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Electronic theory for the nonlinear magneto-optical response of transition metals at surfaces and
interfaces: Dependence of the Kerr rotation on the polarization and magnetic easy axis
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We extend our previous study of the polarization dependence of the nonlinear optical response to the case of
magnetic surfaces and buried magnetic interfaces. We calculate for the longitudinal and polar configuration the
nonlinear magneto-optical Kerr rotation angle. In particular, we show which tensor elements of the suscepti-
bilities are involved in the enhancement of the Kerr rotation in nonlinear optics for different configurations and
we demonstrate by a detailed analysis how the direction of the magnetization and thus the easy axis at surfaces
and buried interfaces can be determined from the polarization dependence of the nonlinear magneto-optical
response, since the nonlinear Kerr rotation is sensitive to the electromagnetic field components instead of
merely the intensities. We also prove from the microscopic treatment of spin-orbit coupling that there is an

intrinsic phase difference of 90 between tensor elements which are even or odd under magnetization reversal
in contrast to linear magneto-optics. Finally, we compare our results with several experiments on Co/Cu films

and on Co/Au and Fe/Cr multilayers. We conclude that the nonlinear magneto-optical Kerr-effect determines
uniquely the magnetic structure and in particular the magnetic easy axis in films and at multilayer interfaces,

I. INTRODUCTION

Low-dimensional magnetic structures such as surfaces,
thin magnetic films, and multilayer sandwiches have recently
become an exciting new field of research and applications. '

Especially thin magnetic films and multilayers exhibit a rich
variety of properties not previously found in bulk magnetism
such as enhanced or reduced moments, oscillatory exchange
coupling through nonmagnetic spacers, giant magneto-
resistance, and spin-polarized quantum well states. ' In par-
ticular, the observation of a perpendicular easy axis has at-
tracted a great deal of interest, since this phenomenon, which
cannot occur at bulk surfaces, leads to enhanced stray fields
implying small magnetic domains. These small domain
structures in turn may be applied for high-density magnetic
recording like "perpendicular recording" devices. Thus, it is
of considerable importance to characterize the easy axis of
thin magnetic films and multilayer structures with buried in-
terfaces by destructionless remote sensing. Conventional
techniques for probing magnetic anisotropy are usually bulk
probes such as ferromagnetic resonance or the magneto-
optic Kerr effect' "(MOKE) deducing the magnetic surface
signal from an overall bulk signal background which re-
quires the absence of magnetism in the remainder of the
sample. In a multilayer situation, however, with several mag-
netic layers present, these probes are inadequate to measure
the magnetic signal from buried interfaces. ' At present, the
nonlinear magneto-optical Kerr-effect' ' (NOLIMOKE)
provides a unique and destructionless tool for the probing of
buried interface magnetism by remote sensing. ' '

In previous theoretical studies we calculated the nonlinear
magneto-optical Kerr spectra by an electronic theory and
showed in detail that they are fingerprints of the structural,
electronic, and magnetic properties of surfaces, interfaces,
and films. ' Very importantly, we proposed on the basis of a
detailed calculation for the longitudinal configuration with in

plane magnetization and p polarization of the incident light
that the Kerr rotation in nonlinear optics is generally en-
hanced by one order of magnitude, since in nonlinear optics
there is no suppression of the rotation by nonmagnetic exci-
tations in contrast to linear optics. This fundamental differ-
ence results from the nonlinear polarization entering the
wave equation as the source term for second harmonic gen-
eration (SHG) thus making this equation inhomogeneous
rather than just rendering the homogeneous wave equation at
the doubled frequency. Therefore, NOLIMOKE reveals the
magnetism of surfaces, interfaces, thin films, and multilayers
much more drastically than linear MOKE does for bulk mag-
netism. Already several experiments confirmed our theory
and the sensitivity of NOLIMOKE for surface and interface
magnetism, and in particular the drastic enhancement of the
nonlinear Kerr rotation.

Hence, in this paper, we extend our calculation of the
nonlinear Kerr rotation to arbitrary Kerr configurations with
arbitrary angles of incidence, arbitrary input polarization and
arbitrary polarization of the reflected second harmonic (SH)
light: We analyze the case of in-plane magnetization as well
as magnetization perpendicular to the interface, in order to
show how the strength of this enhancement of the nonlinear
Kerr rotation depends on the Kerr configuration, the polar-
ization of the incoming fundamental and outgoing SH light,
and on the direction of the magnetization vector and thus on
the symmetry of the nonlinear magneto-optical suceptibility
tensor. We use then the results to propose a method using
NOLIMOKE for the determination of the magnetization di-
rection and hence the magnetic easy axis at interfaces, and
the spin configuration in multilayer sandwiches.

Note, in our previous calculation ' of the symmetry de-
pendence of SHG the ferromagnetism of the transition met-
als has been neglected. Thus, in this paper, we extend our
previous theory for the polarization dependence of SHG at
noble and, in particular, transition-metal surfaces by includ-
ing the symmetry properties of NOLIMOKE imposed by
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magnetism and thus (i) to calculate the polarization depen-
dence of the nonlinear Kerr rotation, and (ii) to determine the
direction of the magnetization vector at interfaces of films
and multilayers. In view of our previous results for the po-
larization dependence of SHG we expect an interesting de-
pendence of the enhancement of the nonlinear Kerr rotation
on the polarization and the easy axis. Note, the polarization
is controlled by the matrix elements and thus it depends sen-
sitively on the symmetry of the wave function. '

The paper is organized as follows: In Sec. II we present
our theory for the nonlinear Kerr rotation for various con-
figurations and in Sec. III we discuss our results with respect
to the determination of the easy axis from the nonlinear Kerr
effect and the magnetic phase shift in nonlinear optics. Fi-
nally, we summarize our work.

II. THEORY

We begin our theory by the derivation of the nonlinear
Kerr angle using the wave equation

Vx VxE('"'+ e(2') 8
E(2 cd)
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with vacuum permittivity ao and the nonlinear polarization
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FIG. 1. The polarization and geometry of the incoming co and

reflected 2' light, respectively. y and 4 are the polarizations of the
incident light and the rejected frequency-doubled photons. y=0'
corresponds to p polarization and @=90' to s polarization. 0 de-
notes the angle of incidence. The crystal axes x and y are in the
crystal-surface plane whereas z is parallel to the surface normal.

count all nonvanishing nonlinear tensor elements of the lon-
gitudinal and polar Kerr configurations.

The above formula Eq. (5) for the Kerr rotation in non-
linear optics follows (for not too large nonlinear Kerr rota-
tions) also from the expression given by Koopmans and
Rasing. To calculate the fields E( )(s —SH) and E(„")
x(p —SH), we extend our previous work on the symmetry
properties and polarization dependence of optical SHG to the
magnetic case. The rejected light at frequency 2' is given
as shown by Bohmer et al. ' for (ool) surfaces and inter-
faces of cubic (fcc or bcc) crystals (with z being the surface
normal and C4, symmetry group) without magnetization by

1—P""'—x"'(2~) E"'(~) E'"(~)
8p

(2)

as a source term. Furthermore, the law of reAection is used
and the complex field amplitude E„," is decomposed into
left- and right-handed circularly polarized light E, , " due
to the magnetic birefringence. Then, one obtains for the com-
plex Kerr rotation in nonlinear optics with real part @(K) and

ellipticity 8K(2)
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Using for the nonlinear susceptibilities a similar decomposi-
tion

(2) — (2) ~ (2)
+ij k +ij k, O +ij k, l (4)

with y,. ko and y, k, referring to the nonlinear tensor ele-
ments being even or odd under magnetization reversal, re-
spectively, one way rewrite Eq. (3) for not too large (but
appreciable) nonlinear Kerr rotations as

)
E( ")(s—SH)

(5)

Here, E( ")(s—SH) and E(„")(p—SH) denote the refiected
SH field amplitudes polarized perpendicular (s) to or in the
optical plane (p), respectively, and both resulting from inci-
dent light of polarization angle cp. Using electrodynamical
theory these fields E„" are expressed by the nonlinear sus-
ceptibilities, which are then determined by electronic theory.
Note that in the subsequent analysis we will take into ac-

f t cos y

t, sin y

f, t„cos yx
2f, t„t,cosy siny

2f,f,t„cos y

2f, t„t,cosy siny

(6)

f, =sin8/n, f,= gl f, , —

and

,=FsinO //F)/, = gl —F, ,

Here, 4 and y denote the angles of polarization of the re-
flected frequency doubled and of the incident light (see Fig.
l). f, , and F, , are the Fresnel coefficients and t, „and
T, „are the linear transmission coefficients for the funda-
mental and frequency doubled light. The complex indices of
refraction at frequencies co and 2' are n=n&+ik& and
N=n2+ ik2. The Fresnel factors are
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where 0 and 0' denote the angle of incidence of the incom-
ing light and the angle of refIection of the reflected SHG
light, respectively. The linear transmission coefficients are
given by '

2cos0 2cosO
fS=ncos0+f, ' ' cosO+nf, '

2cosO" 2cos 0
T = T.=NcosO'+ F, ' ' cosO'+ NF,

The corresponding amplitudes A„and A, in Eq. (6) are

2mT 2nT,
A =, A, =

cosO ' ' cosO'

respectively. It is interesting to note that the prefactor Bz

introduced by Bohmer is absorbed in the tensor X, I, . The
relationship of this factor with the skin depth is discussed in

Appendix A.
Combining now Eqs. (5) and (6) we determine the Kerr

rotation and its dependence on X,,k for various configura-
tions. First we consider the longitudinal configuration with
magnetization parallel to the interface, M ~x, and where the
optical plane is the xz plane. In this configuration, the non-
linear susceptibility tensor contains ten different. nonvanish-
ing tensor elements with five of them being even under mag-
netization reversal and the other five ones being odd. ' Thus,
the symmetry breaking by the magnetization induces five
more tensor elements and causes the nonmagnetic ones to
become all different. The nonlinear susceptibility tensor is
given explicitly by

0 0 0 0 (2) (2)
Xxzx Xxxy

E„"(
—SH) = 2i Eo"

~
A„t„[F,X„,2f,f,

for p-polarized SH light generated from s-polarized incident
light

E('")( —SH) = 2i ~EO(
) ~'A„t'W'F (12)

for s-polarized SH light generated from p-polarized incident
light

E( ")(s—SH)=2i~EO"
~

A, t„(X,j,+Xy„f,), (13)'

(2) (2) (2)
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In Appendix 8 we give the general expressions resulting
from this tensor for the rejected p- and s-polarized SH fields
generated from fields with polarization cp. For the calculation
of the nonlinear Kerr rotation it is convenient to assume p or
s polarization of the incident light and to detect the rotated
polarization plane in the reflected SH signal upon magneti-
zation reversal. Hence, one needs to know the fields for the
polarization combinations referring to the incoming and out-

going light: p~p, p —+s, s —+p, and s —&s. One obtains then
for the longitudinal configuration for p-polarized SH light
generated from p-polarized incident light

and for s-polarized SH light generated from s-polarized in-
cident light

E('")(s—SH) =2i~EO(")~'A, t' (') (14)

and in for s-polarized incoming light

E,"")(s—SH)
Ks E(2cu)( SH) A ~2F (2)

S p sXzyy
(16)

It is remarkable that the NOLIMOKE rotation measures the
electric field vectors-rather than intensities. Note, in the case
of the transverse (= equatorial) Kerr configuration (M ~~y,

optical plane is the xz plane) no Kerr rotation can be ob-
served. Instead one measures an intensity change upon mag-
netization reversal, ' ' whereas the total refIected SH inten-
sity does not change upon magnetization reversal in the
longitudinal configuration.

Secondly, we determine the Kerr rotation for the polar
configuration, in which the magnetization is perpendicular to
the surface. Now, the optical plane is again the xz plane.
However, in contrast to the usual notion in linear optics,
perpendicular incidence is not yet assumed, since SHG be-
haves differently for the nonlinear excitation in the interface
plane and perpendicular to it. Linear optics, however, makes
no such difference. In the case of the. polar configuration
the nonlinear susceptibility has seven nonvanishing tensor
elements, five of which are different. Three of these elements
are even and two (X( ) and X(,) ) are odd in M. Note that the

polar configuration is much more symmetric than the longi-
tudinal Kerr configuration thus causing more tensor elements
to vanish and to be equal. In detail, the nonlinear suscepti-
bility is given by

f o o o
I X.",', X.",.'

0 0 0
(

X(2) —X(

(2) (2) (2)
Xg~x Xgxx Xggz

0)
0

0)
(17)

The general expressions resulting from this tensor for the
rejected p-polarized SH field generated from y input polar-
ization and for the s-polarized SH field are again given in
Appendix B.The calculation of the fields for the polarization
combinations p —+p, p —+ s, s~p, and s ~s gives for

Note that magnetism occurs in all ten nonvanishing elements
of the tensor X,. k and in the complex indices of refraction at
the fundamental and the SH frequency, n(aI) and N(2aI),
respectively. The dominant nonlinear magneto-optical Kerr
effect, however, results from X( k), in particular from the five

tensor elements X„,X „,X, X „,and X. .. which are
odd upon magnetization reversal. Using these expressions
for E(„")we find in the case of the longitudinal (= meridi-
onal) Kerr configuration for the nonlinear Kerr rotation of
p-polarized incoming light

E('")(s-SH)w(» =Re'rK, p E(2')( SH)P

(2) 2+ (2) 2
A, X„J',+ X„,f,
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p-polarized SH light generated from p-polarized incident
light in the polar configuration

E( ")(p—SH) =2i~E(o")~ A„t„[F,x( .)2f,f,
+N'F. (X,".J).'+ X,"„)f',)], (18)

E„(s—SH) = —2i~EO"
~

A, X, ,2f,f,t„ (20)

and finally for s-polarized SH light generated from
s-polarized incident light

for p-polarized SH light generated from s-polarized incident
light

E( ( —SH)=2i~EO"
~

A N F,t x
for s-polarized SH light generated from p-polarized incident
light

linear optical factors and the detailed form of the nonlinear
Fresnel coefficients belonging to the particular choice of the
configuration has been included. Thus, the effects of the
1/¹in0 term are suppressed what results in a much weaker
angular dependence of @z()„.

This completes then the determination of the polarization
dependence of the Kerr rotation in nonlinear optics. The Kerr
angle is expressed in terms of X,I, which may be calculated
by an electronic theory. According to Eqs. (15), (16) and
(22), (23) one may determine the easy magnetic axis from
the Kerr rotation. Of course, it is straightforward to also give
expressions for the ellipticity ex(- ) = Im[E(„")(s—SH) /

E(„")(p—SH) ]. In the next section we discuss in more detail
and quantitatively the Kerr rotation in nonlinear optics at
surfaces, interfaces, and in thin films. The understanding of
these cases is a prerequisite for multilayers, where additional
interference structures come into play.

E( ")(s—SH) =0. (21) III. RESULTS AND DISCUSSION
Note that it makes no sense to consider the field
E(„"),4(s —SH) for both the polar and longitudinal Kerr con-
figuration, since due to the magnetization one or even both of
the two quantities E( ")(s—SH) and E( ")(s—SH) are non-
zero in this case in contrast to the nonmagnetic case where
both E( ")(s—SH) and E( ")(s—SH) vanish. Using the

fields E( ) in the polar Kerr configuration, we obtain for the
nonlinear magneto-optical rotation in the case of p-polarized
incident light

E( ")(s—SH)
W(') =Re~If,P E(2')( SH)p

f,=O, f,= 1, F,=O, F,= 1

and the linear transmission coefficients simplify to

(25)

2 2
P 1+n ' P (26)

Thus, the corresponding amplitudes A„and A, in Eq. (6) are

(27)

We now discuss the special cases of perpendicular and
grazing incidence. For perpendicular incidence (0=0=0')
the Fresnel factors become

A& F,X.'.',2f,f ,+N'F, (X',.j..+ X'„,'f,')'
(22)

Thus, the nonlinear Kerr rotation in the longitudinal configu-
ration for p-input polarization becomes

and in the case of s-polarized incident light

E(,"(s—SH) A, 0
=Re '

. (23)E( ~)( SH) A N2F tS p S S ZXX

X(2)
=1R~K,p —in, long. 0 (2)0+ 0Xxzx

and for s-input polarization

(28)

() 1 ()
Xyzz +yzz

NsineP s Xzzz Xzzz
(24)

if the same approximations are made. This fact is easily seen
from the sin terms in the even linear tensor elements con-
tributing to the denominator of @(z)„,„and cancelling the
sinO originating from the odd linear susceptibility tensor
elements. In Ref. 20, however, also the magnetism in the

Note, in both the longitudinal and the polar Kerr configura-
tion and for both p and s input polarization the Kerr rotation
contains only odd tensor elements in the numerator and only
even tensor elements in the denominator as generally ex-
pected and as was derived already by Pustogowa et al. for
not too large rotation angles. The dependence on the incident
angle results here and in Ref. 20 exclusively from the linear
oPtical coefficients. Assuming Xyxx Xyzz and X, ,&X,( X„,, Eq. (15) for the nonlinear Kerr rotation in the lon-
gitudinal geometry yields in agreement with Ref. 20

(2) 1
(2) Xyyy

~tc, s —in, long. 1
. (2)

0Xzyy
(29)

Thus, the nonlinear Kerr rotation angle becomes arbitrarily
large for perpendicular incidence. This is equally true for p
and for s input polarization. Note, this divergence of the
angle means according to Eq. (5) a rotation by up to 90'. We
use now Eqs. (15) and (16) to calculate the nonlinear Kerr
rotation angle for Fe in the longitudinal configuration for p
and s-polarized incident light. Results for 4K are shown in
Fig. 2. These results were obtained from our microscopic
theory for the nonlinear Kerr susceptibilities Xyzz and

X„,, the spin-orbit coupling constant has been kept fixed at
50 meV, and the complex indices of refraction at 1.6 and 3.2
eV were taken from Johnson and Christy (n = 2.87
+i3.28, N=2. 12+i2.50). For the absolute ratios and the
relative phases of the complex tensor elements
we use the values X =0.60X e"

xzx zzz yyy yxx
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The results of Fig. 2 clearly show the divergence of the
nonlinear Kerr rotation 4z for p- and s-polarized incident
light in the case of perpendicular incidence and the increased
enhancement for s polarization. This result is supported by
experiments on Fe/Cr multilayers which find a drastic en-
hancement of the nonlinear Kerr rotation in the longitudinal
configuration. Upon decreasing the angle of incidence from
75' to 15', values of tt t'ai„,.„ from 1' to 5' and of Pzt~,

from 5 to 15' are observed. Thus, in contrast to linear op-
tics, there is no need to resort to uranium based compounds,
large external magnetic fields or low temperatures in order to
obtain arbitrarily large Kerr rotations in nonlinear optics.

The fact that the experimental values do not increase mo-
notonously in this range of angles of incidence is readily
understood from interference effects in multilayers and is
discussed in detail by Koopmans and Rasing. As pointed out

by these authors, at surfaces and in films Ptz~„;„and
;„should be smooth functions of angle of incidence in

agreement with our result. Our result yields in addition that
the absolute values and relative phases even of relatively
small tensor elements are of major importance for an ad-

equate description of the nonlinear Kerr rotation angle 4~
for p- and s-polarized incident light. Sign changes (see full
curve in Fig. 2) occur even at surfaces and in thin homoge-
neous Fe films. Interferences in experiment do not only re-
sult from the multilayer structure, which brings additional
symmetry requirements and new electronic states into play,
but also from the superposition of several complex tensor
elements contributing to 4~ . This might be the reason for
the "calibration problem" quoted by Wierenga et al. ' More
work has to be done on this point both theoretically and
experimentally.

FIG. 2. Nonlinear Kerr rotation angles for p-polarized incident
light PtII i (full and short-dashed curves) and for s-polarized inci-
dent light Ptz ~, (long-dashed and dotted curves) for Fe at 770 nm as
a function of the angle of incidence 0 in the longitudinal Kerr
configuration. The relative phases between y, ,=yzyy and y(„ is
0.505m in the full and long-dashed curves and 1.505m in the short-
dashed and dotted curves.

Note that our theory yields the divergence of the nonlinear
Kerr rotation for perpendicular incidence in the case of s-
and p-polarized incident light. For p polarization, the limit
of perpendicular incidence is interesting, since in this situa-
tion the excitation is parallel to the magnetization M. This is
due to the odd tensor element y, , which does not vanish. It
is clear that the approximation of not too large nonlinear
Kerr rotations underlying our theory will break down in the
case of strictly perpendicular incidence. The conclusion of
this result, however, will not change. It should also be
pointed out that this large enhancement of the nonlinear Kerr
rotation is due to the arrangement of odd and even tensor
elements in the rotation where the even ones in the denomi-
nator of the formula for the nonlinear Kerr rotation cannot be
excited for perpendicular incidence due to vanishing Fresnel
factors f, for the fundamental polarization at frequency tu.

Our theory yields that, in general, for finite angles of in-
cidence the enhancement of the nonlinear Kerr rotation
should be much more pronounced for s-polarized incident
light, since in p polarization the denominator of the formula
for @zti„contains several independent contributions which
tend to decrease P~t~„. Furthermore, the excitation in z di-
rection (in p polarization) entering this denominator causes
an only moderate enhancement of @~t „.This is in agreement
with the theoretical results by Pustogowa et al. and with all
experiments presently available. ' ' Note. that the micro-
scopic theory by Pustogowa et al. treats in particular the en-
hancement in the longitudinal Kerr configuration yielding a

,„of2' to 4' for a Fe surface in the optical frequency
range. This prediction is experimentally confirmed by Koop-
mans and Rasing. It is important to make two remarks con-
cerning the choice of the longitudinal configuration and p
input polarization by Pustogowa et al. : (i) Only in the longi-
tudinal configuration linear and nonlinear Kerr rotations can
be meaningfully compared since for the polar configuration
the nonlinearity parallel to the surface depends very much on
the localization of the excited electrons and their degree of
jelliumlike behavior and in the transverse configuration no
rotation is observed. Only an intensity change upon magne-
tization reversal will happen. (ii) Only in the longitudinal
configuration with incident p polarization the Kerr rotation
angle can be defined as in linear optics with repect to the
polarization of the incident photons at frequency co. For in-
cident s polarization as well as for the polar Kerr configura-
tion one has to resort to the definition of @~„asbeing one
half of the angle by which the major half axis of the second
harmonic polarization ellipsis is rotated upon magnetization
reversal thus not referring at all to the incident beam polar-
ization.

Note, Pustogowa et al. calculated the nonlinear Kerr rota-
tion including the magnetism in the dominant tensor ele-
ments in the nonlinear as well as in the linear susceptibilities.
In particular, the I/sinO' dependence of @ALII. i„ in the longitu-
dinal configuration is also present in their theory in the linear
Fresnel coefficients but strongly suppressed by other terms in

these factors. Thus, the dependence of P~z ~„on the angle of
incidence 0 comes out much weaker in this treatment, which
is particularly suited for the frequency dependence of

,„.In this paper, we emphasize mostly the symmetry
aspects and thus the magnetism is neglected in the linear
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susceptibilities contributing to the Fresnel and transmission
coefficients. This approximation is justified by the result by
Pustogowa et al. who found the enhancement dominantly
caused by the nonlinear susceptibilities. Thus, for the sym-
metry considerations, all the nonlinear tensor elements are
included in our present paper.

In the polar Kerr configuration we obtain for perpendicu-
lar incidence ill-defined formulas for both p- and s-input
polarization

(2) (2) 0
WK, p —in, pol. ~IC, s —in, pol. 0

' (3o)

Expansion of the formulas for nearly perpendicular inci-
dence, however, shows that there is no s-polarized second
harmonic signal expected within the electric dipole approxi-
mation, but there is p-SH generated from s input polarization
by exciting the tensor element y, thus leading to a van-

ishing P~~ i . On the other hand, for p-input polarization both
s- (numerator of Pzt~„) and p-SH (denominator) yield be-
come finite (apart from accidental zeros due to interference
of the several complex tensor elements or due to a special
choice of the frequency co) thus yielding in general a finite

(2)

This is why NOLIMOKE is a unique tool for the deter-
mination of the easy axis in films and at interfaces and which
cannot be determined by other tools. According to our analy-
sis it is necessary for that purpose to shine light in at slightly
off-perpendicular incidence. Then perpendicular interface
magnetization (see our theory for polar Kerr configuration)
would show no nonlinear Kerr rotation for s input but an
appreciable Kerr angle for p input. On the other hand, the
characteristic signature of in plane magn-etization (see our
theory for longitudinal Kerr configuration) is expected to
exhibit a moderately enhanced nonlinear Kerr angle for p
input but a large nonlinear Kerr rotation for s input polariza-
tion. Thus, in switching from s to p input, the nonlinear Kerr
rotation should increase for perpendicular and decrease for in
plane easy axis.

Since NOLIMOKE can also distinguish the magnetic sig-
nals coming from different interfaces as proposed by Hiibner
et al. ' and impressively experimentally detected by
Wierenga et al. ' on Co/Au salldwiches, non1lnear
magneto-optics is in addition a unique and sensitive probe
for the detection and investigation of spin configurations, in
particular, canted spin structures generated by oscillatory ex-
change coupling in magnetic sandwich heterostructures. For
example, in the case of canted spins in neighboring layers
one may choose the light configuration such that it does not
couple to the magnetization parallel to the interface, but only
to the magnetization component perpendicular to the inter-
face. Thus, then a canted spin configuration may be detected.
In the case of antiparallel magnetization in neighboring thin
layers 1 and 2 one has approximately for the SH yield:

I(SH) =
I i (M) + I2( —M) +

=I,(M)+I2(M)+[I2( —M) —I2(M)]. (31)

Finally we discuss the NOLIMOKE rotation for grazing in-
cidence 0=0'=90 . In this case we have cos0=0 and sin0=1
and get the following Fresnel factors:

j 1 2

1—
(n

1
F, , F,

2

1—

(32)

For grazing incidence it is meaningless to consider the trans-
mission coefficients alone which vanish. Instead what mat-
ters for the Kerr rotation are the amplitudes which A„and
A, which become

4m
P F

This yields the ratio

A, 1

Ap N (34)
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APPENDIX A: NONLINEAR RESPONSE DEPTH
AND SKIN DEPTH

Since the nonlinear optical response results only from the
range of broken electronic inversion symmetry, Bohmer
et al. introduced in Eq. (6) an additional artificial prefactor of
Bz denoting the nonlinear response depth. In this appendix
we briefly discuss the relationship of the prefactor Bz intro-
duced in Ref. 22 with the skin depth and show that this factor
is already automatically contained in our microscopic ex-
pression of the nonlinear magneto-optical susceptibility. '

Thus, in the present theory this prefactor is implicitly in-
cluded in the expression given above for Et "i(C&,cp), since
it can be combined with the ratio co/c to yield the dimen-
sionless constant qa

CO—X Bz=qa,
c (A1)

where q is the incident photon momentum and a is the lattice
constant of the material representing a typical range of bro-

These equations together with Eqs. (15), (16) and (22), (23)
show that the use of grazing incidence does not lead to sim-
plified formulas for the NOLIMOKE rotation in the case of
p- or s-input polarization.

Furthermore, it is an interesting observation that in NO-
LIMOKE there is a relative phase of 90' between the odd
and even elements of the nonlinear susceptibility tensor

y, & in contrast to linear optics. This phase has already been
found in the early theories by Hiibner and Bennemann' and
Pan et al. ' and has later been observed in the experiment by
Wierenga et al. ' They observed 4=88'. We discuss the
microscopic origin of this relative phase in Appendix C. In
summary, we have shown that in SH the Kerr rotation de-
pends sensitively on the light polarization, of the magnitude
and direction of the magnetization and therefore on the easy
axis.
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ken inversion symmetry from which the nonlinear response
is generated. The factor qa, however, is contained in the
tensor y, k and has therefore not been written explicitly in
Eq. (6) and all subsequent expressions for the nonlinear
fields. This factor describes the ratio of linear excitation
depth 1/q and nonlinear response depth a. ' The linear ex-
citation depth 1/q is connected to the usual electrodynamical
formula for the metallic skin depth

skin
COp

APPENDIX B:REFLECTED SH FIELDS
FOR ARBITRARY POLARIZATION ANGLE

OF THE INCOMING LIGHT

(A3)

1 1

POO CO q
(A2)

with conductivity o. and vacuum permeability p,o. This be-
comes for metals at frequencies below the plasma resonance
COp

In this appendix we give the general expressions resulting
from the tensor y, k for the reflected p- and s-polarized SH
field generated from q-input polarization. In the longitudinal
Kerr configuration one obtains for the reflected p-polarized
SH field generated from y-input polarization

E~ "l(p —SH) =2ilE~O"ll A„[[F,Xl„l2f,f,+N F,(X~„Jl',+Xl„lf,)]t„cos q&

+(F,Xl lf,+N F,Xl lf, )2t„t,cosqsincp+N F,Xl lt, sin cp] (B1)

and for the reflected s-polarized SH field generated from y-input polarization

E~ "l(s —SH) =2ilE~o"
l A[( X~J', +X~If, )t„c so y+X~ l2f, t„t,coscpsinq&+Xl l t, sin q&]. (B2)

In the polar Kerr configuration the tensor y( k) yields for the reflected p-polarized SH field generated from y-input polarization

E", "'(I SH) = 2t
I

E—o'l'A pl I:F.X.".',2f f,+N'F, (X,".j",+ X,"„'f,')]ticos'V

+N F,X~ lt, sin cp+F, X~ fl, 2t„t,c socpsinq] (B3)

and for the s-polarized SH field

E~„"l(s—SH) =2ilEo~"ll A, (Xt,I2f, t„t,cosqsiny+X~ I2f,f,t„cos cp) (B4)

APPENDIX C: MAGNETIC PHASE SHIFT
IN NONLINEAR OPTICS

In this appendix, we discuss the microscopic origin of the
relative phase shift of 90' between the odd and even ele-
ments of the nonlinear susceptibility tensor y, k . First, we
have to remark that this phase does not result from the fact
that the nonlinear suceptibilities contain three matrix ele-
ments each yielding a factor of i rather than two in the linear
case, since this difference occurs in the even as well as in the
odd tensor elements. Instead, the microscopic origin is due to
spin-orbit coupling which acts as a perturbation on one of the
wave functions in the matrix elements of the odd tensor el-
ements alone. For a plane-wave basis, for example, the spin-
orbit perturbation yields the following identity, ' which
can be proven by commutator algebra

(k'l k„(kXs) V Vl k) = ik„Vk k(kX k')s, (C 1)

thus giving a phase factor of i in the odd susceptibility tensor
elements. This argument holds in the linear as well as in the

+(]) &(&) ~iy ' sin(9ij ij 0 ij1 (C2)

This factor comes from the wave equation, which is homo-
geneous in linear optics. The susceptibility results directly
from the dielectric function the square root of which is the
eigenvalue of the wave equation, the complex index of re-
fraction. The eigenmodes are left- or right-handed circularly
polarized photons. In the nonlinear case, however, the de-
composition has no factor of i

(2) — (2) (2)
Xij k +ij k, O

—Xij k, 1 (C3)

since y~, k) is not related to the eigenvalues of the wave equa-
tion, which in nonlinear optics is an inhomogeneous differ-
ential equation.

nonlinear case, but the resulting phase of i is compensated
only in the linear case by the decomposition of y(, ) yielding
another factor of i
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