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We have simulated the classical Heisenberg antiferromagnet on a triangular lattice using a local Monte Carlo
algorithm. The behavior of the correlation length (, the susceptibility at the ordering wave vector X(Q), and

the spin stiffness p clearly rejects the existence of two temperature regimes —a high-temperature regime
T)T,b, in which the disordering effect of vortices is dominant, and a low-temperature regime T(T,I„where
correlations are controlled by small amplitude spin fluctuations. As has previously been shown, in the last

regime, the behavior of the above quantities agrees well with the predictions of a renormalization-group
treatment of the appropriate nonlinear cr model. For T)T,I„a satisfactory fit of the data is achieved, if the

temperature dependence of ( and g(Q) is assumed to be of the form predicted by the Kosterlitz-Thouless

theory. Surprisingly, the crossover between the two regimes appears to happen in a very narrow temperature
interval around T,&

-—0.28.

I. INTRODUCTION

Magnetic ordering phenomena of both classical and quan-
tum antiferromagnets on non-bipartite lattices are a fascinat-
ing subject. The simplest and most frequently studied model
of this type is the Heisenberg antiferromagnet on a triangular
lattice (HAFT). While the question of whether or not the
typical features of this model have been observed in experi-
ments is still a controversial issue, the theoretical under-
standing of these features has advanced rapidly during recent
years. In contrast to antiferromagnets on bipartite lattices,
the HAFT exhibits noncollinear magnetic order in its classi-
cal and most likely also in its quantum ground state. As a
consequence, the order parameter of the HAFT is repre-
sented locally by a set of three mutually orthogonal unit
vectors or, alternatively, by a rotation matrix which defines
the local orientation of this set relative to some fixed frame
of reference. Renormalization-group (RG) studies of appro-
priate nonlinear sigma (NLo.) models ' have revealed a
number of interesting properties of the HAFT. The symmetry
of the model was found to be dynamically enhanced from
O(3) I3 O(2) to O(4), and in a two-loop RG calculation for
the classical HAFT, the temperature dependence of the cor-
relation length ( was obtained as

(=AC~~o/T/Be '

where 5 is the lattice constant, 8= +3m(7r/4+-, ') =6.994.
The prefactor CR~G is left undetermined by the RG calcula-
tion.

It follows from topological considerations that the order-
parameter field of the HAFT allows for excitations of the
form of Z2 vortices. ' A numerical study of the classical
HAFT (Ref. 7) has revealed that these vortices become abun-
dant above a threshold temperature T,&=0.3 and that they

unbind for T~T,I„similarly as the Z vortices in the planar
Xl' model above the Kosterlitz-Thouless (KT) transition
temperature TKz. Further evidence for this similarity be-
ween the dissociation mechanism of the Z2 vortices and that
of the Z vortices has been provided by Kawamura and
Kikuchi. ' In recent work, "we have studied the influence of
the vortices on the partition function of the classical HAFT
on the basis of the NLo. model. While a true KT-type phase
transition can be ruled out for the HAFT, our results suggest
that for T~T,I, the vortices will affect the properties of the
HAFT rather drastically. In particular, the disorder induced
by the unbinding of the vortices can be expected to lead to a
crossover from the T-dependence Eq. (1) of the correlation
length in the low-temperature regime T~T,b to a KT-type
behavior

(2)

in the high-temperature regime.
It is the aim of the present paper to supplement our recent

analytical study,
"which was based on a continuum descrip-

tion of the HAFT by a Monte Carlo (MC) simulation of the
original lattice model. A similar study has recently been pub-
lished by Southern and Young. ' While we closely follow the
method of these authors, our conclusions will be quite dif-
ferent from theirs.

In the next section, we first give a brief account of the
technique we used. Subsequently we present the results for
the correlation length g and the antiferromagnetic suscepti-
bility X(Q). While these quantities are directly accessible to
simulations in the high-temperature regime, where the disor-
dering effect of the vortices limits the range of the correla-
tions, the key quantity to be computed in the low-
temperature regime is the spin stiffness. ' ' Our numerical
results for this last quantity will be presented and discussed
in Sec. III. Finally, we summarize the evidence for a vortex
induced crossover transition in Sec. IV.
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II. CORRELATION LENGTH AND
ANTIFERROMAGNETIC SUSCEPTIBILITY

The classical Harniltonian of the triangular Heisenberg
antiferromagnet can be defined as

TABLE I. Correlation length g and antiferromagnetic susceptibil-
ity y(Q) for system sizes L = 96, 192, and 384 for various tempera-
tures. The statistical error represents the standard deviation over
3—5 independent runs. The two last columns contain the RG pre-
dictions for ( and g(Q). Asterisks indicate agreement of the results
for different system sizes, see main text.

H=g S; S, .
(~ ~)

(3)
(RG

S,= eicos(QR;) +e2sin(QR;). (4)

Here, ei, e2 are a pair of mutually orthogonal unit vectors
and Q can be any one of the six vectors pointing towards the
corners of the hexagonal Brillouin zone of the triangular lat-
tice, e.g. , Q=(27r/5)(3, 0). The correlation length g can be
obtained assuming a Ornstein-Zernicke form for the structure
factor

Here, the S; are three-dimensional unit vectors and the sum
extends over all distinct pairs of nearest neighbor sites of a
triangular lattice of L sites. The exchange constant has been
set to unity. The classical ground state of the Hamiltonian
Eq. (3) is a coplanar arrangement in which the spins on the
three sublattices are oriented at 120 relative to each other,
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y(Q) =S(Q)/T is then the susceptibility of the system at the
ordering wave vector. The spin correlations (S; S,) in Eq.
(5) can be determined by MC techniques. We used the local
algorithm described by Kawamura and Miyashita. The lat-
tice is divided into independent sublattices. Then, the spins
of each of these sublattices are updated sequentially. For a
given spin, a new direction is chosen at random and the
standard Metropolis rule is used to decide whether the new
direction is to be accepted. If it is discarded, a precessional
motion through a randomly chosen angle about the direction
of the local mean field is performed. We apply this method to
systems of linear sizes L = 12X 2,n = 0,1, . . . ,5. For the
smaller systems, n~3, we discard the first 2X10 sweeps
for equilibration and average over the next 2X 10 sweeps.
For n =4, we average over 4 & 10 sweeps after discarding
the initial 10 sweeps, and for n=5, the average is over
1.8X 10, and 2X 10 sweeps are discarded.

A selection of results for the correlation length ( and for
the antiferromagnetic susceptibility y(Q) which have been
obtained by averaging over 3—5 independent runs of these
lengths is tabulated in Table I. As will become apparent
shortly, the data shown in this table are crucial in checks of
theoretical predictions for the temperature dependence of (
and y(Q). To exhibit possible finite size effects, Table I
contains two pairs of data for each temperature which corre-
spond to two different system sizes L, 2L In general, g and.
y(Q) decrease with T, but increase with the system size L
If, for a given temperature To and a given system size Lo,
the data for ( and y(Q) exhibit no size dependence upon
doubling the system size, then one can conclude that the
system size Lo suffices to obtain size independent data for all
T~ To. Data which are size independent by this criterion are

marked by an asterisk in Table I. Obviously, we cannot ex-
clude that the data for the lowest temperature T=0.3 ob-
tained for the L=384 system are still size dependent. Cer-
tainly, however, our data for T=0.3 are lower bounds to the
thermodynamic limits of g and g(Q) at this temperature. To
facilitate the comparison of our data with the RG predictions
we include in Table I the values for ( and y(Q) which result
from fits of the expressions Eq. (I) and Eq. (6), to these
data 12

In Figs. 1 and 2, we show our complete sets of results for
the correlation length and for the antiferromagnetic suscep-
tibility as functions of the temperature. Obviously, for any
given system size L, there is an inflection point in the se-
quences of data for g and y(Q). This point defines a tem-
perature T„below which both s and g(Q) begin to exhibit
finite size effects. In fact, as can be seen in Fig. 1, the cor-
relation length increases linearly with the system size for
sufficiently low temperatures T(~TI . Figures 1 and 2 also
contain fits of different theoretical predictions to the numeri-
cal data. The dashed lines represent fits of the RG result, Eq.
(I), to our data for ( and of the form

y(Q) = C~~o(T/B) exp(2B/T), (6)

y(Q) = C~~rexp[4 b/(T Tg,)"]—
to the data. With the KT form for g, Eq. (2), the last expres-
sion follows from the general relation S(Q) —$ " for the

proposed by Southern and Young' on the basis of RG cal-
culations, to our data for y(Q). In these RG predictions, the
constants CRG and CRG are the only undetermined param-
eters. In our fits, we neglect the data points for temperatures
T~TI which contain finite size effects. In agreement with
Southern and Young' we find CR~G= 3 X 10 and

CRG=6X10 ' . The solid lines represent fits of the KT
forms Eq. (2) and
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FIG. 1. Correlation length ( as a function of
the temperature T. Solid line; the KT form Eq.
(2) with CK~r= 0.47, b = 0.77, and T,„=0.28.
Dashed line: the RG behavior Eq. (1) with

CR~~=3x10 '.
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structure factor at the ordering wave vector, if y is assumed
to take the value y= 1/4 as for a proper KT transition. For
the threshold temperature, we use the value T,h= 0.28, which
can be inferred from the temperature dependence of the spin
stiffness as will be discussed in the next section. This leaves
the constant b which is common to expressions (2) and (7)
and the constant factors CK~~ and C~K~ of Eq. (2) and Eq. (7)
as fit parameters. As before, we ignore data points for
T~ TI in our fits. The results are b =0.77, CK~=0.47, and

CK~= 0.40. Obviously, for temperatures T~ 0.3, the
exp[b/(T —Th)" ] temperature dependence of the KT forms
fits the data better than the exp(B/T) temperature dependence
predicted by the RG analysis. In Figs. 3 and 4 we plot g and

y(Q) logarithmically against (T T,„) " so that —the KT
forms, Eq. (2) and Eq. (7) appear as straight lines. These
lines are seen to fit the data quite well in the temperature
interval 0.30~ T~0.34, whereas the agreement between the

curves representing the RG forms is restricted to a narrow
interval around T=0.31. In particular, we emphasize that for
T=0.3, the RG predictions are incompatible with the data
points for s and y(Q) which are listed in Table I with their
respective errors. In this context, we recall that if our data for
T=0.3 do not represent the thermodynamic limits of ( and

y(Q), they are certainly lower bounds to these limits. Hence,
the discrepancy between the RG predictions and the true val-
ues of g and g(Q) may even be larger than has been inferred
here. We note that the fit of the KT form, Eq. (7), to the data
for the susceptibility g(Q) is better than that of the RG form,
Eq. (2), to g. This may be attributable to the lower quality of
the data for g which are obtained indirectly from the
Ornstein-Zernicke expression, Eq. (5), in the limit

CIQ —ql( I
In summary, we observe that our results combined with

the earlier findings of Kawamura and Miyashita support the
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FIG. 2. Antiferromagnetic susceptibility

y(Q) as a function of the temperature T Solid.
line: the KT form Eq. (7) with C~&7

——0.40,
b=0.77, and T,h=0.28. Dashed line: the RG be-
havior Eq. (6) with C~Ro=6X 10
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FIG. 3. Correlation length ( as a function of
(T T,„) —" . The lines are defined as in Fig. l.
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view that in the temperature range T)T,h the spin correla-
tions of the HAFT are decisively influenced by unbound vor-
tices, so that a perturbative treatment of the model is inad-
equate in this temperature regime. It should be obvious,
however, that in the above analysis of our numerical results
we have been guided by our previous prediction" that, in the
case of the HAFT, the vortex unbinding mechnism leads to a
KT-type temperature dependence of the correlation length
above a crossover temperature T,h. While we do not claim to
have found compelling evidence for this prediction, we re-
gard our numerical results as strong support for it.

III. SPIN STIFFNESS

To further corroborate the above view and in order to get
insight into the low-temperature regime, where the correla-
tion length exceeds the accessible system sizes, we also de-

termined the spin stiffness p in our simulations.
The diagonal components p, u= 1,2,3, of the spin stiff-

ness tensor are the second derivatives of the free energy den-
sity f(0 ) with respect to the twist angles 6i of the spins
around three mutually orthogonal axes e

2 g [S,"S,—(S,"e )(S, e )](u e;, )
3L (i,jl

2 g S,XSj e (u e;,)
3TL (i j)

Here, u is the lattice direction along which the twist is ap-
plied and e;j is the direction of the bond between nearest
neighbor lattice sites i and j. The prefactor in Eq. (8) has
been chosen such that Eq. (8) is the stiffness per unit area.
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FIG. 4. Antifen ornagnetic susceptibility

g(Q) as a function of (T T,„) " . The lines a—re
defined as in Fig. 2.
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FIG. 5. Spin stiffness p as a function of the
temperature T.
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In the simu ation, e1 the thermal averages on the right-hand
side of Eq. (8) are replaced by averages over configurations
which are genera e yt d b a large number of successive MC

re willswee s. For a finite system, the ordered spin structure wi
change its orientation in space in the course orse of the simula-
tion. In a su cien y argffi tl 1 e number of sweeps, one will there-
fore measure the average spin stiffness

3

P=3 ~ Pu.
Cl'= 1

Since there is no long range order in the HAFT for any finite
temperature, p must vanist vanish for the HAFT in the thermo y-
namic limit for any finite temperature. However, or nite
system sizes, p wi eL, 'll b finite for sufficiently low tempera-

' ~ ~

tures such t at ~~that (~L. According to Eq. (1), this condition
tern era-should be satisfied for system sizes L(10 up to tempera-

tures of the order of unity, unless the constant CRG is exceed-
ingly small as has been suggested by Southern and Young. '

should not be interpreted astemperature regime, T)T,h, shou

evidence for such a small value of CR&.. In fact, a naive
integration of the two-loop renormalization-group equations

e HAFT aswhich starts with the microscopic parameters o t e H

= g 7r/4+ 1/2) e t ' +" i = 0.314.
In our simulations, we determine the three p separately

in each sweep and thus obtain the averages p for each sweep.
In Fi . 5, we show the average spin stiffness as a function o

e L= j224, . . . , 384. Thethe temperature for system sizes L=
steep drop in p w ich h occurs as T increases beyon
T =0.28 is consistent with the rapid decrease of g in the
same temperature regime in whic t et e vortices become
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FIG. 6. Spin stiffness p as a function of the
system size L. The straight lines are mean
squares fits, their slopes are tabulated in Table II.
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FIG. 7. Spin stiffness p as a function of
ln((/L) as obtained from the two-loop RG equa-
tions. The curves correspond to T= 0.1 and
0.25, respectively.
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unbound. In contrast to the spin stiffness of the planar XY
model, p does not saturate in the low-temperature regime
T(T,h with increasing system size L but decreases with in-
creasing L. This behavior is to be expected, since in contrast
with the correlation length of the XY model, the correlation
length of the HAFT remains finite for low temperatures,
where the vortices are bound in pairs. As T~O, our data for

p approach the correct limiting value I/Q3.
In Fig. 6, we display p for various temperatures and sys-

tem sizes. The data are averages over 3—5 independent runs
of lengths comparable to those which we have described
above, error bars indicate the standard deviation.

In the low-temperature regime, the thermodynamics of the
classical HAFT should be captured by the appropriate NLo.
model. ' ' ' On the basis of a renormalization-group treat-
ment of this model, Azaria et al. ' have made detailed pre-
dictions for the dependence of the spin stiffness on the linear
system size L and the correlation length g. In their MC study
of the classical HAFT, Southern and Young' found excellent
agreement with the predicted L dependence of the spin stiff-
ness tensor at the temperature T=0.2.

In order to be able to compare our numerical results with
the predictions of the RG analysis of the NLo. model, we
integrated the two-loop RG equations of Azaria et al. ' start-

ing from the initial conditions p(L = 5) = I/Q3 and

p3(L = 5)/p, (L = 5) = 2. Here, p, and ps are the two main
components of the spin stiffness tensor with respect to the
reference frame of the local order parameter. ' By the above
initial conditions we identify p& and p3 with their micro-
scopic values on the scale of the lattice constant A. We find
that in the temperature regime under consideration, T~0.3,
the average stiffness p varies linearly with lnL to a very good
approximation on the scale 12~L~384 covered by our
simulations, see Fig. 7 below. From the RG equations, one
can also infer that the slope p'(L) = —d p(L)/dlnL decreases
from p

' = T/(3 vr) to p
' = T/(47r), when L increases from a

value of the order of the lattice constant, L—5, to a value of
the order of the correlation length, L-g. In Fig. 6, the
straight lines are least squares fits to the data. The slopes of

p =f(T,L)In((/L). (10)

This is shown for two different temperatures in the two
graphs in Fig. 7. Obviously, the function f(T,L) depends
weakly on L The relation . Eq. (10) makes it possible to
obtain the correlation length from the Monte Carlo simula-
tion, even in the low-temperature regime where ( is much
larger than the system size L. Inserting our MC data for p
into Eq. (10) and solving for (, we obtain the data points
shown in Fig. 8 for T(0.28. This figure also includes the
data for T)0.28 which have already been shown in Fig. 1.
The dashed and solid lines in Fig. 8 represent fits of the RG
and KT forms, Eqs. (1) and (2), to the MC data for
T~0.28 and T~0.28, respectively.

TABLE II. Slopes of the fits in Fig. 7 normalized to the maxi-
mum slope Tl(37I.).

0.10 0.20 0.25 0.28 0.29 0.30

0.962 0.937 0.939 1.045 1.191 2.098

these lines, normalized to the maximal theoretical slope
p'=T/(37r), are tabulated in Table II. For T~0.25, the
slopes are seen to be rather close to their maximal value
which obtains, when L is of the order of the lattice constant.
This is not unexpected since according to the RG calcula-
tions, the correlation length is many orders of magnitude
larger than our maximal system size L= 384 for these tem-
peratures. The larger values of p

' which we find for
T)0.28 are incompatible with the RG theory. Hence we
conclude that for T~0.28 unbound vortices, not being taken
into account by the RG analysis, begin to limit the range of
the spin correlations in the HAFT.

If one defines the correlation length ( through the match-
ing condition p(L= g) = 0, then the result of the integration
of the two-loop RG equations can be cast into the following
form:
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IV. SUMMARY

We have shown that the Mc simulation of the HAFT
yields compelling evidence for the inhuence of vortices on
the spin correlations and hence on the thermodynamics of
this model. In agreement with earlier findings by Kawamura
and Miyashita we find that the disordering effect of the vor-
tices sets in rather abruptly at a temperature T,h=0.28. Up to
this temperature, our data for the spin stiffness p and the
ensuing temperature dependence of the correlation length (
are consistent with the predictions of the RG analysis of the
HAFT which ignores the existence of topological defects
such as vortices. For T) T,h, however, the simulation yields
temperature dependences of the correlation length ( and the
antiferromagnetic susceptibility y(Q) which are incompat-
ible with the RG predictions. Instead, in this temperature
regime, the temperature dependences of g and y(Q) which
follow from the KT picture of unbinding vortex pairs provide
satisfactory fits of the data. A rapid increase of the density of
unbound vortices for T)0.3 had already been found by
Kawamura and Miyashita in their simulation of the HAFT.
It had not been clear, however, whether this phenomenon

would lead to the same temperature dependences of the cor-
relations of the HAFT as had been predicted for the planar
XF model by Kosterlitz and Thouless. In our recent analyti-
cal study,

" we were led to the conclusion that this should
indeed be the case. The present numerical study fully sup-

ports this conclusion. As we have discussed in Ref. 11, the
crossover transition from the RG-type behavior to the KT
type behavior of the correlations of the HAFT cannot imply
a phase transition in the proper sense, because the correlation
length is finite both below and above the transition tempera-
ture T,h. The results shown in Fig. 8 indicate, however, that
the transition happens in a very narrow interval around T,h.
Therefore we consider it possible that the derivative of the
correlation length with respect to the temperature develops a
discontinuity at T,h in the thermodynamic limit.
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