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Tunneling of a heavy particle with spin in a metal
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The low-temperature behavior of a two-level system (TLS) with spin is investigated, where the atom

tunneling between two positions possesses a spin and interacts with the conduction electrons by an exchange
interaction. To describe the physical properties of this TLS a generalized model is developed, where in addition

to the usual screening and electron assisted tunneling processes exchange interaction and exchange assisted

interactions with the conduction electrons are introduced. These exchange interaction terms break the SU(2)
symmetry of the original TLS model corresponding to the conduction-electron spin. Summing up the leading

logarithmic vertex corrections we show that if the Kondo temperature associated with the orbital degrees of
freedom, T~", is smaller than that associated with the exchange interaction, T~' ", then the orbital degrees of
freedom of the TLS are frozen out when the magnetic Kondo effect takes place and only a magnetic Kondo

effect occurs. In this case the ground state of the system seems to be a Fermi-liquid state. In the opposite case,

Tz ~T~' ", two orbital electron channels become dominant below T~ and a new fixed point appears. The

possibility of experimental realizations is also shortly discussed.

I. INTRODUCTION

Two-level systems (TLS) play a very important role in the
physics of disordered metallic samples, ' nanostructures and
point contacts. TLS's can be the source of 1/f noise and
time dependent conductance fluctuations, but they can also
give rise to logarithmic resistivity anomalies and they pro-
vide a source of inelastic scattering mechanism for the
phonons and the conduction electrons as well. '

A TLS can be formed by a heavy particle (impurity, some
collective coordinate of a dislocation, heavy electron or a
point defect) moving in a double-well potential. If the tem-
perature is low enough then the higher excited states of the
heavy particle (HP) are frozen out and the particle can move
only by tunneling between the two nearly degenerate states
associated with the two minima of the potential, Depending
on the tunneling rate there may be two important processes
due to the TLS-conduction electron interaction.

If the tunneling rate is small then the only important pro-
cess is the screening of the conduction electrons (commuta-
tive case). This commutative TLS model has been studied
intensively both theoretically" ' and experimentally' '
and it is already well understood. It is well known that the
only important effect of screening is the renormalization of
the tunneling rate of the HP as a function of temperature, and
if the screening interaction is strong enough then it can result
even in the localization of the HP in one minimum of the
double-well potential. ' ' ' '

If the tunneling rate is large then assisted tunneling may
also become important (noncommutative case). In this pro-
cess a conduction electron is scattered by the TLS while the
HP is tunneling from one well to the other. In the noncom-
mutative case a strongly correlated Kondo-like state is
formed (orbital Kondo effect) with an energy, T~, and loga-
rithmic resistivity anomalies appear. The Kondo temperature

T~ is approximately given by'

x 'I 1/4Uz

7 ozb D(UxUz)1/2
L, 4U l

where D is the bandwidth cutoff, and U' and U denote the
dimensionless couplings characteristic to screening and as-
sisted tunneling, respectively. The couplings U and U' in
formula (1.1) denote some effective couplings, which take
into account the strong renormalization of the bare matrix
elements due to virtual hoppings to the excited states. ' The
prefactor (v U')" is obtained in the next to leading logarith-
mic approximation.

The nature of this strongly correlated state is still not
completely clear. Recent experimental and theoretical inves-
tigations indicate' ' that well below the orbital Kondo tem-

perature, T~", the behavior of the noncommutative model is
completely equivalent to that of the two-channel Kondo
model exhibiting a non-Fermi-liquid behavior. ' However,
this conjecture has not been proved rigorously yet. It has
been shown for the Nf-flavor TLS model, ' that in the

1/Nf order the fixed point structure of this model is identical
to that of the Nf-channel Kondo model. However, in the
TLS problem an infinite number of leading irrelevant opera-
tors appear even in the 1/Nf order, whose role in the low-
temperature behavior is still unclear.

If the position of the HP is fixed then potential scattering
plays no significant role, but an antiferromagnetic exchange
interaction results in the formation of a magnetic Kondo state
with energy

T & &=D(p J)l/2e 1/(2PP/) (1.2)

where poJ denotes the dimensionless exchange coupling.
This magnetic Kondo effect has been studied by a variety of
techniques such as conformal field theory, Bethe ansatz,
large N expansion, and different renormalization group
techniques, ' ' and it is already well understood. It is well
known that below the magnetic Kondo temperature, T~'g", a
spin compensation cloud is building up, which at T=O,
forms a singlet state with the impurity exhibiting Fermi-
liquid behavior. ' This can be contrasted to the orbital
Kondo effect, where the ground state is believed to be
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equivalent to that of the two-channel Kondo problem show-

ing marginal Fermi-liquid properties.
It is natural to ask what is going to happen if the HP has

both magnetic and orbital degrees of freedom coupled to the
conduction electrons. We shall see that if the HP moving in a
double-well potential has a spin, then in addition to the
screening and assisted tunneling other processes like "elec-
tron assisted exchange tunneling" appear. In this latter pro-
cess a conduction electron is scattered by the TLS while the
HP jumps from one position to the other with a spin Aip. It
will be shown that this process plays a very important role in
the determination of the ground state properties of the TLS.
It mixes the spin-up and spin-down electron channels like the
particle-hole breaking term introduced by Pang et al. and

may drive the system away from the non-Fermi-liquid fixed
point.

The interaction term derived turns out to have basically
the same structure as the generalized Kondo model investi-
gated by Cragg, Lloyd, and Nozieres (CLN model). Cragg
et al. examined the interaction of a single localized d elec-
tron in a cubic environment, described by an Anderson
Hamiltonian. In this case the crystal field lifts the fivefold
orbital degeneracy of the d state and the ground state be-
comes —without considering spin degrees of freedom—
doubly degenerate corresponding to the e~ irreducible repre-
sentation of the cubic point group. Thus the localized elec-
tron has two different degrees of freedom: the real d-electron
spin, and an orbital quantum number associated with the e
representation. Then carrying out the Schrieffer-Wolff trans-
formation one obtains an effective Kondo interaction term
similar to the one given in Eq. (2.4);

However, there is an important difference between the
two models. In the CLN model both the exchange and the
orbital couplings are generated by the local Coulomb inter-
action and therefore, they are of the same order of magni-
tude. Thus, for physical model parameters one is always in

the region T~' "~T~ and a single-channel Fermi-liquid
fixed point is generated. ' On the other hand, for a TLS
with spin the ratio T~:Tz' " can be tuned by changing the
geometry of the TLS or the conduction electron density of
states, and both regions T~'g"~T~ and Tz'g"(T~ are
available. As we shall see in the case T~ )T~' " a different
ground state appears.

To investigate the low-temperature dynamics of a tunnel-

ing particle with spin we apply the perturbative renormaliza-
tion group approach. The leading logarithmic scaling equa-
tions have already been constructed for the case of two
orbital electron channels by Cragg et al. , however, in this
work no stability analysis has been carried out. In this paper
we determine all the fixed points in the two-orbital-channel
case for T~' ")T~" and we show that in this region only the
Fermi-liquid fixed point is stable. We shall also present the
results of numerical calculations for more than two channels
which indicate that this Fermi-liquid fixed point is the stable
one for any number of channels in the region, Tz' "~T~".
This result is in complete agreement with the results of
Cragg et al. and Mirtschin et al.

However, for T~' "(Tz, the leading logarithmic equa-
tions indicate a completely different behavior of the model.
As we shall see, due to the orbital Kondo effect two orbital

electron channels become dominant, and a new ground state
seems to appear, where magnetic and orbital correlations
play equally important roles.

The paper is organized as follows: In Sec. II we describe
the model introduced to describe a tunneling HP with spin
and we derive the scaling equations. In Sec. III we study the
solution of the scaling equations in the special case where
only a single orbital channel is considered. In Sec. IV we
examine the fixed point structure of the scaling equations for
several orbital conduction electron channels. Our concluding
remarks and the discussion of the possible experimental re-
alizations are given in Sec. V. Some technical details of the
calculations can be found in the Appendices.

II. MODKI. HAMILTONIAN

(2.1)

where the r"s (i = 1, . . . ,3) are the Pauli matrices,
n, P = ~ 1 are the orbital pseudospin of the TLS and
s = —5, . . . ,5 denotes the z component of the spin of the HP.
The pseudofermion creation and annihilation operators, b
and b, , respectively, are introduced for technical
purposes. Writing the Hamiltonian in the form (2.1) we
neglected the spin-orbit interaction, therefore, the HP term
(2.1) is diagonal in the spin s of the HP. The lowest lying
2(2S+ 1) states of the HP are not completely degenerate due
to the eventual asymmetry of the potential and the tunneling
through the barrier. However, if the temperature is much
larger than the splitting A=(X,A, )" of these states then the
ground states of the tunneling center can be considered as
2(25+ 1) times degenerate. In this paper we only consider
the temperature range where T)~ 5, and therefore, the
ground state of the TLS is taken to be 2(2S+ 1) times de-
generate. In the opposite case, T(&A, the state of the HP is
only 25+1 times degenerate corresponding to the spin de-
grees of freedom of the HP and the physics of the simple
Kondo model is recovered.

The second term of the Hamiltonian describes the band of
the conduction electrons

H,)=g e(k)a„ak, (2.2)

where o.= ~ 1 is the conduction electron spin and e(k) de-
notes the energy of a conduction electron with momentum

In this section we shortly derive the model Hamiltonian
used to describe the dynamics of the tunneling spin and we
derive the leading order scaling equations. Our Hamiltonian
consists of three terms.

The first term describes the motion of the HP in the
double-well potential. As we have already noted in the Intro-
duction if the temperature is low enough (i.e. , if it is much
smaller than the Debye temperature) then the motion of the
HP is mainly restricted to the lowest lying two states associ-
ated with the two minima of the potential. In this case the
orbital motion of the HP can be described by a one-half
orbital pseudospin r, the states ~ = ~ 1 corresponding to the
left- and right-hand-side states of the potential. The Hamil-
tonian of the TLS can be written as
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k measured from the Fermi energy. The ak 's (ak 's) are
creation (annihilation) operators of a conduction electron
with momentum k and spin o.. Throughout this paper we
assume that the density of states of the conduction electrons
for one spin direction, p(e), is uniform between the high and
low energy cutoffs D and D,—respectively: p(e) = po. This
simplification does not infIuence the universal features of the
low-temperature behavior of the model but makes the calcu-
lation much simpler.

Finally, the third term of the Hamiltonian describes the
TLS-electron interaction. For the sake of simplicity we as-
sume that the interaction between the conduction electrons
and the tunneling spin can be described by a pseudopotential
and an exchange interaction term depending only on the rela-
tive position of the HP and the conduction electrons

H,„,=—
i,s, k, k', a

p,
' + +

Ukk, b,v-, b~ sak~ak

1

i, p, ,s,s', k

(2.4)

In Eq. (2.4) the index p, takes the values p, = (0, . . . ,3) N is
the number of unit cells in the sample, and we have intro-

duced the unit matrix ~ &=6' &. The coupling constants0

Jkk, and Ukk, can be expressed in terms of the effective
interactions J(r—R) and U(r —R) as simple integrals

3

H;„,= g U(r, —R)+J(r, —R)g o'(j )S', (2.3)
J I= i

where o.(j) and r, denote the spin and the coordinate of the

jth conduction electron, and R is the coordinate of the HP.
For this simple effective interaction the second quantized
expression of the interaction term becomes

~ dSkdS
sF F

(2 6)

where Akk refers to the couplings Jk„, and U„"„,, while

a„„stands for the dimensionless couplings (j„)„„and
(u„)„„.The integration is carried out at the Fermi surface,
dSk and SF being the surface element and the total area of
the Fermi surface, respectively. The index n denotes the or-
bital quantum number of the conduction electrons. The
choice of the functions (f„(k)) is not unique; they can be
chosen according to the actual shape of the Fermi surface, to
the nature of the atomic orbitals or to the crystal field sym-
metry as well.

The leading order scaling equations can be generated in
the standard way from the second-order logarithmic vertex
corrections by reducing the high energy cutoff D. Carrying
out the calculation one finally obtains

in Eq. (2.4) and they can modify the Kondo temperature by 1

or 2 orders of magnitude. However, the low-temperature
properties of the system, the critical exponents and the struc-
ture of the ground state remain essentially unchanged. There-
fore we do not consider here the contribution of the higher
excited states.

The interaction part of the Hamiltonian is rather complex.
The first part of it, the potential scattering part, describes
"simple" assisted tunneling and screening interactions men-
tioned in the Introduction. The second spin dependent part of
the interaction term corresponds to "exchange screening"
and "exchange assisted tunnelings. "The latter can be inter-
preted as a tunneling process due to the electronic spin den-

sity fIuctuations at the potential barrier, and the interpretation
of the "exchange screening" is also very similar to that of
the "potential screening" U' in Eq. (1.1).

To simplify the problem one usually introduces a new set
of dimensionless coupling constants by means of a complete
orthogonal set of functions at the Fermi surface, (f„(k)):

N
Jk~„, = —g r&~ d r d Ry„*(r)y„(r)J(r—R)

2~p

x 'Il'*(R)'Il'p(R),

N
U„"„,= —g r&~ d r d Ry„*(r)y„(r)U(r—R)

dQp-'=0,
dx

dQ~
3

= —i g e~"~([u„u ]+S(S+1)[j„j])
p, p= 1

(2.7)

X% *(R)%&(R). (2 5)
(p, = 1,2,3), (2.8)

Here the yk's denote the spin independent part of the wave
functions of the conduction electrons while W (a.= ~ 1) are
the states of the HP associated with the two minima of the
potential well. Similarly to the TLS problem' a simple esti-
mation of the amplitude of the integrals in (2.5) gives that for

Constructing the Hamiltonian above we restricted the mo-
tion of the HP artificially to the two lowest lying eigenstates
of the double-well potential. In the reality the higher excited
states of the HP are also mixed into the strongly correlated
Kondo state due to the virtual assisted hopping processes. '

Similarly to the case of a simple TLS (Ref. 18) these assisted
hoppings can strongly renormalize the couplings appearing

3
djp;.=22 J~„, (2.9)

dj~-"=2(jo.j~)—i g e ' ([u„,Jp]+[j„,up])
v, p= 1

(p, =1,2,3), (2.10)

where we have introduced the matrix notation (j~)„~j~
and (u„)„~u„, and the scaling parameter x denotes
x=ln(DO/D), Do being the initial value of the high energy



13 462 G. ZARAND 52

cutoff. The symbols [,] and t, ) stand for the commutators
and anticommutators, respectively, and e~ denotes the
Levi-Civita symbol.

Concerning these scaling equations we have to note that
the simple potential scattering amplitude up remains un-
scaled as expected, while the scaling equations of the other
couplings are coupled to each other. This suggests that the
magnetic Kondo effect can generate orbital correlations in
the ground state, and similarly, the orbital correlations due to
the orbital Kondo effect are able to generate magnetic corre-
lations at the same time. On the other hand, the scaling equa-
tions are rather asymmetrical with respect to the couplings
u„and j~ . This indicates that —depending on the ratio of
the energy scales Tz and TI ' "—there may be a transition
in the structure of the stable fixed point approached by the
system.

III. THE CASK OF ONE ORBITAL CHANNEL

djp =20p+i r), (3.1)

To gain insight to the nature of the ground state of the
Hamiltonian it is instructive to consider the case of a single
orbital conduction electron channel. Since the s-wave con-
duction electrons are scattered much more effectively by the
TLS than the others, one could think that dropping all the
higher angular momentum channels is a reasonable approxi-
mation. As we shall see in the next section for T~' ")T~
this approximation works quite well and the ground state of
the system is very similar to the one found in this section.

In the case of a single orbital channel the matrices j and

u„are replaced by simple scalar couplings, j and u

Therefore, all the commutators vanish in Eqs. (2.8) and the
scaling equations can be integrated exactly.

For the sake of simplicity we consider a symmetrical
double-well potential. In this case symmetry implies that the
couplings j2 and j3 vanish and only two relevant coupling
constants remain: jp and j &

. As it is shown in Appendix A
even in this oversimplified case the initial coupling j& does
not vanish and leads to the appearance of a nontrivial solu-
tion of the scaling equations.

Since the potential scattering amplitudes are unscaled
only Eqs. (2.9) and (2.10) are relevant:

a&0

I

-2.0
I I—1.5 —1.0 —0.5 0.0 0.5

Jp

1.0 1.5 2.0

FIG. 1. The scaling trajectories of the couplings j &
and jo in the

case of a single orbital channel. The jp=0 axis (indicated by a

heavy line) is marginally stable and the j,=0 trajectory corre-
sponding to the usual Kondo trajectory is unstable.

both j& and jp tend to zero as T—+0, i.e., the interaction is
irrelevant in the T~O limit. In the opposite case ~jp~~~j, ~,

however, both jp and j& scale to infinity as the bandwidth
scales to zero, x~~. Thus, unlike the ferromagnetic Kondo
Hamiltonian in this case the spin Hip scattering of the con-
duction electrons may be relevant as T~O and the amplitude
of assisted exchange tunneling diverges at zero temperature.
However, in the physical situation only the case ~jp~~ j&~
can occur since j& —(kFd) jp, where kF denotes the Fermi
momentum of the conduction electrons and d is the distance
between the two minima of the double well potential (see
Appendix A). Therefore, we can conclude that for ferromag-
netic coupling the exchange interaction is irrelevant. We
stress at this point that the physical values of the initial cou-
plings for the TLS case differ essentially from those of the
Kondo Problem. While for the Kondo model ~j&~~~jp~,
i.e., the model always scales to strong coupling, for the TLS
with spin the opposite case,

~ j&~ ~
~ jp~, occurs and the ex-

change interaction becomes irrelevant in the ferromagnetic
case.

In the antiferromagnetic case, jp&0, similarly to the ordi-
nary Kondo problem, both the couplings j &

and jp diverge as
—[In(Dp/Tz)] ', where the leading logarithmic Kondo tem-
perature Tz is determined by the largest of the two couplings

J =Jp —J&:

Tlr = Dpexpf —1/2max( j+,j )j. (3 4)
dJi

=4JpJ &
~

dx
(3.2)

These scaling equations can be integrated easily and one ob-
tains that the scaling trajectories are determined by the fol-
lowing equation:

A A(0)
jp —j, jp(0) —jt(0) a ' (3.3)

where jp(0) and jt(0) denote the initial values of the cou-
plings jp and j&. The scaling trajectories of jp and j& are
shown in Fig. 1 for different values of the parameter a de-
fined in Eq. (3.3).

For ferromagnetic exchange coupling (jp(0), theoreti-
cally, two different situations may arise. If

~
jp~~~ j, ~

then

1
H,'„,(x) = 2Dp—

I I
L, S,S,E', F,O

i + i

j p(x)[b, (1 —r')b, ]

(3.5)

where the orbital quantum numbers of the TLS were sup-
pressed, and the energies e and e' of the conduction elec-

As can be seen in Fig. 1 the conventional Kondo trajectory
corresponding to the axis j& =0 is unstable.

In the antiferromagnetic case in the x~~ limit the
asymptotic values of the couplings j& and jp are related by
the relation jp=j&+ a/2. Then using the simple estimates of
Appendix A the divergent part of the effective Hamiltonian
becomes
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trons fall into the interval ( D—, D). This interaction term
tells us that the conduction electrons are interacting with the
TLS only if it is in the state 7'= —1. Therefore, as soon as
the Kondo-like ground state is formed the degeneracy of the
states ~'= ~1 will be split, and the motion of the HP is
expected to be frozen out. As we shall see in Sec. IV for
T~'g"~Tz this is also the case if more orbital channels are
considered and the magnetic Kondo effect results in the "lo-
calization" of the HP. It is important to note that this local-
ization does not occur in coordinate space, but according to
Eq. (3.5) the HP prefers freezing into the antisymmetric
state, v' = —1.

Since for a physical system jo&)j&, the Kondo effect is
driven by the exchange coupling jo. Therefore, the Kondo
temperature Tz is approximately the same as it would be for
a localized spin in the same material. However, as the cou-
pling jo starts to increase the initially negligible coupling

j& is generated, and finally the ground state becomes very
much different from the one corresponding to the couplings

jo—&~ and j i = 0, which would be naively expected to occur.

IV. THE CASE OF TWO AND MORE CHANNELS

j,=j j' (4.1)

where the function f(x) = I/[2(x, —x)] satisfies the differen-
tial equation f' =2f, x, being the critical value of the scal-
ing variable corresponding to the Kondo temperature,
x,= In(Do/Tx). For a general scaling trajectory the couplings

j defined in Eq. (4.1) depend on the scaling parameter x. A
"fixed point" of the scaling equations is determined by the

condition that the j„sbe independent of x. In this case the
matrix coefficients j must satisfy the following algebraic
equations:

3

J o
= + J pJ p.

p, =o j =b, .J O'J (/ =1.2.3) (4 2)

In this section we analyze the asymptotic behavior ("fixed
point structure") of the scaling equations in the antiferro-
magnetic case for two and more orbital channels and we
investigate analytically the symmetry structure of the
strongly correlated state formed. The fixed point structure of
the Hamiltonian, Eq. (2.4), has already been analyzed by
Cragg et al. using the numerical renormalization group
(NRG) technique. However, because of computational limi-
tations they could only examine the case of two conduction
electron orbital channels. Furthermore, they have not ex-
plored the case T~ ~ Tz' ".Our calculations indicate that in
this latter case a Kondo state is formed, which is different
from the Tz ~ Tz'g" ground state examined by Cragg et al.
We first consider the case Tz' "~Tz in detail. The opposite
case, T~'g"~T~, will be discussed at the end of this sec-
tion.

Since in the case, Tz' "~Tz, the couplings u „are gen-
erated by the j 's appearing on the right-hand side of Eq.
(2.8), we first investigate the asymptotic behavior of the

j 's by dropping the second term in Eq. (2.10). The correct-
ness of this approximation will be justified later.

We look for the asymptotic solution of the scaling equa-
tions in the form

These equations cannot be solved in the general case, but in
the case of two orbital channels one can determine their so-
lutions exactly.

For two orbital channels the couplings j and j can be
expanded in terms of the Pauli matrices p (a =0,1,2,3):

3

aj p,
= m jpapa=o

3

aj p,
= m jpapa=o

(4.3)

where po denotes the unit matrix. Note that the first (Greek)
index of j„a refers to the orbital degrees of freedom of the
TLS while its second (Latin) index is coupled to the orbital
quantum numbers of the electrons. In this simple case the
exchange interaction part of the Hamiltonian can be written
as

1
H„,t,= g —j„,(b+,r",S'„,b, )

/ / It, o', E', m, m, o', c7

p„a,s,s,a, uI I

(ri,m.pmm~rr. ..aa m .). (4.4)

Substituting the expansion (4.3) of the couplings into Eq.
(4.2) we obtain a system of equations for the j,'s which can
be solved exactly (see Appendix 8 for the details). These
equations determine five different fixed manifolds of the
scaling equations. However, we have examined the stability
of all these fixed manifolds numerically, and we found that
they are all unstable except for the one characterized by the
equations:

ag 8.75—

Q

0
8.58

~exchange

8.75

8.58

8.25

g 8.25

8.888.88

~med

~offdlag
I I

8.82 8.84
xc x

8.888.8 8. j 8.3
xc I

offdtag
I I

8.4 8.5

FIG. 2. The scaling of the relative amplitudes n, ,h,„g,=
JOO/(~p, b=OJpa) noffdiag ~a= lJO /(~apb=oj )paand nm, ,d=-2 3 2 3 2 3 2

,j,/(X b oj,). The initial couplings j,(0) were gener-
ated using Eq. (B13) corresponding to the initial values

exchange 3/4 and nmed +offdiag 1/12 and then adding small ran-

dom numbers to them. As one can see from the inset all these
relative amplitudes scale to 0.25 as x~x, corresponding to the
stable fixed point (B12).



13 464 G. ZARAND 52

joo= 1/4 j =4j ojo (/t, a= 1, . . . ,3),

3 3

g j,= g j =1/16.
a=1 p, =l

(4.5)

H,'„',(D)- ln
( Tlr)

i, e, e,m, m, a, o.I / /

S,S,A, O!
/ /

[b+,(1+ r ) S,', ,b, ]

X [a,+ (1+ps) o.',a, ]. (4.6)

The coupling constants u generated by the j ~'s also
diverge, as one approaches the Kondo temperature, but for

10'-,

10'-:

10.00;

X
1.00 ;.

The result of one of such stability analyses is shown in
Fig. 2. In Fig. 2 we investigate the stability of the fixed
points determined by Eqs. (812) and (813) of Appendix 8
by first generating the initial couplings j„,according to Eq.
(813) and then adding small random numbers to them.
It can be seen in Fig. 2 that this fixed point is unstable
and the normalized exchange couPling jog(Z, oj,)
and the sums (X, ijo,)/(2 „oj,) and (X „ ij „)/
(X „oj „) scale to the values corresponding to the stable
fixed point (812).

Similarly to Sec. III, due to the special structure (4.5) of
the couplings at the stable fixed point the couplings j „ fac-
torize, j~,—j„ojo„(P„a=0.3), and we can Perform a uni-

tary transformation in the Hilbert space corresponding to the
orbital quantum numbers of the electrons and the HP to ob-
tain the following form for the most divergent part of the
effective interaction:

T~' "~T~ their divergence is much slower than that of the

j s. This is shown in Fig. 3, where the scaling of the norms

lljll =(X& j„,)" and llull=(X u, )" of the couplings

j„,and u, is shown in a logarithmic scale [the couplings
u, are defined similarly to the j,'s in Eq. (4.3)].The slow
divergence of

~
~u

~ ~

is due to the special structure of the fixed
point. The divergence of the u 's is generated by the diver-
gence of the commutator [j~,j,) on the right-hand side of
Eq. (2.8). The most divergent part of the operator j„is pro-
portional to (x —x,) '. However, because of the special
structure (4.5) of the stable fixed point the commutator of the
most divergent operators, i.e., the term proportional to
—(x —x,) vanishes in the scaling equation of u and only
the products of some less divergent and a most divergent
operator give contributions, which explains the slow diver-
gence of u „. Additionally, since the divergence of the
u „'s is much slower than that of the j 's the second term in
Eq. (2.10) gives only a negligible contribution to the first
term, and therefore, for T~' "~T~ the scaling of the j 's

isasymptotically decoupled from the scaling of the u „'s.
These numerical results justify the approximation of drop-
ping the second term in Eq. (2.10).

Similarly to the one-channel case the interaction term is
different from zero only if the TLS is in the state r =+ 1.
Therefore, in order to form a ground state with energy
-Tz the orbital motion of the HP must be frozen in. We
remark at this point again that the state r =+ 1 is usually
not identical to either the right-hand side or the antisym-
metrical state of the HP since a rotation has been performed
in the Hilbert space. Furthermore, the projector 1+p im-
plies that only one electron channel is interacting with the
TLS. Thus, well below the Kondo temperature, Tz, the HP
is frozen into the state r = + 1, the Hamiltonian becomes
equivalent to the one channel Kondo Hamiltonian and a
Fermi-liquid behavior is expected.

Numerical calculations for the case of three orbital chan-
nels indicate that for T~' "~T~ the same is going to happen
independently of the number of channels considered. Since it
is practically impossible to determine all the fixed points for
more than two orbital channels we have rather generated
some initial couplings corresponding to the physical situation
using the simple estimates of Appendix A. To avoid some
unrealistic behavior coming from the special symmetries of
the oversimplified model used in Appendix A we added to
the couplings j small random Hermitian matrices.

Our analysis shows that, similarly to the two-orbital-
channel case, the orbital degrees of freedom of the TLS and
the HP decouple and the asymptotic form of the effective
couplings becomes

10-' 10-' 0.01

X — XC

0.10 1.00
H,'„,(D)—

l, S,S /

/ /
, CT, O

j
ln ~ (b,+j r"b, )

( Tz)

FIG. 3. The scaling trajectory of the norms
~ ~u~ ~

=(X„,u, )"
and ~~j~~=(X„J,)' on a logarithmic scale. The initial couplings

j„,(0) were generated similarly to those of Fig. 2 while the

u~, (0)'s were chosen to be small random numbers. The norm

~~u~~ is also diverging as x~x, but much slower than that of the
exchange coupling )(j((.

(4 7)

where the operator Q is a one-dimensional projector in the
orbital quantum numbers of the conduction electrons and the
constants j„'s satisfy
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This constraint is equivalent to the one that the operator
P=Xj„7.~ be a one-dimensional projector. Thus the fixed
point interaction can be written in the form

H,'„,(D)-PQS'o', where the operators P and Q are one-
dimensional projectors in the orbital quantum numbers of the
TLS and the conduction electrons, respectively.

The asymptotic behavior (4.7) of the scaling equations is
illustrated in Fig. 4, where the scaling of the relative ampli-
tude of the different coupling constants n (x) =j /X,j, is
shown, the norms j of the matrices j being defined in the
standard way

FIG. 4. The scaling of the relative amplitudes
n = ~~j„~~/(2~~ j„~~) of the coupling constants j in the case of
three orbital channels. [To assure the transparency of the figure we
omitted the trajectory of n, in (a).] The initial couplings, j (0),
were generated using the equations of Appendix A and adding small
Hermitian matrices to them. The dimensionless parameters were
chosen to be k+a=0. 13, poJ=0.2, and @=10 n. For these pa-
rameters the Kondo scale was x, = 2.117. As one can check in (b)
that no approaches the value 1/2 at the fixed point and thus the sum
rule (4.8) is really satisfied.

One can see in Fig. 4(b) that the n~ s satisfy the condition
(4.8) at the critical value of the scaling parameter,
x .:ill(Dp /T~), and no aPProaches the value 1/2 as x~x,
We have also checked numerically that all the j 's are pro-
portional to the same projector Q at the stable fixed point.
Our calculations show as well that the projector Q is mainly
projecting out the orbital channel l =0, and the other chan-
nels with higher angular momenta give a much smaller con-
tribution to Q.

Since we have obtained the same fixed point structure for
both two and three orbital channels we expect that the form
(4.7) of the most divergent part of the scaled interaction is
very general and holds for any number of orbital channels.

Now we turn to the investigation of the strong orbital
interaction limit, Tz )T~'g". In this case reaching the or-

bital Kondo temperature, T—T~, first an orbital Kondo ef-
fect takes place and an orbital singlet state starts to build up.
It is obvious from Eq. (2.10) that the orbital Kondo effect
generates the exchange couplings as well. In Fig. 5 we show
the scaling of the relative weights ~~@~~/(~~u~~+~~j~ ) and

lljll/( lul + lljl ) of the coup»ngs ~~ a"d j~ i" »ogarith-
mic scale. The initial couplings have been generated using
Eq. (A7) of Appendix A.

As one can see, for Jpo=0.2 and Upo= 1 the u 's gen-
erate the exchange couplings, which become dominating at
the Kondo temperature and suppress the effect of the u 's

[Fig. 5(a)]. On the other hand, for Jpo=0. 1 and Upo= 1

both couplings appear to diverge with the same power and
their relative weight tends to a constant [see Fig. 5(b)]. Ac-
cording to our numerical calculations the ratio

~ ~ j ~
~/~

~

u
~

at
the fixed point is universal for Jpo&& Upo. These results in-
dicate that in the latter case a ground state of different physi-
cal nature may be formed. This change of the nature of the
ground state is slightly indicated in the results of the NRG
calculations as well, where the switching on of the initial
couplings u „resulted in the compression of the lowest lying
excited states into well-separated groups.

Analyzing the results of our numerical calculations we
found that approaching the fixed point two orbital channels
become dominant and the orbital part of the interaction at the
fixed point is unitary equivalent with a simple orbital ex-
change interaction. Thus the fixed point Hamiltonian can be
written as

31 / 3f/ 3
l 13

H,'„",—g ~'S'+ g ~'S' g r'p' + —g r'p'
t=1 i=l ) I g=l

/
j= 1

(4.10)

The most interesting feature of this fixed point Hamiltonian
is that it is completely symmetrical with respect to the mag-
netic and orbital degrees of freedom (note that S' is a spin
operator and not a Pauli matrix).

In order to identify the fixed point found we analyzed a
simplified model where only interaction terms occurring in
Eq. (4.10) are kept:

j =IIJ II=QTr0~„) (4 9)
H;„,= 2Jo'(0) S'+ Up'(0) r'+ 2Ko'(0) S'p~(0) rJ.

(4.11)
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TABLE I. Relative weights of the singular parts of the scaled
interaction operators in Eq. (4.11) at the different fps and their

stability in the leading and the next to leading logarithmic orders.
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Here o'(0) and p'(0) denote the local spin and orbital pseu-
dospin densities of the conduction electrons and a summa-
tion must be carried out over the repeated indices. It is im-
portant to note that in this model —in contrast to the
interaction term in Eq. (2.4) —the orbital and spin degrees
of freedom play equivalent roles. Therefore the Fermi-liquid
fixed point (4.7) lies out of the scope of this simplified model
which is only adequate to examine the fixed point (4.10).

Then the next to leading logarithmic equations of this
simplified model can be generated from the third order ver-
tex corrections and the second order pseudofermion self en-
ergy in the standard way:

FIG. 5. The scaling trajectory of the relative norms

llull«lljll+ llull) «»hed»«) a« lljll/(lljll+ llull) (»»d»ne)
in a logarithmic scale. In (a) we have chosen poJ=0.2 and

poU= 1 to calculate the initial couplings, while in (b) the values

po1= 0.1 and poU= 1 have been used. As one can see, for the small

exchange coupling case a different fixed point appears, which, ac-
cording to the numerical simulations, is characterized by a universal

—=4k[j+u —(2k +j +u )].
dk

dx

The leading logarithmic fixed points of Eqs. (4.12) can be
determined by dropping the third-order terms and using a
similar ansatz as in Eq. (4.1). The resulting fixed points (i.e.,

the coefficients j, u, and k) and their stability properties are
summarized in Table I. As one can see a variety of fixed
points exist but only the one corresponding to Eq. (4.10) is
stable.

The picture is somewhat changed in the next to leading
logarithmic order, where the fixed points are determined by
the vanishing of the right-hand sides of Eqs. (4.12). In effect,
fixed points (a), (b), and (c) corresponding to the trivial
and the two-channel Kondo fixed points remain unstable
similarly to the NRG calculations, however, fixed point
(d) becomes marginally stable and fixed points (e) and (f)
vanish.

The collapsing of the leading logarithmic stable fixed
point (e) to the next to leading logarithmic fixed point (d)
and the fact that in the next to leading logarithmic order fixed
point (d) is only marginally stable against the double tensor
operator in Eq. (4.11) indicate that the ratio j/k= u/k= Q3
should not be taken too seriously in Eq. (4.10). One rather
expects that in an exact solution klj scales to some universal
value which cannot be determined perturbatively.

Having made these remarks one can identify the fixed
point (4.10) by means of the results of NRG calculations of
Pang. These calculations indicate that the Hamiltonian
(4.11) has two interesting fixed points: a stable fixed point
with k =j= u ~~ equivalent to the SU(4) Coqblin-
Schrieffer model and also a finite fixed point with

j= u =j* and k = 0. Since the NRG calculations indicate that
this latter is unstable, ' ' we can identify the stable fixed
point (4.10) with the SU(4) Coqblin-Schrieffer fixed point,
which corresponds to a Fermi-liquid ground state.

V. CONCLUSIONS

In the present paper we investigated the low-temperature
properties of a tunneling HP with spin. It is well known that
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scattering on a spinless tunneling HP can result in the forma-
tion of an orbital state. As it has been discussed in the Intro-
duction the behavior of such a HP at very low temperatures
but still above the splitting energy 5 of the TLS is believed
to be equivalent to that of the two-channel Kondo model,
where the two channels are due to the spin degrees of free-
dom of the conduction electrons. This twofold spin channel
degeneracy results in the appearance of non-Fermi-liquid
properties in contrast to the Fermi-liquid properties of the
one-channel Kondo model. If the tunneling particle has a
spin as well then the situation becomes different. In this case
the s —d scattering on the HP mixes the two channels to-
gether, and the original SU(2) symmetry of the conduction
electron spin is broken in a dynamical way.

To describe the physical properties of a HP with spin we
constructed a model, where in addition to the usual potential
scattering we assumed an s —d interaction between the con-
duction electrons and the HP. It has been shown that the
s —d scattering term generates additional terms in the Hamil-
tonian like "exchange assisted tunneling" and "exchange
screening. " In the "exchange assisted tunneling" process, for
instance, a conduction electron is scattered by the TLS with
a spin Aip process, while the HP is tunneling from one side
of the barrier to the other. The amplitudes of these interac-
tions are small compared to the usual s —d interaction at
high temperatures, but they are increasing near the Kondo
temperature, and finally, they result in the formation of a
nontrivial ground state,

After constructing the Hamiltonian we derived the leading
logarithmic scaling equations for the model and we exam-
ined their solutions. These scaling equations are very asym-
metrical with respect to the orbital and spin degrees of free-
dom. There are essentially two different energy scales
entering into the low-temperature physics of the TLS with
spin: the orbital and the magnetic Kondo temperatures given
by Eq. (1.1) and Eq. (1.2), respectively. Depending on the
relationship between them two basically different cases may
occur.

For T~' ")T~, first the magnetic Kondo effect takes
place. In this case the potential couplings are also generated
by the exchange couplings, but they diverge much slower
than the exchange couplings. The leading logarithmic scaling
equations have several fixed points. Nevertheless, we have
shown numerically that the only stable fixed point is the one
where the scaled interaction term is proportional to
—PQo''S', where P and Q are one-dimensional projectors in

the space of the orbital quantum numbers of the TLS and the
conduction electrons, respectively. This exchange interaction
term vanishes if the HP is not in the state p) projected out

by the operator P: P~p) = ~p). Therefore, in order to form a
magnetic Kondo state with energy Tz' " the HP has to be
frozen into the state

~
p). The state ~p) is generally not local-

ized to one of the potential wells but is rather some linear
combination of the two states corresponding to the two
minima of the double-well potential. The effect of the pro-
jection operator Q is to select a single orbital channel. Thus
we conclude that the ground state of the model (i.e., the state
which is building up in the region Tz's") T)5) is in this
case also equivalent to that of the single-channel antiferro-
magnetic Kondo model and is a Fermi-liquid state. This is in

complete agreement with the results of Cragg et al. , and
Mirtschin and Lloyd.

On the other hand, for Tz'g"~ T~ we predict the appear-
ance of a new ground state where both orbital and magnetic
correlations are simultaneously present. In this case the as-
sisted tunneling processes have a very important role. To-
gether with the screening term they generate the orbital
Kondo effect and sort out two relevant orbital conduction
electron channels, which dominate at low temperatures, ' ' '

and we find a fixed point structure which is symmetrical with

respect to the orbital and magnetic degrees of freedom. Con-
structing the next to leading logarithmic scaling equations
for a simplified model and comparing our results with
those of the NRG calculations we concluded that this other
fixed point can be identified with the SU(4) Coqblin-
Schrieffer model and corresponds to a Fermi-liquid state.

We have to remark at this point that in the first case,
TI' "~Tz, the "exchange assisted hoppings,

" j &
and j2

may be arbitrarily small, since they are generated by jo.
Therefore we expect that the "localization of the HP" hap-
pens for slow TLS's as well, where the tunneling rate 5 is
small enough, and even individual jumps can be observed. In
this case we expect that logarithmic anomalies appear as the
temperature approaches the Kondo temperature, T-T~' ",
but at the same time the motion of the HP will be blocked by
the splitting up of the two orbital pseudospin states of the
HP, and no more individual jumps can be observed. We ex-
pect similar effects to occur when the HP is moving on a
lattice. On the contrary, TLS's with a reasonable orbital
Kondo temperature, T~ —1 K, necessarily have a large tun-

neling rate. '

It is important to note that all the results above were ob-
tained in the framework of the leading logarithmic approxi-
mation, which gives correct results only in the case
T)&Tz. In the case of the TLS, for instance, the leading
logarithmic approximation predicts the divergence of the ver-
tices at the Kondo temperature, while in the reality the cou-
pling constants remain finite. However, calculations for the
original TLS model show' that the symmetry properties of
the fixed point, i.e., the selection of two orbital electron
channels and the SU(2) Lie algebra satisfied by the couplings
u (p, = 1, . . . ,3), is correctly predicted. Therefore we think
that our predictions concerning the nature of the ground state
of the HP with spin are correct as well.

Finally, we discuss the problem of finding an experimen-
tal realization of the model. The Tz'g") T~" case can only be
observed if the exchange interaction between the HP and the
conduction electrons is strong enough. Naturally, for HP's
with a nonelectronic spin the exchange interaction with the
conduction electrons is too small, thus for T~' "~Tz the
only possible candidates are HP's with electronic spin, like
magnetic impurities or heavy electrons.

In the opposite —and possibly more interesting —case,
T~' "~Tz, one not necessarily needs a very strong ex-
change coupling. As one can see from Eq. (2.10) the ex-
change couplings are always generated as the orbital Kondo
effect occurs, thus the magnetic Kondo effect may be in-
duced even if the exchange interaction is originally small.

The most accurate and convincing measurements of
TLS's were performed using metallic nanobridges, ' where
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the TLS's are formed in the amorphous region near the ori-
fice. However, this system is probably not adequate for the
observation of the phenomena predicted. The most important
difficulty is that in order to keep the RKKY interaction small
the concentration of magnetic impurities must be small.
Therefore the probability of having a tunneling center (TC)
with spin is much smaller than that of having a TC without
spin corresponding to the ratio of the concentrations. Thus
one should perform thousands of experiments in order to
observe a single TC with spin. Additionally, the microscopic
origin of the TC's in these nanostrictions is still unclear.

More promising candidates are alloys like Pbi Ge Te.
In this alloy the diameter of the Ge + ions is considerably
smaller than that of the Pb ions and they can form octo-
pole centers. For small enough Ge concentrations logarith-
mic resistivity anomalies have been observed which were
interpreted in terms of the orbital Kondo effect due to the

8,42

Substituting the Ge + ions by some suitably chosen mag-
netic impurity (Fe, for example) one could produce mag-
netic TC's with T~ ~ Tz' " in a controlled way. However, in

order to reach the region T~'g") Tz one should increase the
number of charge carriers, which is difficult. However, in a
similar metallic system it might be possible to tune the or-
bital Kondo temperature with respect to the magnetic Kondo
temperature by applying a stress on the material, and the
blocking of the tunneling centers might be seen in ultrasound
measurements. One could also imagine to observe indi-
vidual tunneling centers in these materials by performing
STM measurements.
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APPENDIX A: ESTIMATION
OF THE INITIAL COUPLINGS

1
d re' "y*(r)cp (r),

2u, p
(A3)

the y 's (n= ~ 1) being the left- and right-hand side wave
functions of the HP, respectively. The integral in Eq. (A3)
can be developed with respect to kFd, d being the distance
between the two minima of the potential well. ' Since we
have a spherical Fermi surface it is worth choosing the or-
thogonal set of wave functions (f,) to be proportional to the
spherical functions Y& (6,q), where corresponding to the
symmetry of the problem the axis z is chosen to coincide
with the symmetry axis of the double well potential.

Up to second order in kFd we obtain the following ex-
pressions for the A „'s:

o —p/Qs

P 0

l-p/~s o 0

AI=

o —y/Qs

00

o o )
(A4)

(0
in

—iu O'I

0

o 0)

4m
u= kF d r(dr)q~(r)y„(r),

3

where the A 's are defined like the j~'s in Eqs. (2.9) and
(2.10), and the indices 1,2,3 of the matrices refer to the or-
bital channels (l, m) = (0,0), (1,0), and (2,0). The constants
n, P, and y are given by the following expressions:

In this appendix we estimate the different initial coupling
constants j „and u . For the sake of simplicity we assume
that the s —d and the potential scattering is local, i.e.,

J(r—R) = Jb'(r —R),

P= kF) d r(dr) y„(r)cp„(r),

kF d r(dr) y„*(r)cp,(r),

(As)

U(r —R) = U8'(r- R).
(A 1)

We also assume a free electron gas with a spherical Fermi
surface and Fermi momentum kF, and a symmetrical
double-well potential with cylindrical symmetry. In this case
the dimensionless coupling constants j&z, = poJ&z, and

poUvm' can be written as

where the states y, and @I are localized in the right and left
minima of the double-well potential, respectively, and d is a
unit vector parallel to the axis of the TLS. Assuming a quasi-
one-dimensional motion of the HP one can give a rough
estimation for the integrals in Eq. (A.S):'

=(kFd)2m/Q3, P=(kFd) ~/3, and y= 10 n. One can
also express the initial couplings j„(0) and j,(0) in terms
of the constants n, P, and y. Projecting out the channel
l =0, which has the largest scattering amplitude we obtain

~kk' (Po ) kk'' kk' (Po ) kk'' (A2) j„(0)=(/OJ)(1 p. y, o.o), — —(A6)

where the matrix elements A„"z, characteristic to the TLS are
given by

while the matrix j,(0) can be estimated by projecting out
the l = 0, 1 channels:
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1 1
0 0 ——p2 2

3

X Jpampa =0a=1 (u =1 .3)

0

0 0 n 0

J .(o)=(poJ)
0 0 0

(A7)
3 3

X J~a+ X Joa=4 .
p„a=1 a=1

(89)

APPENDIX B' EXAMINATION OF THE FIXED POINT
STRUCTURE OF THE LEADING LOGARITHMIC

SCALING EQUATIONS FOR A TUNNELING
HP WITH SPIN

To obtain the asymptotic structure of exchange couplings
we substitute the expansion of the couplings j~ in Eq. (4.3)
into Eq. (4.2) to get

3

JpO Jpbjob~b=o
(81)

The initial value u, (0) of the matrix u„, is given by a
similar formula.

J p, a ~p„o~a,ojoo . (810)

This fixed point is the trivial Kondo fixed point which has
been shown to be unstable in Sec. III.

If there is a value of P, 4 0 for which j p4 0 then we can
express Z „&j „, X, &jo„and X &j o from Eqs. (85),
(86), and (87), and substitute into Eq. (83). This gives a
second-order equation for joo with the roots

Thus, for joo=1/2 we have two different fixed point struc-
tures, determined by Eqs. (88) and (89).

Case 8: jpp41/2. If jp„——0 for (a= 1, . . . ,3) or j p=—0
for (p, = 1, . . . ,3) then it is obvious from Eqs. (82), (86),
and (87) that all the couplings j, vanish except for jpp:

A A A A

Jpa .2(Jpojpa+ Joaj,P)

3
A A

Joo= M JpbJ pb
p, b=o

3
A A

Joa 2 ~ Jpajpo&
p=o

(82)

(83)

(84)

1 1
Joo=

2 4
'

The root joo= 1/4 corresponds to the fixed point

3 3
"2 1

X J,.=X J',.=—„,
p, =1 0= 1

(8»)

(812)
where the indices p, and a take the values p„,a= 1, . . . ,3.
Equivalently, we can write Eq. (82) in the form

(2 joo)j =jo.j o (p, ,a= 1, . . . ,3). (85)
Substituting this equation into Eqs. (Bl) and (84) we obtain
the following equations:

A A

Jga=4JppJpa (p, ,a= 1, . . . ,3),

while the other root, joo= 3/4, determines the fixed point

3 3
A2 A 1

X j.p=X J',.=—„,
p, =1 a=1

(2"
(2 joo) j,o= X jo. j,oa=1 )

(p, = 1, . . . ,3), (86) A A

4j ojo (P a=1
(813)

(~- '-2" M ".2
(~ Joo) Joa= X J„o Jo (a= 1, . . . ,3). (87)

At this point two different cases may occur.
Case A: jpo= 1/2. In this case Eqs. (86) and (87) tell us

that either jp, =—0 for (a = 1, . . . ,3) or j~o=—0 for

(P =1, . . . ,3). If jp, —=0 then j~p and j~„must satisfy the
equations

H,'„,—j,r4 p'- (a r")(b,p'), (814)

Numerical investigations of the scaling equations show that
the fixed points corresponding to Eqs. (88), (89), (810), and
(813) are unstable, and that in the case of two orbital chan-
nels the only stable fixed point is given by Eq. (812).At this
fixed point the orbital degrees of freedom of the TLS and the
conduction electrons factorize, and the fixed point coupling
becomes of the form

3

X J p.aJ p.o
= 0

p, =1
(a= 1, . . . ,3), where the four-vectors a„and b„satisfy the equations

3 3
(88) 3

a = a
p=1

3

a=1
(815)

while in the other case, j o—=0, the following constraints
must be satisfied:

i.e., the operators P = Xa 7~ and Q = Xb,p' are one-
dimensional projectors.
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