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We present a method to calculate the magnetic anisotropy parameters which is based on a perturbative
treatment of the spin-orbit interaction and a Green's function technique in real space. It allows us to interpret
the magnetocrystalline anisotropy energy (MAE) in terms of interatomic interactions in the crystal. The method
is applied to analyze orbital magnetism and MAE in TX ordered alloys (T=Fe,Co and X=Pd,Pt). The con-
vergence of the orbital moments and MAE in real space and its relation to the problems of Brillouin-zone
integration and of oscillatory behavior of MAE as a function of band filling are discussed. A comparison with
results obtained by other methods is also given.

I. INTRODUCTION

During the last years a lot of experimental and theoretical
work has been devoted to investigating orbital magnetism
and magnetocrystalline anisotropy of ferromagnetic materi-
als. This has been spurred on by the synthesis of a large
number of new artificial systems with lower symmetry (such
as overlayers, multilayers, interfaces) and the search for new
promising candidates for magnetic recording materials and
other applications. Considerable progress in the theoretical
description of these phenomena is related to the implemen-
tation of band structure methods which give the possibility to
connect the considered properties with peculiarities of the
electronic spectra and thus to understand the underlying
physics on a microscopic level. Both semiempirical
tight-binding' as well as ab initio electronic structure
methods ' have been used to investigate orbital magnetism
and magnetocrystalline anisotorpy energy (MAE) in a vari-
ety of layered compounds. At present, band structure
schemes based on the local-spin-density approximations
(LSDA) and including the spin-orbit interaction either as a
perturbation ' ' or in the scope of a fully relativistic
formalism' ' have already become more or less standard
tools for such calculations. Very extended studies of the
MAE phenomena have been done based on the k-space
analysis and using conventional band structure methods. At
the same time, for many fundamental questions concerning
magnetic anisotropy and orbital magnetism in itinerant elec-
tron compounds, a physical picture based on interatomic in-
teractions in real space seems to be more appropriate. Some
of these are the following: How far are these effects extended
in space? Are they pure "single-site" properties and can they
be considered as a result of interplay between spin polariza-
tion, spin-orbit interaction, and crystal field splitting on lo-
cally the same site? Or does the direct interatomic hybridiza-
tion in combination with the spin-orbit interaction play an

essential role in forming the orbital magnetization and the
magnetocrystalline anisotropy? In this respect we would like
to recall that for a long time the orbital magnetism was at-
tributed entirely to systems with localized electrons. Thus, it
is strongly desired to formulate a scheme which allows us to
express the orbital magnetization and MAE in terms of con-
tributions from different sites (groups of sites) and inter-
atomic interactions in real space. Some preliminary progress
in this field has been achieved in Ref. 9, where first-
principles MAE results for two-dimensional systems were
explained in terms of very simplified diatomic-pair models.
The present paper is devoted to a solution of this problem.
We start with a scalar-relativistic Green s function technique
in real space and show that in lowest order perturbation
theory with respect to the spin-orbit interaction (SOI) the
orbital magnetization and MAE can be expressed in the re-
quired form. The idea of such a treatment of the interatomic
interactions is well known in the multiple-scattering formal-
ism and was intensively exploited for ab initio exchange
calculations in a variety of compounds. ' A very similar for-
malism based on the fully relativistic spin-polarized ap-
proach and considering the deviation of magnetization from
equilibrium on every site as a perturbation has been devel-
oped by Antropov and Liechtenstein' and independently by
Staunton et al. ,

' where it was also used to examine the
anisotropic Ruderman-Kittel-Kasuya- Yosida interaction be-
tween two impurities in an electron gas.

The method presented in Sec. II will be applied to study
the magnetic anisotropy of the TX ordered alloys (where
T=Fe,Co and X=Pd,Pt). These layered compounds (crystal-
lizing in the AuCu structure with alternating monolayers of T
and X atoms) exhibit extremely large values of the perpen-
dicular MAE (Ref. 19) (comparable to those for some rear-
earth compounds). Particular attention will be paid to the
convergence of the considered properties in real space and a
comparison with results obtained by other methods. In Sec.
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IV we will give a short conclusion and illustrate how the
convergence problem of the orbital moments and MAE in
real space is connected with the number of k points required
for the Brillouin-zone integration and with the oscillatory
behavior as a function of band filling. Two appendixes are
devoted to the single-impurity approximation for the SOI
and the orbital polarization effect in the context of magnetic
anisotropy calculations.

1 )FF
Mz= ——Im dE Tr(L~~Govh V Go).

7T J —oo

Here we use that in absence of SOI the orbital moment is
quenched. ML~ can be interpreted as the contribution to the
orbital moment on site i being induced by the spin-orbit
coupling AV~ on site j. In order to evaluate the MAE we
start with the single-particle energies

II. METHOD

1
M' = ——ImL

7T j —oo

fEF

where L~~ is a projection of the orbital moment on the spin
magnetization direction, and Tr runs over the spin and orbital
variables. If we start with the scalar-relativistic formalism
and consider the SOI as a perturbation, the full Green's func-
tion G(E) is related to the scalar-relativistic one Go(E) by
Dyson's equation:

The orbital moment induced on the ith site by spin-orbit
interaction can be expressed through the on-site Green's
function G"(E) as

I FF
dE En(E) EF(N—(EF) N). —&o=

J —~

f EF
Eo = EFN dE—N(E)

Thus the change of the single-particle energies due to SOI is
given by

Here n(E) is the density of states and N(E) the correspond-
ing integrated density of state. The second part in Eq. (8) has
the meaning of a Lagrangian constraint which has been
added to ensure the extremal properties of the total energy
for non-charge-conserving variations. N is the exact number
of electrons. By partial integration Fo is obtained as

G(E)= Go(E) + Go(E)~ V(E)G(E) (2)
fEF

dE 8N(E) .

The SOI 5V(E) which is diagonal in the site indices and,
for spherical potentials, also in the orbital quantum numbers
can be expressed in the well-known form

According to Lloyd's formula the change of the integrated
density of states is evaluated as

a Vr(E) = g,'(E)LS, (3)
1

BN(E) = ——Im Tr ln(1 —AVGO).

1 "s;
2 dV;(r)

g~(E) = —
2 rR~(r, E) dr

c Jo dI" (4)

where the spin-orbit coupling parameters g&(E) can be ex-
pressed by the radial derivatives of the potential V; inside the
ith Wigner-Seitz sphere (5,) and the radial wave functions as

Then, in second-order perturbation theory with respect to the
SOI (due to time-reversal symmetry for the unperturbed sys-
tem the first-order contribution vanishes), e can be expressed
as a sum of two-site interactions

(c is the light velocity). The scalar-relativistic Green s func-
tion Go(E) for an arbitrary orientation of spin magnetization
e= (sin6 cosy, sin6 since', cos6) can be obtained from the one
for the magnetization in z direction e= (0,0, 1) by a unitary
transformation Us(6, rp) in spin subspace

with

e — e~

] f FF
a'J= — Im dE Tr(G&b, VJG'OAV).2' J

(12)

(13)

where

( cos6/2
—sinW2e'~

sin@/2e

cos6/2

Go(&.e) =Us '(~.@)GoUs(&, V ), The angular dependence of the orbital moment and the
MAE obeys the symmetry of the considered system. For
Oz symmetry ML and e do not depend on the orientation of
magnetization at all (in second-order perturbation theory).
For crystals with uniaxial symmetry ML and a exhibit the
sine-square dependence on the orientation of magnetization
with respect to the perpendicular axis (8),

are Wigner s rotation matrices. Then, within the first order of
perturbation theory ML can be written as sum over contribu-
tions from sites j,

Ml (6) =Ml (0) + b, MI sin 6,
and correspondingly,

(14)

where ML is given by

ML= g Mlv,
J

(6)
a(8)=a(0)+b, csin 8. (15)

Analytical expressions for ML(6) and e(6) obtained in
first and second orders of the regular perturbation theory can
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FIG. 1. Calculated orbital moments for two
directions and MAE as a function of the number
of k points in the full Brillouin zone for CoPt,
CoPd, and FePd ordered alloys.
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be found in Ref. 1. The tetragonal symmetry case is dis-
cussed in Appendix A within the scope of the so-called
"single-impurity" approximation where the orbital magneti-
zation is considered solely as a response to the SOI on the
same site. The dependence on the in-plane rotations (y) can
appear only in higher orders of perturbation theory. Using
expressions (6) and (7) and (12) and (13) the perpendicular
anisotropy parameters AM

=M~(~/2) —M~(0) and Ae
= e(7r/2) —e(0) can be also decomposed in partial contribu-
tions arising from different sites of the crystal. But it is nec-
essary to note here that the angular dependence for the sepa-
rate components of the orbital moment ML and
magnetocrystalline anisotropy energy a" is not the same
since only the total values (14,15) or combinations such as

(16)

Aa = Ae "+As

where

T(X) g g T(X)i (18)

is the partial contribution related to a given type of atom. For
layered compounds one can also introduce layer-dependent
contributions to the orbital magnetization and MAE due to
layers located at different distances from the considered
atom,

me~~= g
i c layer

(The analogous equation holds for the orbital magnetization. )

where the summation extends over all equivalent sites, obey
Eq. (14). (The analogous expression is valid for e'~. )

Finally, using the arguments described above, the MAE of
a system consisting of two (or more) types of atoms (say T
and X) can be expressed as a sum

III. RESULTS AND DISCUSSIONS

A. Details of calculations and simplifications

In the following we present our results for the layered TX
alloys with AuCu structure. Using Eqs. (6) and (12) the or-
bital magnetization and magnetic anisotropy parameters can
be calculated by direct summation in real space. Practically,
the spin-orbit interaction has been switched on only for states
of d symmetry in a cluster consisting of 791 atoms on 76
nonequivalent sites. The interatomic distances from the cen-
ter of the cluster (actually we considered two different clus-
ters surrounding T and X atoms) do not exceed 5a, where a
is the distance between nearest neighbors in the planes of
equivalent atoms. The scalar-relativistic Green's function

G0 has been obtained using the linear muffin-tin orbital
(LMTO) method in the nearly orthogonal representation.
All calculations have been performed with the experimental
values of the lattice parameters, as reported in Refs. 5 and
24. The parameters of CoPt have also been used for the
hypothetical compound CoPd. The Wigner-Seitz sphere radii
have been chosen from the charge neutrality condition for
every component of the alloys. For details and results of
regular band structure calculations for the considered com-
pounds we refer to Ref. 15 (see also Refs. 5, 24, and 25).

The most important question in calculations of the mag-
netocrystalline anisotropy is the convergence of the
Brillouin-zone (BZ) integrals. We display in Fig. 1 the orbital
moments for two different orientations and the MAE as a
function of k-space filling obtained for CoPt, CoPd, and
FePd ordered alloys in LMTO formalism where the SOI was
included in a "pseudoperturbation" manner. ' Already
6615 k points corresponding to 20 divisions along the in-

plane and 12 divisions along the perpendicular reciprocal-
lattice vectors in a I q lattice give reasonably good conver-
gence in the case of CoPt, FePd, and FePt (not shown in Fig.
1) alloys if the tetrahedron method with correct weights for
the tetrahedra is used. Much more accuracy is needed to
reproduce the relatively small values of M~ and MAE pa-
rameters for a hypothetical CoPd alloy and even a mesh with
22 103 k points (corresponding to 30 and 22 divisions of
reciprocal-lattice vectors) appears to be insufficient. Results
illustrating the real-space expansion of orbital magnetization,
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+ + + l(mklgLSnk)l'
E (k) —E„(k) (20)
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FIG. 2. Summation in the real space performed for an (001)
layer of Co atoms in CoPt with different number of k points in

Brillouin zone: 567 (black squares), 1521 (white triangles), 6615
(white squares), 11 875 (black circles), 17 661 (black triangles), and
22 103 (crosses).

its anisotropy, and MAE obtained for a Co(001) layer in

CoPt [Eq. (19)] are shown in Fig. 2. The different curves
correspond to different numbers of k points in the BZ which
have been used in the calculation of the Green's function

Go. One can see again that a choice of 6615 k points in the
whole BZ is quite reasonable for this system and reproduces
all main details of the picture.

From the physical point of view the number of k points
required in MAE calculations strongly depends on the ratio
between "surface" and "volume" components of MAE.
Kondorskii and Straube have shown that quasidegenerate
states near the Fermi surface give the main contribution to
the MAE for ferromagnetic Ni (the contributions to the MAE
from other regions in the Brillouin zone were shown to be
several orders of magnitude smaller). This conclusion was

supported in the following by first-principles calculations of
the MAE for Fe, Co, and Ni performed by Daalderop
et al. ,

' and Guo et al. , where only extremely fine mesh in
reciprocal space (about 10 k points in the Brillouin zone)
gave a reasonable convergence for the "surface" contribu-
tion to the MAE. The situation is probably different for sys-
tems where due to the lowering of the crystalline symmetry
the magnetic anisotropy effects appear in lower order with
respect to the SOI. In second order of perturbation theory
(we would like to recall again here that for cubic metals the
MAE effect first appears in fourth-order perturbation theory),
the change of the one-electron energy induced by the SOI is
given by

For every k point it decays only as the inverse energy
difference between occupied and empty states and contribu-
tions from the single-particle states rather far from the Fermi
surface can also be appreciable. Thus, one can expect that for
uniaxial systems the "volume ' part of the MAE is signifi-
cantly enhanced in comparison to the "surface" one. Actu-
ally this fact was intensively used in the so-called state-
tracking approach proposed by Wang et al. , which shows
rather fast convergence in k space but is based on a very
approximate treatment of the states close to the Fermi sur-
face. This method gives quite reasonable results for a series
of magnetic multilayers "but converges to the wrong MAE
for fcc-Ni (Ref. 33), known as a typical system where the
"surface" contribution is very important. Generally, the
regular perturbation theory expression (20) is valid if
E (k) —E„(k)l

&& l(mkl(LSlnk) l
(otherwise the quasidegen-

erate perturbation theory should be used). Therefore, it is not
applicable for the quasidegenerate pairs close to the Fermi
surface. This is a general problem for the perturbative treat-
ment of the SOI no matter whether the regular expression
(20) or the Green's function technique described in the pre-
vious section is used. In order to justify the validity of this
approach for the TX ordered alloys we have performed cal-
culations where the SOI was included in two different ways.
The first one is the regular perturbation theory where the
change of one particle energies is given by Eq. (20). A cor-
responding expression for the induced orbital magnetization
can be easily found using the first-order perturbation
theory for the wave functions. All contributions from
quasidegenerate pairs close to the Fermi surface have been
neglected. Practically, we enforced matrix elements of the
SOI between states I and n to be zero if the condition
lE (k) —E„(k)l~ 8,„, has been fulfilled. The energy cutoff
6',„, is especially important in this approach. With small

8,„,(-10 " Ry), we found that the error from inappropriate
treatment of the surface pair coupling is very large and the
MAE was typically overestimated by several orders of mag-
nitude (even if the quasidegeneracy occurs in a very re-
stricted region of the BZ, this effect cannot be treated prop-
erly with a finite mesh of k points which introduces an
unpredictable uncertainty in the numerical scheme). For
8,„,= (mkl (LS nk)

l
the second-order correction for the

one-electron energy (20) shows a very stable behavior. As a
test we also performed calculations using a constant cutoff
6,„,=5 mRy and found results to be very similar to the pre-
vious choice. Thus, the effects attributed to the Fermi surface
(both its deformation and coupling of the quasidegenerate
states due to the SOI) are completely ignored in this ap-
proach. The second method is the so-called pseudoperturba-
tion treatment, ' where the matrix of SOI calculated on the
scalar-relativistic basis functions was added to the band
Hamiltonian explicitly. The eigenvalues were found by direct
diagonalization of the Hamiltonian. For nearly crossing
bands this procedure is equivalent to the quasidegenerate
perturbation theory. Moreover, the position of the Fermi en-

ergy was redefined for every orientation of magnetization.
Thus, this scheme is the most rigorous one and allows us to
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TABLE 1. Orbital moments MI(0) (in p, „), anisotropy of orbital moments AMr (in 10 p„), and MAE
As (in 10 Ry) calculated for the TX ordered alloys on the basis of different schemes: pseudoperturbation
treatment where the spin-orbit interaction was included for all states (PPT, ), for T(d), X(d) and X(p) states
(PPT2), only for T(d) and X(d) states (PPT3), and for T(d) and X(d) states through energy-independent
spin-orbit coupling parameters (PPT4); regular perturbation theory (PT) where the structure of the SOI is

analogous to PPT4.

Compound

FePt

FePd

CoPt

CoPd

Method

PPT1

PPT2

PPT3

PPT4
PT

PPTI
PPT2

PPT3

PPT4
PT

PPT(
PPT2

PPTB

PPT4
PT

PPT)
PPT2

PPT3
PPT4
PT

M~(0)

0.0739
0.0735
0.0792
0.0789
0.0896
0.0781
0.0784
0.0821
0.0782
0.0841
0.0895
0.0885
0.0796
0.0829
0.0996
0.1270
0.1261
0.1255
0.1186
0.1369

1.3
2.1

12.7

-4.6
-11.7
-11.5
-10.9

-8 ~ 8

-9.8
-22.0
-21.5
-32.8
-22.5
-30.8
-18.2
-18.0
-21.5
-17.0
-15.7

ML(0)

0.0444
0.0446
0.0451
0.0426
0.0476
0.0301
0.0298
0.0296
0.0271
0.0292
0.0605
0.0606
0.0624
0.0577
0.0632
0.0338
0.0337
0.0339
0.0307
0.0270

11.6
11.8
8.6
7.9

12.0
1.8
2.4
0.9
0.7
1.1

15.6
15.9
13.5
11.4
15.8
-0.1

)0
-0.7
-1.3
7.8

24.8
25.5
21.1
10.5
13.4

1.7
2.1

0.4
0.4
0.4

16.8
17.1
17.2
8.6

12.0
&0

0.1

0.3
0.7
1.2

consider both "volume" and "surface" effects in the MAE
calculations on an equal footing. Results of such calculations
are listed in Table I. One can see that for most compounds
the regular perturbation theory gives already reasonable val-
ues for the orbital moments, their anisotropy, and MAE
(lines PT and PPT4 in Table I should be compared since they
correspond to the same form of the SOI operator). Probably
the situation is critical only for the hypothetical CoPd alloy
where the regular perturbation theory predicts the wrong sign
for the anisotropy of the orbital magnetization at Pd sites and
overestimates the magnitude of MAE by a factor of 2. A
similar effect has been found for a Pd/Co/Pd sandwich where
the surface pair coupling was reported' to be negative and
of the same order as the volume contribution to the MAE.

The role of the SOI for states with angular momenta other
than d, which were omitted in Green s function analysis, and
their influence on the distribution of orbital moments and
magnitude of MAE can be shown by the following example.
The main contribution to the integrals (4) arises from the
region very close to the origin where the radial wave func-
tions R~ are essentially determined by the centrifugal term
E(Y—I)lr Then, due to the behavi. or R~-rr the states
with smaller 8 should have a larger weight in this region and
the SOI parameters gr are expected to decrease with increas-
ing Y. Indeed, for 5d and 6p states of Pt atoms we have
estimated gr. in the centers of occupied bands correspond-
ingly as 42 and 163 mRy. Thus, in combination with large
hybridization between d and p states of neighboring sites,
the effect of SOI on Pt(6p) states can be appreciable. For
FePt this interaction is especially important for the formation
of the orbital moment on Fe sites and its anisotropy (Table I).

Finally, in all calculations based on the Green's function
technique we have neglected the energy dependence of the
spin-orbit coupling parameters ((E) and replaced them by
the values estimated in the centers of the occupied bands. We
expect this approximation to be quite reasonable and to re-
produce all features of the considered parameters (Table I).

B. Real-space analysis of orbital magnetization and MAE

Let us first consider the single-site components of the or-
bital moments M~, which can be found using the results of
Appendix A. The general tendencies of appearance of M~
on T and I sites can be well understood in terms of the
exchange splitting and the magnitude of the SOI. In first-
order perturbation theory only spin-diagonal elements of the
SOI (L,S, contribute to the orbital magnetization. Obvi-
ously, both spin polarization and SOI are important to un-

quench the orbital moment. On the one hand, the effect is
proportional to the strength of SOI g. On the other hand, the
orbital contributions induced by the SOI in different spins
channels have opposite signs. If the occupations were
equivalent for both spins a perfect cancellation would take
place. Since due to exchange splitting the states for one spin
direction will be preferentially occupied, the cancellation be-
tween different spins will be partially broken and an orbital
magnetization obeying Hund s third rule is formed. Thus, the
size of the orbital moment depends on the spin splitting.
Larger spin polarization is important for unquenching of or-
bital moments at 3d sites. Indeed, all of them are formed
mainly by the states with spin down and renormalization by
nearly occupied spin-up band is very poor (Table II). For Pd
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TABLE II. Spin moments Ms, orbital moments MI(0) (in pb), and anisotropy of orbital moments
b, MI (in 10 p„) obtained in the single-impurity approximation for spin-orbit interaction (contributions of
different spin directions are shown in parentheses).

Compound

FePt

FePd

CoPt

CoPd

2.77

2.86

1.72

1.81

ML(0)

0.0580
(-0.0076,0.0656)

0.0649
(-0.0058,0.0707)

0.0953
(-0.0107,0.1060)

0.1113
(-0.0085,0.1198)

-11.7
(-0.5,—1 1.2)

-9.1

(0.2,-9.3)
40

(-1.0,5.0)
15.1

(0.1,15.0)

0.35

0.35

0.37

0.36

Mi(0)

0.0553
(-0.1126,0.1679)

0.0412
(-0.0229,0.0641)

0.0730
(-0.1 110,0.1840)

0.0485
(-0.0244, 0.0729)

10.0
(30.6,-20.6)

-6.7
( 0.8,-7.5)

17.1
(30.0,-12.9)

-4.6

( 2.2,-6.8)

and Pt sites the exchange splitting is much weaker and a
strong cancellation between orbital magnetizations induced
in different spin channels takes place. On the other hand, the
SOI parameters are several times larger for heavy Pd and Pt
atoms (the ( parameters estimated in the center of gravity of
the occupied d band are 4, 5, 15, and 42 mRy for Fe, Co, Pd,
and Pt, respectively), which considerably enhances the or-
bital moments and makes them comparable to those at T
sites. Also larger ML on Pt sites is caused by the larger SOI.
The behavior of the orbital magnetization at T sites due to
substitution of Fe by Co sublattices is more complicated and
mainly related with distribution of spin-down 3d states of xy
and x -y symmetry near the Fermi level. Coupling between
these states [first term in Eq. (Al)] is most important and
responsible for -85% of orbital magnetization unquenched
at T sites.

The single-site terms Mi give the main contributions to
the orbital moments for all sites of the considered systems. In

contrast to this the anisotropy of the orbital magnetization

appears to be less localized in space and its AMi compo-
nent is of the same order as contributions from the nearest
spheres of neighbors. The real-space convergence of the or-
bital magnetization and MAE within one Co(001) layer in
the CoPt alloy was already considered in the previous section
(Fig. 2) in the context of BZ integration. One can see that
about 15 shells of atoms in the square lattice are sufficient to
reproduce the total single-layer contribution to the orbital
magnetization and MAE. We do not show here analogous
results obtained for other systems, which will be published
elsewhere. In general, our experience shows that for all lay-
ers in the considered compounds such a number of shells in
the planes guarantees a reasonable in-plane convergence.
However, in many cases the convergence can be faster than
this. For example, already the single-site component and two
spheres of nearest neighbors in Pd layers give a reasonable
convergence for the contribution of a single layer to the or-

TABLE III. Contributions of different layers to the orbital mo-

ments ML(0) (in pb), anisotropy of orbital moments AM+~ (in
10 p„), and MAE ksi (in 10 Ry) for Fe and Pt sites in FePt
ordered alloy.

TABLE IV. Contributions of different layers to the orbital mo-

ments, anisotropy of orbital moments, and MAE for Fe and Pd sites
in FePd ordered alloy (all notations as in Table III).

Site

Fe

Fe

Pt

Pt

Layers

Fe(0,0,0)
Pt(0,0, ~ c/2)

Fe(0,0,~ c)
Pt(0, 0,~ 3c/2)
Fe(0,0, ~ 2c)

Pt(0, 0,~ 5c/2)
Fe(0,0,~ 3c)

Pt(0, 0,~ 7c/2)
Total

Pt(0,0,0)
Fe(0,0,~ c/2)
Pt(0,0,~ c)

Fe(0,0, 3c/2)
Pt(0,0, ~ 2c)

Fe(0,0,~ 5c/2)
Pt(0,0,~ 3c)

Fe(0,0,~ 7 c/2)
Total

Mc(0)

0.0734
0.0069

-0.0007
-0.0001
0.0003
0.0003
0
0.0001
0.0802
0.0529
0.0006

-0.0051
0.0001
0
0
0.0001
0
0.0486

-18.1
F 1
0.5
3.7

-0.6
0.1

0.2
-11.2
11.0
0.3
1.4
0.3
0.3

-0.4
0

13.0

2.6
-2.3
-0.2

-0.1

14.9

8.7
-1.1
-2.1

-0.2
0

17.7

Site

Fe

Fe

Pd

Pci

Layers

Fe(0,0,0)
Pd(0, 0,~ c/2)

Fe(0,0, ~ c)
Pd(0, 0,~ 3 c/2)

Fe(0,0,~ 2 c)
Pd(0, 0, ~ 5c/2)
Fe(0,0,~ 3c)

Pd(0, 0,~ 7 c/2)
Total

Pd(0, 0,0)
Fe(0,0, ~ c/2)

Pd(0, 0,~ c)
Fe(0,0,~ 3c/2)
Pd(0, 0,~ 2c)

Fe(0,0,~ 5 c/2)
Pd(0, 0,~ 3c)

Fe(0,0,~ 7 c/2)
Total

Mi(0)

0.0788
0.0021

-0.0008
-0.0002
0.0002
0
0
0
0.0805
0.0299
0.0005

-0.0008
0.0001
0
0
0
0
0.0296

-15.6
1.0
1.7
1.0

-0.9
0
0.1

0.1

-12.5
0.4
0.3
0.1

0.3
-0.7
0
0
0
0.4

-0.7

-0.3
0.1

0
0
0
1.7
0.9

-0.7
0.8

-0.3
0.3
0
0
0
0.9
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TABLE V. Contributions of different layers to the orbital mo-
ments, anisotropy of orbital moments, and MAE for Co and Pt sites
in CoPt ordered alloy (all notations as in Table III).

TABLE VI. Contributions of different layers to the orbital mo-
ments, anisotropy of orbital moments, and MAE for Co and Pd sites
in CoPd ordered alloy (all notations as in Table III).

Site

Co

Co

Pt

Pt

Layers

Co(0,0,0)
Pt(0,0,~ c/2)
Co(0,0,~ c)

Pt(0,0,~ 3c/2)
Co(0,0,~ 2c)
Pt(0, 0,~ 5c/2)
Co(0,0,~ 3c)
Pt(0,0,~ 7c/2)

Total

Pt(0,0,0)
Co(0,0,~ c/2)

Pt(0,0, ~ c)
Co(0,0,~ 3c/2)

Pt(0,0,~ 2c)
Co(0,0,~ 5c/2)

Pt(0,0,~ 3c)
Co(0,0,~ 7c/2)

Total

M~~ (0)

0.0955
0.0082

-0.0056
0

-0.0007
0
0
0
0.0976
0.0683
0.0010

-0.0044
0
0.0001
0
0.0001
0
0.0651

2.9
-9.2
-4.7
-6.1
1.2

-0.7
-0.1

-16.8
20.1

2.1

-0.8
0.5

-0.1

-0.3
0

20.3

1.3
-3.4
0.7

-0.2
-0.2
-0.1

-1.9
13.9
-3.4
4.6

-0.2

-0.1

-0.9
0

15.0

Site

Co

Co

Pd

Pd

Layers

Co(0,0,0)
Pd(0,0,4- c/2)
Co(0,0, ~ c)

Pd(0, 0,~ 3c/2)
Co(0,0,~ 2c)

Pd(0, 0,~ 5c/2)
Co(0,0,~ 3c)

Pd(0, 0,~ 7c/2)
Total

Pd(0, 0,0)
Co(0,0,~ c/2)
Pd(0, 0,~ c)

Co(0,0,~ 3 c/2)
Pd(0, 0,~ 2c)

Co(0,0;~ 5 c/2)

Pd(0, 0,~ 3c)
Co(0,0,~7c/2)

Total

Mill (0)

0.1246
0.0016

-0.0083
0.0001
0.0010

-0.0001
-0.0002
0
0.1187
0.0362
0.0006

-0.0025
-0.0001
0
0

-0,0001
0
0.0341

0.8
-3.9
-3.8

0.3

-0.5

-9.9
2.1

-1.4
1.6

-1.0
0
0

-0.1

0
1.2

1.3
-0.6
0.5
0.1

-0.1

0.1

1.3
0.3

-0.6
-0.3
0.1

0.1

0
0
0

-0.3

bital magnetization and its anisotropy in Pd-based ordered
alloys, whereas an analogous expansion for the MAE con-
verges much slower.

The contributions of different layers to the orbital mo-
ments and MAE for the TX ordered alloys are presented in
Tables III—VI. Generally, the decay with distance in the
(001) direction is not monotonous. Moreover, its behavior
strongly depends on the type of layers due to the dependence
on the SOI. For example, the T-X hybridization plays a very
important role in the formation of the orbital moment anisot-

ropy of lighter T elements, since in this case the hybridiza-
tion effects are more important inducing a proportionality to
the spin-orbit coupling parameters of the heavy Pd and Pt
atoms. The negative values of AM~' parameters in CoPt and
CoPd alloys result mainly from the interaction with first and
second neighboring Pt and Pd layers. In contrast to this, in
Fe-based alloys the effects of T-X interaction on the anisot-

ropy of the orbital magnetization on Fe sites are positive and
partially compensate strongly negative contributions of the
Fe layers passing through the origin. For orbital moments
developed on X sites the interaction with 3d atoms appears
only with the factor ( and therefore corresponding contri-
butions will be several times smaller.

The giant positive MAE for Pt-based compounds (the val-
ues of MAE parameters Ae + Aa = Aa calculated for CoPt
and FePt ordered alloys are —0.019+0.150=0.131 and
—0.011+0.177=0.166 mRy, respectively) can be entirely at-
tributed to the Pt sublattice. As a first approximation for the
MAE in these compounds one can assume that the lattice of
magnetic 3d atoms acts as a "source of magnetism" only
and induces the spin magnetization on Pt sites which due to
the large SOI give the main contribution to the perpendicular
magnetocrystalline anisotropy. The contributions of the 3d
sites themselves 5a are relatively small and moreover have
an opposite sign. The single-site terms Aa in the magneto-

crystalline anisotropy parameters Ae for CoPt and FePt or-
dered alloys were found to be as large as 0.081 and 0.131
mRy. Interactions between Pt atoms lying in the same plane
increase these values to 0.139 and 0.149 mRy, respectively.
Then, the interaction with the two nearest Pt layers gives an
additional positive contribution to the Ae (see Tables III
and V). On the other hand, direct hybridization effects be-
tween atoms of different types located in neighboring layers
were found to be negative (entirely due to this interaction the
MAE on 3d sites Ae in Pt-based alloys is also negative).
Thus, for the considered compounds the direct interaction
between atoms of T and X types plays a destructive role in
the perpendicular magnetocrystalline anisotropy formation.

As a result of the substitution of Pt atoms by the lighter
Pd ones the absolute values of the MAE parameters of
Ae types are expected to decrease due to the difference in
spin-orbit coupling constants for Pt and Pd by a factor
(( '/P ) = 8. Moreover, the d states of Pd atoms are known
to be more localized in comparison with those of Pt. There-
fore the decrease of the Ae parameters should be even
more pronounced (indeed, the contribution of one Pd layer to
MAE in FePd constitutes only 0.009 mRy which is about 20
times smaller than the analogous value for a Pt layer in
FePt). The absolute values for the mixed parameters b, e
also decrease from Pt- to Pd-based aHoys, but this effect was
found to be weaker since Aa exhibit only a linear depen-
dence on the ( parameters. Thus, the balance between posi-
tive in-plane interactions of Aa " type and negative Aa
ones is shifted in Pd-based alloys in favor of Aa and the
MAE values Aa attributed to 3d atoms become positive. In
FePd, both Aa"' and Ae are positive and enhance each
other in the total MAE 5e =0.017+0.009=0.026 mRy,
whereas for the hypothetical CoPd alloy due to the sharp
decrease of Aa in comparison with Ae the Ae term
changes its sign and leads to a partial cancellation between
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and 5e contributions 5e = 0.013—0.003=0.010
mRy.

IV. SUMMARY AND CONCLUSIONS

We have presented a method to calculate the magnetic
anisotropy based on a perturbation treatment for the SOI and
a Green s function technique in real space. Despite its appar-
ent laboriousness this approach gives an informative tool to
analyze MAE calculations and allow us to interpret them in
terms of interatomic interactions. The scaling factor for the
angular and SOI strength dependence for uniaxial systems

( sin 6 appears analytically in the MAE expression in our
approach, thus, considerably facilitating the numerical prob-
lems (necessity to handle with small —( energy differences
and numerical fits) known in the standard MAE calculations.
For the first time the method gives the possibility to investi-
gate the convergence of the orbital magnetization and mag-
netic anisotropy in real space. Applications to the TX ordered
alloys (where T=Fe,Co and X=Pd, Pt) have shown that a
relatively small number of neighbors in real space carry the
spin-orbit information, thus allowing us to calculate the or-
bital magnetization and the MAE being induced in the center
of the cluster. This effect has two main consequences:

1. Due to oscillations of the exponential factor
exp[ik(R; —R,) ] the number of k points required for accurate
calculations of the Green's function elements Go~ increases
with increasing distances ~R;—R~~. Thus, due to the short-
range behavior of orbital magnetization and MAE, the
Green's function elements which give an appreciable contri-
bution to the corresponding expressions [(6) and (12)j for
these characteristics are essentially restricted by few spheres
of nearest neighbors. This is in good agreement with the fact
that even a moderately small number of k points allows us to
reproduce reliable values for the orbital moments and anisot-
ropy energies of the considered alloys.

2. Using tight-binding theory arguments, Heine and
Samson have shown that the oscillatory behavior of many
physical variables, which can be expressed in terms of
Green's functions, obeys as a function of band filling a gen-
eral theorem. In particular, the larger the distance between
the sites i and j, the more nodes the corresponding contribu-
tions to the MAE (13) should have (at least 2r in the tight-
binding model, where r is a number of hops required to
reach site j starting from i provided that only hops between
nearest neighbors are allowed). Thus, since the main contri-
butions to the MAE arise from interactions between sites
located in the nearest neighborhood, one can expect that the
number of nodes in the dependence on band filling is rela-
tively small. The orbital magnetization, which is essentially
determined by single-site components Ml (requiring no
hop), should not change its sign at all when the Fermi level
moves within a subband which is in agreement with Hund's
third rule.

Direct hybridization between layers of T and X types
(which together with the large spin-orbit coupling parameters
of Pd atoms was expected ' to give the main effect in per-
pendicular magnetic anisotropy of Co, Pd2 multilayers) actu-
ally acts in favor of an in-plane orientation of the magneti-
zation. It would be also interesting to investigate in the future
the effects of hybridization between magnetic layers and

spacers for different orientations and thicknesses of the mul-
tilayers. The source of the giant magnetocrystalline anisot-
ropy in Pt-based alloys are interactions in the Pt sublattice
(mainly in the layers and between nearest Pt layers), where
the spin magnetization is induced by magnetic 3d sites.

Results of MAE calculations for the TX ordered alloys
based on the Green's function technique are in reasonable
agreement with those obtained by other (more traditional)
methods taking into account the relativistic effects in band
calculations, such as the pseudoperturbation treatment of the
spin-orbit interaction (Table I, as well as the results of Ref.
5), or the spin-polarized fully relativistic approach. ' In com-
parison with experimental data (MAE reported in Ref. 19 for
FePt, CoPt, and FePd ordered alloys with equilibrium com-
position are 0.088, 0.061, and 0.021 mRy per formula unit,
respectively), the values of MAE obtained in the present
work are overestimated (by a factor of 2) for FePt and CoPt.
For FePd we reach agreement with experiment considering
the uncertainties of the method used in this work (Table I).
One of the origins for the discrepancies in the Pt-based com-
pounds could be the orbital polarization effects: exchange
and correlations between electrons related with orbital de-
grees of freedom which are essentially beyond the uniform
electron gas based LSDA description employed in the
present work (a simple way to consider the orbital polariza-
tion effects based on a model Hartree-Fock approach is dis-
cussed in Appendix B).Also the temperature dependence of
the magnetocrystalline anisotropy parameters could be very
important (the present band structure calculations correspond
to T=O, whereas all measurements have been performed at
finite temperatures).

ACKNOWLEDGMENTS

We want to thank A.V. Postnikov for providing parts of
his LMTO Green's function code. One of us (I.V.S.) also
would like to thank the Institut fiir Festkorperforschung der
Forschungszentrums Julich and Technische Universitat Dres-
den for financial support and very kind hospitality during his
stay in Germany where part of this work was done. Part of
this work was supported by a BMFT grant of the "Verbund-
forschung. "

APPENDIX A: "SINGLE-IMPURITY" APPROXIMATION
FOR SPIN-ORBIT INTERACTION

Let us consider only single-site contributions to the orbital
magnetization. From the formal point of view this approxi-
mation corresponds to the case where the spin-orbit interac-
tion is neglected on all sites of the crystal except the consid-
ered one. That is why we denote it as "single-impurity. "This
approach has been used by Ebert et al. and Shick et al.
to take relativistic effects in an impurity model based on the
Green's function technique into account. For d states and
tetragonal symmetry the corresponding scalar-relativistic
Green's function Gz in the real harmonic basis is presented
by four independent elements for every projection of spin
cr: g, g„, g 2, and g 2 2 (the element g, is equal to

g, due to symmetry reasons). Then, for the orbital magne-
tization the following analytical expressions can be found:
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EF
M~ (0) =g g o. Im{4g, (E)g,2 p(E)+(g„(E)) )dE, (A 1)

ML (vr/2) =g g a.
f EF

Im(g„(E) [3g 2(E) + g 2 y2(E) + g z(E)])dE, (A2)

and for an arbitrary angle 6 with respect to the z axis,

ML (tl) =ML (0)+b,MI sin t), (A3)

1 F
Bn' &(iJ) = ——g Im dE(G&~A V~GtI) p. (83)

'7T g' J oo

APPENDIX B: ORBITAL POLARIZATIONEFFECTS
AND MAE

In order to include the orbital polarization (OP) effects in
the MAE calculations let us consider the model Hartree-Fock
(HF) approach. We do not make any restrictions on the form
of the orbitals used in the HF approximation and write the
energy for on-site electron-electron interaction in general
form:

1
E,', = g[U( n yP 8)——U( n y BP)]n' &n' z, (81)

2 upyb'

where the greek indices correspond to the pairs (mo. ) of
azimuthal and spin quantum numbers, ~~n'

&~
is the matrix of

occupations on the ith site related to the Green's function as

1
n' p= ——Im

'77 J —oo

I' EF
dEG" p(E), (82)

U( n yp B) = (n y~ I/r i2~ p B) are four-index matrices of Cou-
lomb interaction which can be expressed through Clebsch-
Gordan coefficients and renormalized Slater's integrals.

Now let us consider the SOI as a small perturbation and

present n.p in the form n'.p=n. 'p+ bn'. p, where n.p corre-i Oi i Oi

sponds to the scalar-relativistic case and Bn'
p is a correction

of first order in g:

with AM~ =M~ (7r/2) —M~ (0). For the systems with Oh

2g x y z

I
EF

Ml =( g o. Im(g, (E)[4g, (E)+g, (E)])dE

(A4)

and its magnitude does not depend on orientation

[M~ (0) = M~ (7r/2)].

Then, using arguments analogous to the local-force
theorem, we find that the change of the total energy due to
the SOI can be presented as a change of the one-electron part
plus the electron-electron interaction correction

1
BE,',(6) = —g [U(nyPB)2 upy6

—U(nyBP)]Bn' p(t'J). Bn' ~(i)) (84).
Due to symmetry properties of the SOI we have X o.
~ (o.) Bn' = 0 for every projection of spin o.. Thus, similar
to the single-particle energies, contributions of the first-order
corrections 8'n'

p to the spin density vanish and the effect
described by Eqs. (83) and (84) is essentially beyond the
local-spin-density approximations. Together with the change
of the one-electron energy, the electron-electron interaction
correction is an effect of second order with respect to the
spin-orbit coupling (we note that in LSDA the corresponding
correction of the double-counting term appears only in fourth
order g).

We estimated the BE„(t')) on every site of considered
compounds using the single-impurity approximation for the
SOI. Then, the renormalized parameters of electron-electron
interaction can be found using a constraint-LSDA scheme
(see Ref. 39 for details). Numerically we found that for the
uniaxial crystals BE„(t)) also exhibit the sine-square depen-
dence on the orientation of magnetization with respect to the
perpendicular axis. The OP to the MAE is negative for CoPt
(correspondingly —0.011 and —0.009 mRy on Co and Pt
sites). Thus, it could improve agreement with experimental
data for this compound, whereas for FePt, where the OP
effect obtained in the single-impurity approximation is posi-
tive, the discrepancies become even worse. A proper consid-
eration of the OP effects in the context of MAE calculations
taking into account more appropriate spatial extension be-
yond the single-site approximation is evidently needed.
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