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Hole burning in a well-characterized noise field: Nonadherence to the Bloch equations
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Applicability of the Bloch equations for describing relaxation in the saturation regime is studied experimen-
tally and theoretically. Hole burning in the proton NMR line of water was observed, and the shape and width
of the hole were investigated in a well-characterized noise field. The behavior of power broadening is remark-
ably different from that expected from the Bloch equations and strongly depends on the correlation time of the
noise field. The hole shape is not a single Lorentzian. The experimental results are well explained by a
stochastic theory of power broadening. We show that the hole burning in well-characterized noise fields is very
useful for the experimental test of power-broadening theories.

I. INTRODUCTION

Spectroscopic studies concerned with the interaction be-
tween a quantum system and the electromagnetic field have
played an important role in science. One of the most useful
approaches in spectroscopy is the study of relaxation phe-
nomena in fluctuating fields. These appear in nuclear mag-
netic resonance (NMR), electron spin resonance (ESR), op-
tical or laser spectroscopy, and others.

For the test of relaxation theories, an experimental study
of the relaxation in an artificially generated noise field,
whose statistical properties are known and can be controlled,
is significant. Since the time evolution of the spin system can
be fully monitored, the study of NMR relaxation in a two-
level (spin-1) system interacting with a coherent rf field best
serves as such an experiment. Recently, we reported experi-
ments on phase relaxation in time domain' and motional nar-
rowing in frequency domain,? and showed that these experi-
mental approaches could be used to verify relaxation
theories. In NMR,*>~® ESR,® and optical’~® experiments, the
noise field has been used as an excitation field. In our experi-
ments, the noise of the magnetic field (frequency) is applied
as an external fluctuation, while the excitation field is a co-
herent one. This is different from earlier experiments, in
some of which the relaxation phenomena were examined.

In the present paper, an NMR spectral hole-burning ex-
periment is reported. Power broadening of the hole shape
was observed in a well-characterized noise field. The line
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shape and the linewidth from the hole-burning experiment
were compared with those expected from the Bloch equa-
tions.

In 1983, DeVoe and Brewer'® studied the power depen-
dence of optical free induction decay in Pr3*:LaF;, which
cannot be explained by the conventional optical Bloch equa-
tions in the saturation regime. Since then, various theories
have been proposed to explain the experimental results, 1720
However, only a few experimental tests have been
reported,?! and those theories have not been verified suffi-
ciently. The saturation is a universal problem, which appears
in the interaction between any quantum system and the elec-
tromagnetic field. Here, we report the power broadening of
the hole shape in NMR spectroscopy, and study the applica-
bility of the Bloch equations and how important the details
of the dephasing perturbations are. We show that the hole-
burning in well-characterized noise fields is a powerful
method for the experimental test of power-broadening theo-
ries.

The line shape I(w) from the stationary solution of the
Bloch equations is Lorentzian;???3

X*T, /T,
@?+ T, 2+ x°T,IT, *

The linewidth S (half width at half maximum, HWHM) is
given by

I(w)= (1)

2= (UT)*+ (T, /T, x* , )
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where Ty, T,, and yx represent the longitudinal relaxation
time, the transverse relaxation time, and the Rabi frequency,
respectively. In NMR, the Rabi frequency is equal to yH,,
where vy is the gyromagnetic ratio and H; is the amplitude of
the rf field. The width given by Eq. (2) is determined by
T, and T, only. It does not depend on the statistical proper-
ties of the fluctuations. It is interesting to examine whether
the line shape and width are the same in cases with the same
T, and T, but with different correlation times of the fluctua-
tions. To clarify this, we studied hole shapes for different
values of the correlation time. The shape and width of the
hole are discussed experimentally and theoretically.

II. EXPERIMENT

Hole burning in the proton NMR line of water was ob-

served at room temperature. A pulsed NMR spectrometer
operating at 11 MHz was employed. The width of the reso-
nance line is increased by an external inhomogeneous mag-
netic field. The hole is burned by a long-and-weak ‘“‘write”
pulse and is monitored by a short-and-strong ‘“‘read” pulse as
a free-induction-decay (FID) signal. The widths of the write
and read pulses are 50 msec and 12 usec, respectively. The
delay between the end of the write pulse and the start of the
read pulse is 5 msec. The value of y/2 for the write pulse is
varied from 20 Hz to 7 kHz, while that for the read pulse is
fixed at 20 kHz. The FID signals are phase sensitively de-
tected (PSD) and averaged. The hole spectrum is the Fourier
transform of the FID signal.

The wave form of the noise field is synthesized by a com-
puter using random numbers and fed into a digital-to-analog
converter (20 MSa/sec). A current proportional to the ampli-
tude of the wave form is supplied to a coil, which generates
a controllable fluctuation of the magnetic field (noise field).
The noise field is parallel to the static field (~ 0.26 T) and
consequently creates a fluctuation in the Larmor frequency
of the proton spins. The noise field is supplied during the
time interval from the start of the write pulse to the start of
the read pulse (55 msec).

The hole-burning experiment is performed in a Gaussian
noise field, whose wave form is prepared by the transforma-
tion method** of random numbers. Here “Gaussian” means
that the distribution function of the fluctuating field has a
Gaussian shape. The noise field is a pulsed longitudinal fluc-
tuating field 6H,(¢), which is described by random sudden
jumps among different field values and time duration, which
is characterized by a lifetime 7.. The frequency fluctuation
Sw(t) is y8H,(t). The Larmor frequency fluctuates over a
range of values. The width A, of this Gaussian frequency
distribution is defined as AZ= (Sw?).

In our experiment, the values of 7| and 7, were 25 msec
and 1.0 msec, respectively. The value of 7|, which was mea-
sured by saturation recovery, was determined by the concen-
tration of copper sulfate. The value of 7,, which was mea-
sured by Hahn spin-echo decay, was set at 1.0 msec by
adjusting the A for different values of the correlation time.
The decay curves were exponential in all experiments.

II1. RESULTS

The observed hole spectrum in a Gaussian noise field for
x/2m=0.44 kHz and 7.=200 usec (x7.=0.6) is shown in
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FIG. 1. Hole spectrum in a Gaussian noise field for
x/2m=0.44 kHz and 7,=200 usec (x7.=0.6). (a) Single Lorent-
zian fit. (b) Fit with Eq. (7). The broken lines show the contribu-
tions from the two terms in Eq. (7).

Fig. 1, where the center frequency is shifted by 20 kHz be-
cause the frequency of the read pulse and PSD is shifted by
20 kHz from that of the write pulse at the exact resonance.
The FID signal is obtained by off-resonance excitation and
detection. As is seen in Fig. 1(a), a single Lorentzian does
not fit the experimental line. In Fig. 2 Rabi-frequency
(x=7yH,) dependences of the hole spectrum are shown,
where the results for two different correlation times (7, is the
inverse of the jumping rate) are shown. It is apparent that the
power broadening for 7.,=200 wsec is smaller than for
7.,=20 usec. These results are not predicted by the Bloch
equations.

Rabi-frequency dependences of the HWHM linewidth for
7.=20, 40, 80, and 200 usec are shown in Fig. 3. The bro-
ken line in Fig. 3 is calculated from Eq. (2). The observed
power broadening depends strongly on correlation time. The
linewidth for large values of x is much smaller than that
expected from the Bloch equations.

IV. DISCUSSION
A. Stochastic theory of power broadening

We consider a stochastic theory of power broadening em-
ploying the stochastic theory of coherent transients by
Hanamura,'"'? which is valid for T,,T,>7,,1/xy. We de-
rived the shape and width of the hole in terms of the dressed
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FIG. 2. Rabi-frequency (x=vyH;) dependences of the hole
spectrum in a Gaussian noise field for the two values of the corre-
lation time (7,=20 and 200 wsec). The solid lines are fitting curves
with Eq. (7).

atom picture following the above theory.''? Equations of
motion for the density operators of a two-level system (lower
level a and upper level b) are considered under the coherent
field action (frequency wg) and the Gaussian-Markoffian fre-
quency modulation. The density matrix elements in a rotat-
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FIG. 3. Rabi-frequency (x= yH;) dependences of the linewidth
(HWHM) for 7.=20, 40, 80, and 200 usec. The values of 7', and
T, are 25 msec and 1.0 msec, respectively, in all cases. The broken
and solid lines are theoretical curves calculated from Egs. (2) and
(9), respectively.
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ing frame, which rotates with the off-resonant Rabi fre-
quency (), are derived by the following transformation [Eqs.
(5) in Ref. 12]:

|1)=cosf|b)+sinb|a),

[2)= —sin6|b)+cosb|a), 3)
where tan26=—x/A, A=w,,—wy, and Q= JAZ+x%.
Here, we start from the stationary solution in this rotating
frame [Eqgs. (9) in Ref. 12];

P12=p21=0,

_ —2I'cos26 4
P PR T (T+ cos?26) + 1 "sin’20 @

where I'"=T""/(1 +Q?‘7%), 2T is the longitudinal relaxation
rate (1/T,=2T"), and T’ is the phase relaxation rate due to
the frequency fluctuation (1/7,=T+T").

The hole shape is obtained from p,;,— p,., While the de-
cay curves of coherent transients is from p,;, as shown in
Refs. 11 and 12. The stationary solution of p,,— p,, is de-

" rived using the stationary solution Egs. (4) and the inverse

transformation of Egs. (3) as

—A?
pbb_paa=A2+X2(F+l—w)/2F . (5)

The line shape I(w) is given by
I(w)=pbb—paa+ 1

_XATH+TY)
2T+ (T+T7)

X2+ X+ (2T, IT,+ 1) x* 7
20+ (B2 2P) 0%+ X+ (T IT,+ 1) X3
(6)

where A is replaced by w.

B. Line shape

In general, the line shape by Eq. (6) is the sum of two
Lorentzians; the cases of weak and strong fields differ, how-
ever. For the case of y7.<x, (weak field), where
xo=VA4T, /T, + 4T, IT,—2=4T,/T, (T;>T,) and
x¢=20 in our case, the line shape becomes

c wt+d —c w+d

I(w)=(w+,8)2+a2+(w—ﬁ’)2+a2 ’ (7)

where a?7?=xy/4+(3x*+2)/8, B272=xyl4d—(3x*+2)/8,
ct.=x(y—x)/8B7., dri=xyl4, y>=2(x>+2T,/T,+1),
and x= y7.. This line shape is the sum of two Lorentzians
whose linewidths are the same but whose center frequencies
are shifted by * 3.

The solid line in Fig. 1(b) is the theoretical line shape
calculated from Eq. (7). The broken lines show the contribu-
tions from the two terms in /(w). The non-Lorentzian line
shape observed in the experiment is well explained by Eq.
(7). The solid lines in Fig. 2 are fitting curves with Eq. (7).
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FIG. 4. Normalized plot of the linewidth. The linewidth and the
Rabi frequency in Fig. 3 are normalized by the correlation time
7.. The broken and solid lines are theoretical curves calculated
from Egs. (2) and (9), respectively.

For the case of x1.>x, (strong field), on the other hand,
the line shape is given by

ey e_

H{w)=

0’+7, 0+ yt ®)
where YA =(Bx2+2)/4% 1(x?+2)2— 16(T, /T,)x?,
e P=Tx2(X2H2T /T, +1— YA R(YA —y2) 7>, and
x= xT,.. The line shape is again the sum of two Lorentzians.
In this situation the center frequencies are the same, but the
linewidths are different. In the limiting case of x7.>x,, Eq.
(8) becomes I(w)=(x*/2)/(w*+ x*/2), a single Lorentzian
with a linewidth (1/ \/5) X- In our experiment, unfortunately,
all data were taken in weak fields because of the instrumental
limitation. For this reason this limit has no experimental test.

C. Linewidth

Next we consider the linewidth. The HWHM linewidth
Sv from Eq. (6) is

2778VTC=%\/\/(3x2+2)2+ 16(T,/T,)x%—(x2+2) ,
©)

where x= y7.. This expression is applicable both for weak
and strong fields. When x7.>1, Eq. (9) becomes
27r8v=(1/\/5) x> while the Bloch linewidth is 7T,/T, x.
Similar results to Eq. (9) can be derived from Refs. 14 and
17—19 in the limit of 7', ,T,> 7.,1/x. A plot of the linewidth
is shown in Fig. 4, where the linewidth and the Rabi fre-
quency in Fig. 3 are normalized by the correlation time 7, .
The experimental data for different 7, are on the same curve.
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FIG. 5. Logarithmic plot of Fig. 4. The broken and solid lines
are theoretical curves calculated from Egs. (2) and (9), respectively.

A logarithmic plot of Fig. 4 is shown in Fig. 5. The observed
values of the linewidth strongly deviate from that expected
from the Bloch equations for y7.= 1. The solid lines in Figs.
3, 4, and 5 are the theoretical curves calculated from Eq. (9).
They fit the experimental results very well.

Our experiments correspond to the case of 7,> 7, and are
explained well by the above stochastic theory of power
broadening. The optical experiment by DeVoe and Brewer,'”
on the other hand, may correspond to the case of To~7,. It
is very interesting to test theories of power broadening for
that case. However, it should be noted that the decay curve of
the transverse relaxation is expected to be nonexponential,®
in which case the Bloch equations are not applicable even for
xXT.<l.

V. SUMMARY

An experimental approach for the verification of power-
broadening theories is presented. Hole burning in a proton
NMR line was observed, and power broadening of the hole
shape was studied experimentally and theoretically. In the
case of y7.=1, the observed linewidth deviates from that
predicted by the Bloch equations, and the line shape is not a
single Lorentzian. The experimental results are explained by
a stochastic theory in which the effect of the correlation time
of the fluctuation is taken into consideration.

ACKNOWLEDGMENTS

We would like to thank the Matsuo Foundation and the
Hyogo Science and Technology Association for financial
support.

I'T. Kohmoto, Y. Fukuda, M. Kunitomo, K. Ishikawa, M. Tani-
gawa, K. Ebina, and M. Kaburagi, Phys. Lett. A 181, 97 (1993).

2T. Kohmoto, Y. Fukuda, M. Kunitomo, K. Ishikawa, M. Tani-
gawa, K. Ebina, and M. Kaburagi, Phys. Rev. B 49, 15352
(1994).

3R. R. Ernst, J. Magn. Res. 3, 10 (1970).

4R. Kaiser, J. Magn. Res. 3, 28 (1970).

5B. Bliimich and R. Kaiser, J. Magn. Res. 54, 486 (1983).

%R. Boscaino and R. N. Mantegna, Phys. Rev. A 40, 13 (1989).

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott,
H. Ritsch, and P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).

8¢c. Chen, D. S. Elliott, and M. W. Hamilton, Phys. Rev. Lett. 68,
3531 (1992).

M. H. Anderson, G. Vemuri, J. Cooper, P. Zoller, and S. J. Smith,



52 HOLE BURNING IN A WELL-CHARACTERIZED NOISE. . . 13479

Phys. Rev. A 47, 3202 (1993). 19p A. Apanasevich, S. Y. Kilin, A. P. Nizovtsev, and N. S. Onish-
10R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 50, 1269 (1983). chenko, J, Opt. Soc. Am. B 3, 587 (1986).
'E. Hanamura, J. Phys. Soc. Jpn. 52, 2258 (1983). i‘l’s Y. Kilin and A. P. Nizovtsev, Phys. Rev. A 42, 4403 (1990).
12E Hanamura, J. Phys. Soc. Jpn. 52, 3678 (1983). 22A. Szabo and R. Kaa.rh,.Phys. Rev. B 44, 12 307. (1991).
13} Javanainen, Opt. Commun. 50, 26 (1984). A. Abragam, The Principles of Nuclear Magnetism (Clarendon,

14 . aye . icho OXfOI’d, 1961).
P. A. Apanasevich, 8. Y. Kilin, A. P. Nizovtsev, and N. §. Onish 23M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser

5 chenko, Opt. ComrT)un. 52, 279 (1984). Spectroscopy (Academic, Orlando, 1988).
A. Schenzle, M. Mitsunaga, R. G. DeVoe, and R. G. Brewer, 2*W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

. Phys. Rev.. A 30, 325 (1984). Numerical Recipes in C: The Art of Scientific Computing (Cam-

16M. Yamanoi and J. H. Eberly, Phys. Rev. Lett. 52, 1353 (1984); J. bridge University Press, Cambridge, England, 1988), p. 214.
Opt. Soc. Am. B 1, 751 (1984). 25R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics Il Non-

7K. Wédkiewicz and J. H. Eberly, Phys. Rev. A 32, 992 (1985). equilibrium Statistical Mechanics (Springer-Verlag, Berlin,

3P, R. Berman and R. G. Brewer, Phys. Rev. A 32, 2784 (1985). 1991), p. 40.



