics
on the step (V) = 1/10, suggesting the existence of many
different dynamical states. In general, there appear various
metastable states with E,)Eg ( = —3 ), generated dynami-
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FIG. 16. Time evolution of 5, E, , and V in a triangular array
with f= 1/4 on subharmonic steps, (a) (V) = 1/3 and (b) (V) = 1/6.

cally, in addition to the four stable states with F.,= —3 origi-
nating from ground states. The number of the states of the
dynamical origin visited by the system is 2, 4, and 6 on the
step (V) = 1/6, 1/8, and 1/10, respectively. Thus on the sub-
harmonic step (U)=1/q, the system evolves, with period
q(2'/cu), along the q-state arrangements consisting of q
dynamical states, four of which originate from the ground
states and the others from dynamics. It is not clear at this
stage whether the number of different metastable states vis-
ited by the system keeps increasing with q. Unlike the fully
frustrated system, there is possibility that it increases indefi-
nitely, rejecting the infinite degeneracy in equilibrium.

Numerical simulations have also been performed on Eq.
(6) via the the method as that used in Secs. III and IV, again
yielding subharmonic steps. To check the finite-size effects,
we have calculated the widths of subharmonic steps for vari-
ous system sizes, which are shown in Fig. 17.Apparently, the
width of either step (V)= (a) 1/3 or (b) 1/8 approaches a
finite asymptotic value as the system size grows. We have
checked the system size up to N= 128, and obtain the width
in perfect agreement with that computed from Eq. (9). We
have also calculated widths of subharmonic steps versus the
amplitude of alternating currents and obtained Bessel-
function-type behavior very similar to Figs. 5 and 11.

VI. CONCLUSION

FIG. 15. Stationary-state time evolution of 6, E, , and V in a
triangular array with f= 1/4 on fractional and integer steps, (a)
(V) = 1/4, (b) (V) = 1/2, (c) (V) = 1, and (d) (V) = 3/4.

We have investigated in detail the response of the system
to combined direct and alternating applied currents, with em-
phasis on the possibility of the subharmonic structure. The
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FIG. 17. Widths of the subharmonic steps versus the system size
N in a triangular array with f= 1/4, (a) ( U) = 1/3 and (b)
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triangular array with f= 1/4 as well as fully frustrated square
and triangular arrays have been considered. The correspond-
ing equations of motion have been reduced to a few coupled
equations through the use of the translational symmetry
present in the system. The current-voltage characteristics
have been calculated, and shown to exhibit a series of sub-
harmonic steps, suggesting a devil's staircase structure, Such
structure is formed out of dynamically accessible states;
some of them are generated dynamically while others origi-

nate from degenerate ground states in equilibrium. The
former are metastable states with the quasienergy higher than
that of the latter. Still they are not voltage-carrying states,
i.e., V=0. In addition to these, there also appear transient
states, which possess even higher values of the quasienergy.
They are thus unstable and carry nonzero voltages.

On the standard integer and fractional steps, the phase
configuration evolves periodically among the stable states
originating from the ground states and the voltage-carrying
transient states. In contrast, on the subharmonic steps, which
cannot be explained in terms of the vortex motion, the states
of dynamical origin also play a role: On the step

( V) =p/q, the system evolves, with period q(27r/to), among

q dynamically accessible states together with voltage-
carrying transient states. In this case, the number of acces-
sible states is effectively q, and accordingly, the quantization
can be explained in terms of topological invariance with the
modification that the number of (dynamically) accessible
states should be considered instead of the (equilibrium)
ground-state degeneracy. These results have been confirmed
by extensive simulations, which also show the stability of the
subharmonic steps against thermal fluctuations. Finally, the
widths of the subharmonic steps have been found to display
Bessel-function-type behavior. Since these appear to be gen-
eral and of wide applicability, we expect the subharmonic
structure to be prevalent in arrays with any rational frustra-
tion f=p/q. It should be stressed that the appearance of the
subharmonic structure is closely related to the presence of
the frustration in the system. In the unfrustrated system with
a nondegenerate ground state [except for those associated
with the U(1) symmetry], no additional dynamical states are
generated. Thus there is only one accessible state, yielding
only the standard integer steps, which has been confirmed by
extensive simulations on an unfrustrated array.
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