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In this, and the following paper, we present the results of a detailed experimental investigation into the spin
dynamics of the quasi-one-dimensional 5= z Heisenberg antiferromagnet KCuF3. In this paper we report
results of inelastic neutron-scattering measurements made using the MARI time-of-Right spectrometer at the
Rutherford Appleton Laboratory. Measurement of the magnetic excitation spectrum was made in both the
low-temperature phase, where the chains are ordered together, and in the high-temperature phase, where the
correlations between chains become unimportant. We compare our measurements with the Muller ansatz,
which is identified with a two-spinon cross section, and find excellent agreement with this. The effect of
temperature on the excitation continuum was also investigated. A series of measurements were made at
temperatures ranging from 20 to 200 K. These results are compared to the predictions of field theory for the
one-dimensional Heisenberg chain. Again good agreement is found with the theoretical predictions. In the
following paper measurements of the low-energy scattering in the ordered phase, made on a triple-axis spec-
trometer, are presented.

I. INTRODUCTION

The ground and excited states of the one-dimensional
(1D) antiferromagnetic (AF) nearest-neighbor Heisenberg
model (NNHM) is one of the classic problems in statistical
mechanics and magnetism. The Hamiltonian for the 1D
NNHM is given by

H= Jg S,S;+t

where J is the magnetic exchange energy, which is positive
for an antiferromagnet. The simple form of Eq. (1) belies the
rich physical behavior that it displays, and an understanding
of the physics of the AF NNHM in one dimension has
proved a formidable task for theoretical and mathematical
physicists over the last six decades. Two factors make this
problem difficult: First, quantum fluctuations are at their
strongest in one dimension and cannot be treated within a
mean-field approach. ' Second, nonlinear excitations play an
important role in the dynamical behavior of one-dimensional
systems. The quite different low-lying excitation spectra of
the integer and half-odd-integer AF NNHM's provides us
with a dramatic illustration of the importance of these two
factors.

Haldane investigated the effects of exchange anisotropy
and quantum fluctuations on the dynamics of Eq. (1).He did
this by making use of a mapping onto the nonlinear o. model
and found that the low-lying excitations of the integer and
half-odd-integer AF NNHM were quite different. For integer

chains he found that the excitations were spin waves, similar
to the classical result, but with an energy gap in the disper-
sion arising from the zero-point fluctuations. The fluctuations
create zero-energy solitons, which disorder the ground state
and give rise to correlations that fall away exponentially with
distance. However, when he tried using the same mapping
for half-odd-integer chains, he found that an extra term en-
tered the new Hamiltonian as a consequence of the Fermion
nature of the spins. The extra term deconfines the 5= 1 spin
of a spin wave into pairs of S= —,

'
quantum solitons, known

as spinons. The pairs of spinons give a gapless continuum of
excitations, and the ground state has correlations that de-
crease as a power law with distance.

Following Haldane's calculations, which were published
in 1983, a great number of experimental and computational
studies have been carried out. Most of these have concen-
trated on the behavior of integer chains and have largely
been confined to the case of the S= 1 AF NNHM, where the
effect is largest. This work has confirmed the behavior pre-
dicted by Haldane, and his conjecture is now widely ac-
cepted. Despite the extensive investigations of integer AF
NNHM chains, little work has been undertaken on the S=
—,
' AF NNHM, where quantum effects should be very visible
as a continuum of excitations. We seek partially to redress
this imbalance with our results published in this and the fol-
lowing paper.

We have already made plused neutron-scattering mea-
surements of the excitation spectrum of KCuF3 prior to the
ones reported here. This system is a good realization of an
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S= —,
' AF NNHM, and our results confirmed a continuum of

magnetic excitations, as predicted. The extent and intensity
of the continuum were consistent with the ansatz proposed
by Muller et al. However these measurements were not suf-
ficiently detailed to allow a full quantitative comparison to
be made with theory. In particular an accurate measurement
of the nonmagnetic contribution was found to be crucial for
determining the form of the broad components of magnetic
scattering. In this and the following paper we report signifi-
cantly more detailed measurements of the magnetic scatter-
ing in KCuF3. These new measurements were made over a
wide range of temperatures and study the continuum of ex-
citations at high and low energies. In this paper, hereafter
referred to as paper I, we confine ourselves to the measure-
ments made using time-of-Aight techniques. In the following
paper, paper II, we present our measurements made in the
ordered phase using a triple-axis neutron spectrometer.

In paper I we present the results of two neutron-scattering
experiments on KCuF3. Both of these were made using the
multiangle rotor instrument (MARI), which is a time-of-
Aight spectrometer situated on the ISIS pulsed neutron
source, Rutherford Appleton Laboratory, Didcot, England.
Our first measurements were directed towards examining the
effects of temperature, up to T=200 K, on the excitation
continuum. Detailed field-theory calculations of the low-
lying excited states are available in the literature, and it was
these that provided the impetus for this work. The calcula-
tions predict the variation in intensity and broadening of the
scattering as a function of temperature, and our measure-
ments aimed to test these predictions. The MARI instrument
necessarily measures the scattering across a large swathe of
energy and momentum transfer. Because of this, the mea-
surements also provide information on the distribution of
magnetic states of different energies over a large region of
the Brillouin zone. The second set of measurements reported
in this paper was concerned with measuring both the extent
and strength of the quantum continuum below the 3D order-
ing temperature. The rest of this paper is organized as fol-
lows: Section II discusses the relevant theory. Section III
describes the experimental procedures. Section IV presents
the results of our measurements and analysis. The paper ends
with a summary and conclusion in Sec. V. We leave a dis-
cussion of the results until the end of paper II.

II. THEORY

It is often possible to calculate a limited set of physical
properties of 1D systems using exact methods. In 1931
Bethe proposed an ansatz for the solution of the S=-,' AF
NNHM. Bethe's method allows calculation of a large num-
ber of physical properties, for example, the ground-state en-

ergy of the S=-,' NNHM. ' The dispersion of the lowest-
lying excited states have been calculated by des Cloizeaux
and Pearson" (dCP). The dCP dispersion is sinusoidal and is
given by

co(g ~)
= vrJ

f sin(g~~c) f,

where g~~ denotes the wave vector along the chain direction
and c is the spacing between lattice sites. On reexamining
dCP's calculation, Faddeev and Takhtajan' have proposed
that the basic excitations that make up the continuum of

excited states are pairs of S=-,' "spinons, " which they de-
scribed as delocalized kinks; see also Fowler. ' Each spinon
has a wave vector restricted to only half of the Brillouin
zone. Spinons are created and destroyed as pairs, and within
this picture the dCP dispersion is understood to be a pair of
spinons, one of which has zero energy.

Inelastic neutron-scattering experiments measure the
magnetic response of the system as a function of energy and
momentum transfer. The magnetic scattering cross section is
proportional to the dynamical correlation function denoted
by S(Q, co). The components S P(Q, cu) of this function are
the Fourier transforms of the time-dependent two-spin corre-
lation functions and are given by'

1 f oo

S"P(g,co)= g exp[ig (RJ—R;)j
7T IJ J —~

dt exp(input)
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FIG. l. (a) The spinon dispersion for the Haldane-Shastry
model. The two spinon excitations form a continuum. (b) The ex-
citation spectrum for the nearest-neighbor Heisenberg model as pro-
posed by Miiller.
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where Q is the wave-vector transfer from the scattered neu-
tron to the system, ~ is the energy transfer to the system by
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the neutron, R; and R~. are the positions of the ith and jth
spins, respectively, N is the total number of spin sites, and
a and P are Cartesian coordinates. Here the angular brackets
denote a thermal average. Because the Hamiltonian in Eq.
(1) commutes with the total z component of spin S'r, this
implies that S P(Q, cu) =0 for nAP. ' Also, because the
Hamiltonian is equivalent for all the spin directions x, y, and
z, the nonzero components of S(Q, co) are the same
S' =S =S". Unfortunately Bethe's method is not ame-
nable to calculating the dynamical correlation functions de-
fined in Eq. (3), and therefore approximate methods have to
be used.

By considering the available exact results, sum rules, and
computer calculations Miiller et al. have constructed an
ansatz, the Miiller ansatz (MA), for the dynamical correlation
functions of the 1D S= —,

' antiferromagnetic NNHM at
T=O. Their expression is given by

continuum of excited states proposed by Muller is shown in
Fig. 1(b). Equation (4) predicts a square-root singularity at
the lower boundary with an abrupt high-energy cutoff given
by Eq. (5). Computer calculations suggest that there is a
small contribution of states with nonzero matrix elements
outside the proposed continuum. However, these states have
a scattering weight two orders of magnitude lower than the
neighboring states, which lie within the boundaries. Recent
numerical calculations' lend further support to the MA.

Recent theoretical advances have given a new interpreta-
tion to the MA as a two-spinon continuum. Haldane' and
Shastry' have independently developed a new model for a
1D interacting Fermion system, which is related in a direct
way to the NNHM. Their model is similar to the S= —,

' AF
NNHM but with a coupling between spin sites, which de-
creases as 1/R with distance R. The Hamiltonian for the
Haldane-Shastry model (HSM) is given by'

o"(~—~(gll) )8(~"(Qll)
—~)

(4)

where A is a constant [note that the factor of I/(2~) is
included in Eq. (4) because our defnition of S(Q, co) given in
Eq. (3) differs from that in Ref. 7], 0 is a Heaviside step
function, which is defined as being zero when its argument is
negative and equal to one otherwise, 8'

& is a Kronecker
delta symbol, ru'(Qll) is the dCP dispersion and constitutes
the lower boundary of the continuum, and co"(Qll) is the
expression for the upper boundary, which is given by

~"(Ql) = 2~JI sin(gllc/2) I

Sum rules for the intensity can be obtained theoretically.
The MA does not satisfy all the sum rules exactly and can
only be an approximation to the real form of S(Q, co). A
multiplicative constant A is included in Eq. (4) to account for
this. Using the sum rules derived by Hohenberg and
Brinkmann, ' Muller et al. , have calculated values of A in
the range 1—1.5 depending on which sum rule they choose to
satisfy. One sum rule is that S (Q, co) integrated over Q
and co must be equal to the spin magnitude squared,
(S') = 4. This yields a value for A of 1.43. The extent of the

1

~ I:d( — )]'
where d(n) =(N/7r)sin(mn/N)~n as the number of sites
N~oo. The calculated spin correlations in the HSM take a
particularly simple form: the solution by Haldane and
Zirnbauer' shows this model to corresponds to an ideal
spinon gas, in that the S= —,

' spinons are free. Each spinon has
a quadratic dispersion relation'

~"(Qll) = (J/2) [(7r/2)' —Q l],

and its wave vector is restricted to only half of the Brillouin
zone, i.e.,

~ Qll~ (vr/2. The dispersion of a spinon is shown in
Fig. 1(a).

In the HSM the single-spin flip (AS= 1) excited state is
expressible in terms of only two-spinon states, where the
spins of each S=

2 spinon are parallel. ' The quantity
S(Q, co) in the limit of T= 0, reflects this and is nonzero only
at energies and wave vectors within the two-spinon con-
tinuum, also shown in Fig. 1(b). The dynamical correlation
function S(Q, co) at T=O for the HSM model in terms of
wave vector Qll along the chain, and energy transfer co is
given by

S (Q, o))= 8 p—
8(~2(gl) ~)8(~ ~1—(Qll))8(~ ~1+(Ql))

~L~ —~i-(QI)][~—~i+(Qll)]
(8)

where the dispersion relations co&, co&+, and co2 are given
by the equations'

~i —(Qll) = (J/2) Qll(7r —
Qll),

~i+(Qll) (J/2)(gll m)(2m—

where the subscripts 1 —and 1+ denote one-spinon disper-
sion relations, these constitute a lower two-spinon boundary.

The dynamical correlations exhibit a square-root singularity
at the lower boundary and are confined within the two-
spinon continuum of states as shown in Fig. 1(b).

Haldane and Zirnbauer' have pointed out the similarity
of Eq. (8) to the MA, Eq. (4). Indeed if the quadratic disper-
sion of Eq. (7) is replaced by a sinusoidal dispersion
co' = mJ cos(gllc) then this yields a lower two-spinon
boundary given by the dCP dispersion, Eq. (2), and an upper
two-spinon boundary identical to ru"(Qll), Eq. (5). Substitut-
ing co, (Q~~) = mJ sin(gllc), and cubi+(QlI) = —

m J sin(gllc)
into Eq. (8) gives the MA, Eq. (4). This identifies the MA
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with the two-spinon cross section of the 1D AF NNHM. ' '

Within this picture the small contributions outside the con-
tinuum are identified with processes in which more than two
spinons are created.

Field theory gives a framework within which to calculate
physical quantities of direct experimental interest. ' Such
calculations are really only valid in the low-energy and long-
wavelength limit but nevertheless provide a more general
approach to problems than highly specific techniques, such
as the Bethe ansatz. Using field theory, Schulz has calcu-
lated the temperature-dependent correlation functions for the
1D S= —,

' AF NNHM. The Green's functions for the compo-
nents of spin S and S~ are defined as

G P(x, t) = —iO(t)([S (x, t)SP(0,0)]), Type (a) Type (d. )

I' co

G P(g, tu)= — dx dt e' "' 8(t)
J

(10)

FIG. 2. The crystal structure of KCuF3. The two polytype struc-
tures (a) and (d) are shown. These are distinguished by the different
displacements of fluorine ions in the a-b plane.

where

1
G ~(Q, tu)= — 8 p(n„+1)—4 (2~) ' " T

i co —vq l i to+ vq )

p
( 47rKsT] ( 47rKsT) 'p

(12)

and I is a complex gamma function. In the expression

q =
Q~~

—vr, Q~~ is the component of Q along the chain direc-
tion and v= mJ; the continuum approximation of a linear-

dispersion relation (su= vq) has been made. The exponent
rg= 4 is the value for the discrete lattice. The multiplicative
factors make the scattering in Eq. (11) consistent with the
MA, where A is the same constant defined in Eq. (4).

The dynamical scattering function S(Q, co) can be easily
written in terms of the Green's function,

(13)

where %denotes the imaginary part, and for T=O this has a
square-root singularity at the lower boundary in agreement
with Eqs. (4) and (8). As the temperature increases the scat-
tering cross section broadens and scattering weight moves to
higher energies. Further details of the correlation functions
for the S= —,

' NNHM are given in an appendix at the end of
this paper. This includes a calculation of the extension of the
correlation functions to include higher-order operators. Con-
sideration of these higher-order terms are important at high
energies; see Sec. IV C.

III. EXPERIMENTAL METHOD

KCuF3 is a good example of a quasi-one-dimensional
Heisenberg antiferromagnet. It is nearly tetragonal, with

x ([S (x, r), Sp(0,0)]).

For wave vectors close to the antiferromagnetic point,
Q~~= eric, the form of G ~(Q, cu) is given by

low-temperature lattice parameters of a = b = 4.126 A, and
c=3.914 A. . The 1D properties are the result of a Jahn-
Teller distortion, which displaces the Auorines in the a-b
plane away from the midpoint of the Cu +—Cu + bonds.
Two possible polytypes result, which are denoted by (a) and

(d), corresponding to different ordering of the fiuorines be-
tween layers. The two structures are shown in Fig. 2.
Quenching of the orbital angular momentum by the crystal
field results in a spin-only moment of S= —,

' for each Cu +

ion. The unpaired electron in the Cu + ion is in a d 2 —y2

orbital, which is oriented such that significant overlap with
the F ions occurs only along the c axis. Strong antiferro-
magnetic exchange results along the c direction, with much
weaker ferromagnetic exchange along the a and b directions.
At low temperatures the ferromagnetic exchange between the
magnetic c-axis chains results in long-range ordering. The
Neel ordering temperature differs for the two polytypes;
T~=39 K for type (a) and T~=22 K for type (d). A small

xy anisotropy confines the spins to lie in the a-b plane at low
temperatures.

Inelastic neutron-scattering measurements were made on
the large single-crystal (6.86 g) of KCuF3 consisting of 99%
of polytype (a) (T„=39K) used for earlier measurements of
the excitations. The MARI time-of-fIight chopper spectrom-
eter was used, and the measurements were made in two
stages separated by several months with the same experimen-
tal setup and method being employed for both stages. The
sample was mounted within an aluminum can containing He
contact gas and fixed on the instrument goniometer with the
a and c axes horizontal. A closed-cycle refrigerator was used
to cool the crystal down to T=20 K and gave temperature
control to an accuracy of ~0.1 K over several days.

The MARI spectrometer works as follows: A high-
intensity pulse of neutrons is produced by spallation every 20
mS. The neutrons are moderated to useful energies by a
methane moderator and monochromated by a fast Fermi
chopper. This produces a monochromatic beam of energy
Fo, variable between 10 and 2000 meV, with an intrinsic
energy resolution of approximately 2% full width at half
maximum of the incident energy Fo. A slow chopper re-
duces the fast-neutron background. The scattered neutrons
are measured in an array of high-pressure He detectors. The
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detectors are located a distance of 4.022 m away from the
sample position. A low-angle array of 109 detectors are ar-

ranged symmetrically around the incident neutron direction
into eight banks covering scattering angles from 3.86 to
12.0'. High-angle detector banks measure the scattering at
larger momentum transfers and extend over scattering angles
from 12' to 135'. From the time of detection of a scattered
neutron in a particular detector, both the energy (Er) and
momentum (Q) transfer to the sample are calculated.

Scans on time-of-Aight instruments are constrained by the
conservation of momentum and energy to measure momen-
tum and energy transfers, which lie along a well-defined lo-
cus. For an incident neutron of wave vector k;, and energy
E;, which is scattered into a detector at a scattering angle
tt with final wave vector kf, and energy Ef we define a
wave-vector transfer to the sample Q=k; —kf, and an en-

ergy transfer to the sample ET=E;—Ef. The wave-vector
transfer Q can then be split into a component Q~~

directed
along the incident neutron axis and a component Q~ perpen-
dicular to the incident neutron axis: Q= Q~ + Q~ . The mag-
nitude of these components is

0

K

10—
(

K

G5

Q
~~
(E;,0"Er) = &;—&fcos( 4)

= gE;/y gE; Er—/y cos(—@), (14)

Q~(E;, P,Er) =kfsin(P) = gE, —Er/y sin(P)

in terms of the incident energy E;, scattering angle P, and

energy transfer Er. The kinematical constant y=2.072 A
meV. The energy transfer has a quadratic type of dependence
on the momentum transfer. This is illustrated in Fig. 3(a),
where a trajectory in Q~~ and Er is shown for a detector at
P= 8' for E;= 148.9 meV. This is overlaid on the predicted
continuum, Eq. (4). By changing the incident energy and
scattering angle, measurements along different slices of

Q~~

and ET can be made.
With the crystal mounted on the MARI spectrometer in

the manner described above, it was then cooled below the
Neel temperature T&=39 K. The appearance of the (0,0, —,')
magnetic Bragg peak at T= 39 K confirmed the ordering of
the magnetic moments. A series of measurements with inci-
dent neutron wave vector kI parallel to the chain direction,
i.e. , k;~~(0,0, l) and perpendicular to the chain direction,
k;~~(h, 0,0), were made at temperatures of 20, 50, 100, 150,
and 200 K. An incident neutron energy of Eo= 148.9 meV
was used in all of these measurements. The scattering trajec-
tory into a detector at q&=8' is shown in Fig. 3(a). Each
measurement was made with a total integrated intensity of
1500 pA h (—12 h). Measurements of the scattering from a
standard V sample in a white beam was made before and
after the experiment. In addition, measurements of the scat-
tering from the V standard were made using a monochro-
mated Eo = 148.9 meV beam of neutrons. These were used to
identify faulty detectors and calculate the absolute scattering
cross section.

In the second part of the experiment the magnetic re-
sponse in the 3D ordered phaes was probed in more detail.
Measurements were made with incident energies of
Eo= 127, 140, 180, and 280 meV. During this second set of
measurements problems in the seal protecting the instrumen-
tal vacuum led to water condensing on the experimental

0 I I I i I

0 20 40 60 BO 100 120

Energy Tr e.nsfer (rneU)

FIG. 3. (a) Scattering trajectory for a detector at a scattering
angle of 8' and an incident energy of Fo= 148.9 meV for k; along
c* in KCuF3. Scattering results when the trajectory intersects with
the continuum (bold line). (b) Scattering measured in the low-angle
detector banks at T= 20 K. The solid line is a fit, as discussed in the
text.

chamber. This gave rise to a small amount of ice accumulat-
ing on the sample. At low pressures and temperatures H20
freezes into the Ih ice structure, and scattering from vibra-
tional and librational modes of this structure were observed.

IV. RESULTS AND ANALYSIS

In this section, the results of our measurements are pre-
sented. For convenience we have split the results into two
parts. In the first part, those measurements made below the
Neel ordering temperature are considered. Comparison is
made with the MA. Absolute cross sections and exchange
parameters are obtained. In the second part, the scattering at
higher temperatures is examined. These results are compared
with the MA and field theory.

A. Absolute scattering cross sections

Comparison of scattering measurements to that from a V
standard sample allows the normalization of total cross sec-
tions measured on the MARI spectrometer. The total inco-
herent scattering from the V standard at each incident energy
was used to determine the absolute cross section. Corrections
were made for the relative number of scattering centers in the
KCuF3 sample and V standard and the resultant absolute
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cross section expressed in standard units. In the case of
KCuF3 this is a mb/meV/sr/Cu + atom.

The inelatsic neutron-scattering cross section per mag-
netic ion is given by'

; 10
I I

[
I I I

f
f I I

]
I I I

I
I t I

d2g g (gi
, =No, g. —— [F(Q)i (8 p

—
r~ kp)

p kl2]
X (n + 1 )5 P(Q, co),

where N is the number of scattering centers, the constant
o. ,g=0.2896 b, 8'

& is a Kronecker delta function, and the
product of the components of the unit scattering vector along
the directions n and P are subtracted from 8 p, g is the
Lande g factor, which has been determined for KCuF3 using
electron spin resonance (ESR) and magnetic susceptibility
techniques, and F is the magnetic form factor for the
Cu + ion. Because the g factor for the magnetic d orbital is
anisotropic, an average value (g ) is used. Using numerical
values for these, the factor A in the MA, Eq. (4) can be
extracted from fits to the normalized experimental data.

B. Measurements below T~

Figure 3(b) shows data measured in the low-angle detec-
tor banks (scattering angles P = 3.86' —12'), at a temperature
of T= 20 K (well below the 3D ordering temperature), where
the sample has been aligned with the c axis along the inci-
dent neutron wave vector k;. Scattering into detectors at
higher angles was not considered as the strong wave-vector
transfer dependence of the multiphonon scattering gave rise
to a large nonmagnetic signal. All data have been correctly
normalized to the scattering from a standard mass of V. The
units of the corrected data are in mb/meV/sr/Cu +. A com-
parison of the eight radial banks showed that the scattering
into each was identical (within the statistical uncertainties)
and could be summed together without loss of information.
Multiphonon processes contribute a smoothly varying signal
underlying the magnetic scattering.

Measurement of the nonmagnetic scattering from the

empty can alone suggests that this accounted for only
-20% of the total nonmagnetic contribution. In this case it
became necessary to determine the scattering from the
sample and mounting together. This was done by rotating the

sample by 90 and measuring the nonmagnetic contribution
in the vertical detector banks. The 1D Heisenberg antiferro-
magnet has vanishing intensity as Q~~~O. When the crystal is
oriented such that the chain axis is perpendicular to the in-

coming beam, the neutrons scattered into the vertical detec-
tor banks have only a small wave-vector transfer along the
chain direction. Therefore, the magnetic contribution is ex-
pected to be small. Since the crystal is nearly cubic, the
nonmagnetic scattering should not be significantly different,
and this gives a direct measure of the nonmagnetic scatter-
ing.

Figure 4 shows the measured nonmagnetic background.
The solid line is a model of the nonmagnetic scattering: A
Gaussian is used for the quasielastic peak and a polynomial
for the smoothly decreasing component. The detectors in the
vertical bank are 30 cm wide, and, as they are a distance of
4.022 m away from the scattering center, they subtend a
small angle along the chain direction. The small component

t

20 40 60 80 100
Ener gy (me V)

FIG. 4. Nonmagnetic background measured in the vertical low-

angle banks at T=20 K for an incident energy of 148.9 meV, the
1D c axis was perpendicular to k;.

of wave-vector transfer directed along the chain contributes a
small amount of magnetic scattering. A calculation of this
magnetic scattering based on the MA reveals that this con-
tribution is small enough to be ignored.

The solid line shown in Fig. 3(b) is the result of a least-
squares fit of the background component and MA convolved
with the instrumental resolution, as described in Ref. 5. The
only parameters allowed to vary in this fit were the overall
amplitude factor A, as defined in Eq. (4), the exchange in-

teraction 1, and a coefficient p, which scales the smooth
nonmagnetic background determined using the method de-
scribed above. This additional factor p should ideally be
unity but has been allowed to vary in order to account for
factors such as self-absorption of the crystal and the small
detector-width effect. The constant p determined in this way
is consistently in the range of values p=0.85+.0.05 for all
fits described here. For example, the background shown in

Fig. 3(b) is scaled by a factor p=0.870.
Calculation of the measured cross section for a particular

model is prohibitively slow to allow least-squares fitting of
the exchange constant J. A number of scans were calculated
for different values of J. Using an interpolation method, an
exchange energy ~J=53.5~ 1.0 meV was found to give the
best fit. We have expressed the fitted value as vrJ, the zone-
boundary energy of the lower boundary, as this avoids con-
fusion over renormalization factors between fits to classical
models, as in Ref. 23, and the dCP dispersion, Eq. (2). This
value is seen to give an excellent description of the data, Fig.
3(b). When correctly normalized to the V standard, fitting to
the overall amplitude allows a determination of the multipli-
cative constant A in Eq. (5). The best fit value at T= 20 K is
A = 1.78~0.01~0.5 for an exchange of mJ=53.5 meV. The
first error in A represents that of a fit to the model. The
uncertainty in the value is dominated by the second error,
which represents an estimated 30%%uo uncertainty in the nor-
malization procedure itself. The origin of this uncertainty is
largely due to the uneven fIux distribution across the incident
beam. The fitted value of A is in agreement with the theo-
retical value A-1.43 calculated using sum rules. As an ad-
ditional check on the fitting method, the constants of the
polynomial background were also allowed to vary. This gave
no significant improvement in the goodness of fit.
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Figure 7 shows the data measured when c was aligned
along k; at T=20 K for an incident neutron energy of
EQ 127 meV. The data is a summation over the scattering
into the low-angle banks. The uppermost of the two vertical
detector banks has been excluded from this summation as the
scattering in this bank showed an anomalous incoherent
component. Comparison of the scattering in each of the re-
maining banks confirmed that the scattering into each one of
these was identical within the statistical accuracy. In Fig. 7
strong magnetic scattering is again clearly distinguishable
from the multiphonon background. The scattering measured
in the low-angle detector banks where c was aligned perpen-
dicular to k, is shown in the inset of Fig. 7. The upper de-
tector bank is again excluded from this summation. There are
insufficient counts in the remaining lower vertical bank for
the background to be determined reliably from this alone. A
comparison was made between the remaining banks and the
scattering into each of these were found to be indistinguish-
able from the others. Assuming that any quasi-1D magnetic
contribution is small, the nonmagnetic cross section was de-
termined from the scattering by summing over the remaining
seven banks.

The nonmagnetic scattering in Fig. 7 was modeled as be-
fore, by using a Gaussian quasielastic peak and polynomial,
to which two more Gaussians were added. The two addi-
tional Gaussians in this model have been included to account
for the dispersionless vibrational mode at 35 meV and the
broad librational mode of ice Ih, which extends from 70 to
110 meV. Both modes were clearly visible in the high-
angle detector banks, confirming their nonmagnetic origin.
The dashed line shown in the inset of Fig. 7 is a best fit of
this functional form to the measured nonmagnetic back-
ground. This form gives an excellent description of the back-
ground scattering.

The solid line shown in Fig. 7 is the result of a best fit
using the MA form of the scattering cross section, this being
the only form of S(Q, co) that is defined over the entire scat-
tering range. Again the amplitude, exchange constant, and
scaling factor p multiplying the background were deter-
mined from the fit. The background scaling factor
p= 0.865~ 0.005 and this gives the nonmagnetic component
shown in the figure as a dashed line. As the scattering trajec-
tories pass close to the singularity at the zone boundary,
strong scattering is observed at about 55 meV. The intensity
of this peak is strongly coupled to the exchange constant.
Determining this by interpolation yields an improved zone-
boundary energy of ~J=54.5~0.3 meV. The amplitude A
was found to be 1.81~0.01~0.5.
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Subdivision of the low-angle banks into rings has been
shown to give increased wave-vector resolution at low ener-
gies. With the data accumulated at different energies, the
low-energy scattering can be looked at in more detail. Figure
10 shows the scattering loci of a number of incident energies
and for the particular rings of detectors at T=20 K. The
scattering into rings of detectors for these incident energies
are shown in Figs. 11(a), 11(b), 12(a) and 12(c). The mea-
sured scattering profiles are shown as a function of momen-
tum transfer along c, Q~~ . The corresponding energy transfers
are shown on top of each graph as a nonlinear scale. The
axes of these graphs have been restricted to Q transfers in the
first Brillouin zone, i.e., low energies.

The solid lines are calculations using no adjustable pa-
rameters, as described already. This calculation reproduces
the intensity, profile, and variation in energy of the con-
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FIG. 8. Scattering measured in the low-angle banks at T= 20 K
for an incident energy of 140 meV. The solid line is the scattering
calculated using the Muller ansatz added onto a fitted background,
as described in the text.

1. Magnetic response at lo~ energies in the ordered phase

Other incident neutron energies were used to probe the
magnetic response at T=20 K. Figures 8 and 9 show scans
taken using F0=140 and 180 meV, respectively, and are
summations over the low-angle detector banks. The normal-
ized data measured with Fo = 140 and 180 meV belong to the
second stage of this experiment. The backgrounds for each
have been independently determined, as before. Figures 8
and 9 show the scattering calculated using the MA and ex-
change and amplitude factors determined in the fit to the
Eo = 127-meV data, Fig. 7. Once again these parameters pro-
vide a good description of the data.

Q
I I I I I I I I f 1 I I I I I I I I

1 2 3
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FIG. 9. Scattering measured in the low-angle banks at T= 20 K
using an incident energy of 180 meV. The solid line is the scattering
calculated using the Muller ansatz added onto a fitted background
as described in the text.
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FIG. 10. Loci of scattering into detector rings at various ener-

gies. These loci correspond to those scans depicted in Figs. 11 and

12.

tinuum scattering. The Miiller ansatz provides an impres-
sively good description of the data in regions 1 and 2, the
low-energy response.
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FIG. 11. Scans into ring (c), i.e., scattering angles y from
8.57' to 9.86' at 20 K for (a) Eo= 140 meV, and (b) Eo = 127 MeV.
The solid lines are calculated using the Muller ansatz as described
in the text.

2. Magnetic response at high energies in the ordered phase

The incident energies were chosen so as to allow the re-
sponse in the neighborhood of the lower-boundary frequency
to be investigated in more detail. These were selected so as
to build up a cross section of the scattering around the zone-
boundary frequency of the lower boundary at a wave vector
Q~~=5~l2c. Figure 6 shows the scattering trajectories for a
detector at /=8'. In particular, the incident energy of
Eo=127 meV was chosen because it bisects the antiferro-
magnetic zone boundary. (AFZB) at this point. Other inci-
dent energies give different scattering frequencies for the
same wave vector. For an incident energy of 100 meV the
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15 -'

10-
5:-
0

(4)
150m eV

c
Vp V

0.5 1.0 1,5 P, , O

MOMENTUM (vr/c)

FIG. 12. Scattering measured at T= 20 K for (a) Eo= 280 meV,
y= 10.29' —12', (b) Eo= 180 meV, and (c) Eo= 150 meV for
@=8.57' —9.86 . The solid lines are calculated using the Muller
ansatz, as described in the text.

C. Measurements above T~

Measurement of the scattering cross section was also
made at temperatures above the 3D ordering temperature,
Figure 14(a) shows the scattering measured in the low-angle
banks at T=50 K. A smooth nonmagnetic background has
been scaled and subtracted. Figure 14(b) shows the scattering
at 20 K with the background subtracted. The solid line in
both figures are calculations using the MA with the param-

scattering trajectory passes well below the AFZB frequency.
In contrast, incident energies of Eo= 140 and 181 meV pass
above this zone-boundary energy. Subdivision into rings for
each incident energy gives considerably better resolution and
the response can be more thoroughly investigated close to
the boundary. Figures 13(a)—13(d) shows some of the mea-
sured scattering profiles as a function of wave-vector trans-
fer. Figure 13(a) shows a measurement for Fo = 100 meV and
displays a dip in intensity for Q

~

= 5 ~/2c Note that th. is scan
was made at T=50 K, above the Neel ordering temperature.
This is consistent with the scattering trajectory passing be-
low the AFZB frequency, and because of this it necessarily
intersects the lower boundary twice producing the peaked
structure. Figures 13(b)—13(d) indicate that scattering de-
creases strongly from the maximum as the incident energy is
increased. This is as expected. The solid lines are the calcu-
lations of the scattering using the same values of the ex-
change and overall amplitude parameters. The background
parameter p was allowed to vary in subtracting the nonmag-
netic scattering in order to refIect small differences in the
nonmagnetic scattering as a function of angle. However, the
fitted values of P were all within a few percent of each other,
refaecting the soundness of method.
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text.
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eters A and J determined in Fig. 3(b). These two plots show
that the scattering profile is not changed on going above the
Neel temperature.

Figure 15 shows the effects of temperature on region 1, up
to T= 200 K. To obtain adequate statistics at higher tempera-
tures (100—200 K) the scattering is a summation over the
entire low-angle detector banks. The data have been cor-
rectly normalized, and the nonmagnetic backgrounds, inde-
pendently determined for each temperature, have been sub-
tracted. The scattering broadens and weakens with increasing
temperature. The solid line is that calculated using the low-
energy field theory, with an exchange J and overall ampli-
tude A fixed to the low temperature fits. The theoretical ex-
pression does not account for the small peak at about 42
meV. Aside from that, the agreement with experiment is ex-
cellent over the entire temperature range.

Figure 16 shows the scattering measured in region 2. This
scattering is from the branch arising from the Q l

= 2 m/c
nuclear point, and the intensity is at quite high energies. To
show this component more clearly, the antiferromagnetic
scattering modeled as outlined above, has been subtracted.
The residual scattering is plotted as a function of wave vector
along the chain Q~~

. The feature at about 42 meV broadens
and moves to lower vlaues of Q~~ with increasing tempera-

ture. Now at low energies, and wave vectors sufficiently
close to Qi=2~/c one would expect the scattering to be
described by a first-order field theory. This predicts a well-
defined peak, which does not change with temperature, as
shown by the solid line. However, the introduction of higher-
order terms, Eq. (A8), leads to a broadened component. The
dashed line shows the behavior of the second-order compo-
nent alone. Although the data is not suitable for a quantita-
tive comparison, consideration of these higher-order terms
gives at least a qualitative description of the main features of
the data.

The last figure of this paper is Fig. 17. This shows the
high-energy response at temperatures of (a) 20, (b) 100 and

(c) 150 K. The scattering profile calculated with the MA
describes the high-energy response very well at every tem-
perature. This is perhaps not surprising in that the energy
transfers involved are considerably higher than the thermal
energies. It is perhaps of interest to note that the boundaries
of the scattering continuum appear to remain well defined at
such temperatures.

V. SUMMARY AND CONCLUSION

In this paper the magnetic response for the 10AF NNHM
compound KCuF3 has been studied in some detail using
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FIG. 16. The temperature development of the scattering near

0= 2 m. The solid line represents the first-order component, and the
dashed line shows the second-order component (see text).

FIG. 17. The temperature development of the scattering at en-

ergy transfers above 50 meV. The background components have
been subtracted, and the solid line is a calculation using the Muller
form (see text).

G "(Q,co) = —i dt e'"'O(t)([mg(t), m' g])—F00

which is a slowly varying function of x and t, and the stag-
gered magnetization operator a'(x, t), defined by 1 PQ

7r to Q p
(A5)

S2;—S2;+ Ia'(x, t) = =)t cos(rp/2m).
2 (A3) and the imaginary part of the Green's function is

&G "(Q.~) = IQI ~(~—PIQI). (A6)
A constant X has also been introduced; this has to be evalu-
ated using other methods. Within the field representation, the
spin operators are expressed as combinations of derivatives
of the y field and exponents. Only the operator expressions
with the lowest scaling dimension have been retained on the
right-hand side of Eqs. (A2) and (A3).

Because the x, y, and g components of spin are equiva-
lent, only the correlations involving the z component of spin
5' need to be considered. The spin component S', in terms of
a' and I', is given by

S'(x, t) =m'(x, t) + ( —1 )"a'(x, t)

l P
B,rp(x, t)+( —1)"X cos[q(x, t) /2m].

which gives a branch in $(Q, cu) with a structure factor of
I QI, emanating from the Q =0 point. This is in agreement
with the MA, Eq. (4). The Green's function for the azimuthal
magnetization does not change with temperature, and the
only temperature-dependent factor in the scattering function
is the detailed balance factor (n„+ 1). Similarly, the corre-
lation functions for the staggered magnetization operator a'
can be found. This is given by

$ + oo

G,"(Q,co) = —i dt e'"'8 (t)([a&(t),a' &])
J —00

1 QJ PQ I CO PQ~
pT 4mK~T( 4mK~T) 'p

(A4)
I (1/4 —ix)

~( )= r(3' —rx) ' (A7)

The correlation functions for the spin operators are inter-
preted as an order expansion in the field operators. To first
order the Green's function for the azimuthal magnetizationI' is given by

which is similar to Eq. (11), although the scattering emanates
from Q = 0 rather than Q = ~.

The approximation to 5' given in Eq. (A4) can be modi-
fied, if necessary, by inclusion of terms with higher scahng
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S'= 8,0 t+ ( —1)"02. (As)

dimensions. The method by which this can be done is as
follows: The total magnetization along the chain
S =fS'(x, t) dx is a conserved quantity of the motion; there-
fore the corresponding density must be a total derivative of
some operator,

relation function of the azimuthal magnetization is

@2Q2
(Q co)= 2 2 2+CO 6 '(Q to)+'

(A10)

where C is an undetermined constant related to B in Eq.
(A9). The spin-correlation function can be written in terms of
Eqs. (A10) and (A3),

The operator with the smallest scaling dimension is 0&-y
and the next one is sin(g(2~) tp), so

G,"(Q, to) = —i dt 8(t)e'"'([Sg(t), S' g])

(A 11)

lP
8~0 t

— Bxtp+ 8oxcos( g2 rr tp), (A9)

where 8 is another undetermined constant rejecting the
strength of the next-order term. Using this, the modified cor-

The last term on the right-hand side gives the scattering
around the antiferromagnetic point, and, when multiplied by
the detailed balance factor (n„+1), is proportional to the
neutron-scattering cross section. The second-order term in
Eq. (A10) provides an incoherent background to the ferro-
magnetic peak in the structure factor near Q = 0,27r and be-
comes progressively more important at higher energies and
temperatures.
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