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The self-consistent renormalization theory of the itinerant electron model was the first theory to show that

the Curie-Weiss behavior of the magnetic susceptibility is not peculiar to the localized model. But the theory
was justified on the basis of physical intuition so that the improvement of the approximation is a hard problem.
In this paper the susceptibility is studied by the inversion method, in which the way to improve the approxi-
mation is always known in principle. The inversion method advances the Stoner theory systematically since the

method is a kind of perturbation theory and its first-order calculation reproduces the mean-field theory. The
second order of the inversion method is applied for the concrete model, which has been considered to be
difficult. It is possible to realize the Curie-Weiss law and the lowering of the critical temperature T, as a result.

I. INTRODUCTION

Ferromagnetism in the itinerant electron model has been
one of the most fundamental issues in solid-state physics and
has attracted much attention accordingly. Although the mean-
field approach to the problem' explained the qualitative fea-
tures, several serious discrepancies are left unresolved. One
of the crucial problems is how one can explain the Curie-
Weiss law in the itinerant model, which is a property com-
mon to most of the metallic ferromagnetic substances. An-
other problem is the fact that the Curie temperature T,.
calculated from the observed value of the saturation magne-
tization by the Stoner theory is several times higher than the
observed T, for typical substances.

About 20 years ago the self-consistent renormalization
(SCR) theory of the itinerant electron model was proposed
by Moriya and Kawabata. This theory reproduces the Curie-
Weiss behavior of the susceptibility and the Curie tempera-
ture substantially lower than that of the Stoner theory. The
SCR theory succeeded in taking into account the effect of the
spin fluctuation neglected in the Stoner theory. The approxi-
mations used in the SCR theory are considered to be good at
least for the weak ferromagnetic substance where the long-
wavelength contribution of the spin fluctuation is dominant.
This theory shows that the Curie-Weiss law is not unique to
the localized electron model although there are many works
on Green's function theories of the spin fluctuation or y,
which give similar result. Furthermore the SCR theory was
developed to see qualitatively excellent agreement with ex-
periment (see, for example, Chap. 4 of Ref. 1 and references
therein).

But, as in almost all the theory going beyond the mean-
field approach, the SCR theory is based on the physical ap-
praximation, that is, approximations understandable only
when one relies on the physical intuition. One does not know
how to improve the theory as a result. To make this point
clear the SCR theory is reviewed in Sec. IV.

The viewpoint of this article is that it is worthwhile trying
to explain the Curie-Weiss law and lowering of the Curie
temperature (compared with the Stoner theory) by resorting
only to mathematically well defined approximatio-ns

approximations justified without the physical intuition,
As a starting point of this line of approach we apply the

inversion method. The approximation can be made better
perturbatively up to the desired order in the method. The
naive perturbation theory cannot deal with the problem of the
symmetry breaking or the critical phenomenon. The inver-
sion method is, however, a technique for making the Le-
gendre transformation perturbatively, and therefore, it is
natural that the method be a powerful tool in studying the
symmetry-breaking situation.

The inversion method up to its first order is known to
correspond to the mean-field result. This fact has been con-
firmed for the case of the Ising spin systems, the supercon-
ductivity of the BCS theory, the theory of the superfluidity of

He, and the ferromagnetism of the itinerant electrons in
addition to several cases in particle physics. ' Many ex-
amples have been studied by the inversion method. It is
stressed here that the nontrivial result beyond the mean-held
approximation is done in this work.

Combined with the on-shell expansion, ' the inversion
method can also be utilized to investigate excitation modes
and the scattering among them on the (symmetry-breaking)
vacuum. This line of study has already been performed up to
the first order of the inversion method for the ferromagnetic
phase of the itinerant electron model (the spin-wave
theory) .'"'

The primary purpose of this paper is to improve the mean-
field theory systematically, for which the inversion method is
particularly suited. This method can be summarized in the
following four steps.

Step 1: Introduction of the source. Replace the original
Hamiltonian M by

M—+,XY~
—J@,

where the source J is an external c-number field coupled to
the operator of the order parameter @ in question. J@ is
called the source term. If one deals with the problem of the
symmetry breaking, the original Hamiltonian .W keeps the
symmetry while the source term J@ breaks it.
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Step 2: Calculation of the original series. For the system
with the artificial source J, calculate the expectation value

@ of the operator @ by the conventional perturbation theory
to obtain the originaL series

where the creation and annihilation operators for the electron
of spin o. and o. ' at the lattice site r and r' satisfy anticom-
mutation relations

&= &(J)= ~(0)(J)+ ~")(J)+~(2)(J)+
(a, , a„, , J = 8'„8 (2.2)

Here we have assumed that there exists a small expansion
parameter, say U, and @(")(J) is the nth order (in U) con-
tribution to P regarding the source J as order unity.

Step 3: Obtaining the inversion series. Invert (1.2) in fa-
vor of J to get the inversion series

J=J(4) =J'")(4)+J'"(0)+J"'(0)+ . . (I 3)

where J(")(P) is the nth order of J regarding @ as order
unity. To obtain the explicit form of J(')(P), insert (1.3) into
(I 2),

y(0)( J(0)+ J(1)+J(2) + ) + y(1)(J(0) +J(1)+ )

etc. The number operator of the spin o. has been introduced
as

nro-= ar~aro . (2.3)

Furthermore t„represents the hopping term and U the Cou-
lomb interaction. In this paper only the on-site Coulomb in-
teraction will be considered and we assume that t„ is a
function of r—r'.

Step 1: Introduction of the source. Since we have interest
in the ferromagnetism at finite temperature, the order param-
eter is the total spin operator

+ y(2)( J(o)+. . . ) ~. . . (1.4) 7'~~'aro-are ' (2.4)

or

@(0)(J(0))+(@(0)i( J( )0) J(1)+ @(1)(J(0))j
+ (y(0) i (J(0))J(2)+ 1 y(0)n(J(0))( J(1))2+@(1)I(J(0))J(1)

~here ~ is the 2X2 Pauli matrix,

(0 I) (0 —i) ( I

0 i'(0 —Ii (2.5)

+ y(2)(J(0)))+

Then we regard @ as independent of U or order unity in the
last equation to get a set of equations,

(1.6)

Although it is natural that one take the source term as h. S,
we here introduce the source only for the z component of
S for simplicity. Thus the grand canonical Hamiltonian takes
the form

p @(0)i( (J)0) (J1)+ y(1)(J(0))

p p(0) f(J(0))J(2)+ 1 p(0)ri(J(0))(J(1))2

+ @(1)t( J( 0)) J(1)+ y(2)(J(0)) (1.8)

,WJ=M~ —p,N —hS, =M~ —J N (2 6)

where the summation over o. is omitted as we will do unless
it is ambiguous. The z component of the spin operator 5, and

the total number of the electron N are given by

J"'(0)+J"'(0)+J"'(0)+ (I 9)

The key point is that it is possible for this equation of @ to
have a nonzero (symmetry-breaking) solution.

We have assumed the case in which there is only a single
order parameter @. It is straightforward to extend the above
steps to the case of many order parameters.

II. APPLYING THE INVERSION METHOD TO THE
ITINERANT ELECTRON MODEL

The itinerant electron model is here defined by

r„„ta, a„i + Ug n„Tn,(, (2.1)

and so on. In this way we can obtain J(')(@) successively up
to the desired order.

Regarding @ as independent of U just corresponds to
making the Legendre transformation since @ and U are dealt
with as mutually independent in the Legendre transformation
(see Appendix A of Ref. 16 for detail).

Step 4: Turning off the artificial source J. In order to
return to the original theory, we require J=O, or

(2.7)

N=gN, N =gn„ (2.8)

We introduce the total magnetization operator M or its den-

sity m by 5,= —M= —Um, where U is the volume of the
A

system. The source J and N in (2.6) are given by

0 N
J~=—h+ p„N =—+ AS, . (2 9)

The chemical potential p, has been introduced as usual and is
here considered as a part of the source for convenience. The
two sources p, and h are combined to the source J as in
(2.9). The spin index o is defined to take the value
(+ 1,—1) for (t, g). Note that the original Hamiltonian de-
fined in (2.1) has the SU(2) symmetry while the source terms
in (2.6) reduce the symmetry down to the Z2 invariance. The
case where a more general source term h S is introduced has
been also studied up to the first order of the inversion
method. ""
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Step 2: Conventional perturbative calculation of the order
parameter. The thermodynamical potential 0(J&,J&)/ p
= A(h, p, )/P is defined here by with

[G ],, =G, ,
—8„6„J (2.13)

(2.10)

where T= p ' is the temperature of the system. The expec-
tation values P of the operators N /V are considered as
order parameters for convenience although the original order
parameter of the present problem is the expectation value m

of the operator m = —S, /V. The value m is easily given by
m=(Pt —Pt)/2 once P is known. This is clear from the
relation

(2.14)

where x and x' denote the sets (r, r) and (r', r'), respec-
tively. Here 7. denotes the imaginary-time variable. Specifi-
cally @t is given by the following graph in which the solid
(dashed) line represents the propagator G& (G&) and the fac-
tor U is assigned to the four-point vertex (see the Appendix
for the detailed rule including the symmetry factor):

VP =(N )= ,'N+crS-, = ,'N oM—,—

where N, S, , and M are the expectation values of the opera-
tors N, S, , and M, respectively. One can calculate P as a
function of J by the conventional perturbation technique
since @ is given by

where

y(o)+ @())+y(2)+. . . (2.15)

(2.16)

PV@ (2.12)

The diagrammatic expansion according to the imaginary-
time formalism is done as follows. Since the source term
J N =X+ X,at a, is quadratic, it can be absorbed into
the propagator G

(2.17)

(2.18)

and so on. The solid dot where two propagators meet corre-
sponds to the derivative with respect to Jt since we have the
relation

(2.19)

where Z =fdrX„.
We notice from (2.16) that @& (J&,J&) depends only on

J& so we write it as @~) (JT ~ l) =@o( T).

By the conventional perturbation approach like above (up
to any finite order) the spontaneous magnetization is always
zero, that is, one obtains @&

= P&, which means m =0, if one
sets h=0 (Jt= J&). This is easily understood if one notices
that for the case of h =0 the propagators Gt and G& take the
same value to result in @&

=
@& .

Step 3: Inversion of @=@(J) to obtain J=J(P). Let us
discuss the graphical expressions of the inversion formulas
(1.6)—(1.8). From (2.16) the zeroth-order formula (1.6) be-
comes

1
Po(Jt) = — g (G, ' —B„J)) (2.20) Q, (2.21)

Then @& (J),Jt) can be written by using the same function,
that is, @I (Jt,jt) = @o(Jt). where the line represents not G& but G~t ) defined by
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[G(o)] t —G ) g, J(o) (2.22)

Since (2.21) defines J( ) implicitly we know that J( ) is a
function of @ which does not depend on P . In other
words J{ ~ is given by

(2.23)

By noting that

(2.25)

Here and hereafter the line represents not G but G as in
(2.21). Thus we get

(2.26)

V
&&'t'(Jt Jt)

aJ (,) BJ

(2.24)

and by using Eq. (2.17), the first-order formula (1.7) be-
comes

or

J(() G(0) @ (J(o)) (2.27)

We have used (2.23) and the fact that G( ) does not depend
on x (assuming the translational invariance). The graphs of
the second-order formula (1.8) are obtained by (2.16)—(2.18)
through the way similar to the one of getting (2.25):

J(2) +

(2.28)

Inserting the graphic expression of J(i') like (2.26) into this
equation, we see that the third and sixth graphs cancel out
(taking the symmetry factor into account of course, see the
Appendix). The second, fourth, fifth, and the seventh graphs
are also summed up to zero. Thus we have the simple result

1 BF

PV 8$ (2.31)

Then F is actually a function of P& and Pi (or of M and N)
with an identity

We introduce the nth order of F in accordance with (2.31):
(2.29

We can continue this course of study up to the desired order.
The result for full order is already known to be given as a
simple rule. '

We have completed the inversion up to the second order.
It is convenient to get the free energy from these results. The
Helmholtz free energy F(M, N)IP is defined through Le-
gendre transformation:

l BF{"i
g{n)

PV 8@

Thus integrating both sides (at n = 0) we have

F =PVQ J( dJo gJ(0) a

=PVQ J( )@ —g (In[G( )] '),
a,x

(2.32)

(2.33)

F=A+PVQ J P (2.30) We have integrated the second expression by part and have
used
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BA IJ ]
PV4~=

&Jto&
(2.34)

1
4 = 4 o(J"')= —X fp(tk —J'.")

Vk
(2.45)

and

nt = —y (1n[G ] '), (2.35)

to obtain the last expression. The quantity F ' is readily
obtained by integrating (2.27) with respect to P

Let us examine the physical meaning of J . When
T) T, and h=O, one gets QT= pt=n/2 because m=O, and

thus we have J& = J&
———p, 0. The physical meaning of p, 0 is

the chemical potential for the system with m=O (T)T, ,
h=O) and U=O (noninteracting) at finite temperature. This
is understood from (2.45) for the case of @T

=
p&

= n/2 or

1

PV T tF' =U@ Q =U(N l4 M)—/V (2.36)
N—= g fp(tk p, o).— (2.46)

1 BF

PV BQT

1 dJ BF( )
T

PV gy
(2.37)

and also that the left-hand side of (2.29) can be written as

pVBQT/BJtT T JtT i. Namely, the right-hand side of (2.29) is

just BF /BJ& . Thereby we get

It is easy to see that F +F ' is the free energy of the
Stoner theory. Thus the inversion method up to the first-order
coincides with the mean-field result.

Next, F can also be obtained if we notice that

Thus J( ) is the usual chemical potential in this case.
The algebraic expression of F( is given by

U2
(2) W (0) (0) (0) (0)F =

2 ~ G~xyG~yxGgxyGgyx
x,y

(PV)2~ ~ T P~ T P~+k

(2.47)

F(2)
4

'~I (2.38)

where Gt i =(—i(„+t kJt i) ' with p=(, k). For later
convenience we introduce Ft ~(J&,J2) as follows:

(2.48)

A more sophisticated way of obtaining F, F ', . . . is
shown in Ref. 16.

Now we introduce the momentum representation where p
or p' represents a set (n, k) or (n', k'), respectively:

1 (P "P

r'

where

(2.49)XP(J)= —
VX GP Gp

P

and G„=( —i g„+tk J) ' with p—= (n, k). Then F~ ~ is
given by

x i$„—'

I
GJ q

i —'(„'+i
a~xx' (2.39) F =F (Ji J2)IJ, =J' ', J2=J' (2.50)

=(—i(„+tk J)Bpp
=—G—

where the odd frequency g„and tk are given by

(„=(2n+ 1)mT,

(2.40)

(2.41)

The quantity x„(J) reduces to the dynamical susceptibility
of the free-electron system ( U= 0) in zero magnetic field if
we set J= p, o and further reduces to the Pauli (static) suscep-
tibility when p=(n, k)=0. This is because x„(J) can be
rewritten as

1 I t

tk ~kk'
—ik. r ik ~ r

V /

(2.42) (2.51)
fp(tk'+ k J) fp(tk' J)—

x„'(J)=-
Vk, ~.+tk —tk +k

Here we have assumed that t„ is a function of r —r'. In this
way we have from (2.20)

where co„ is the even frequency:

~n = 2n ~~. (2.52)

Step 4: Turning off the source. In order to go back to the
starting theory we set 6 =0 at this stage. This is done by the
following replacement,(2.43)

where

1 1 1
@o(a)= - g . = —g fp(t„a), -

1
fp(&)= p (2.44)

1 BF o=J~=—h+ p,~p, . (2.53)

Thus we have
Specifically this equation is written, by using (2.33), (2.36),
and (2.48), as
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J(o)+ Uy

J( ) —P (2.55)

By operating $0 on the above equation we get from (2.23)

1
4.= 4o(P U0-.) =—VX f/3(&k+U0 . P). -—

(2.56)

Hence we arrive at

U 1 aJ1 aXk(J1)
pv ay X xk( J2)

0
a ' 2 —a

(2.54)

Two equations (2.54) for o.= t' and $ can be looked upon as
relations determining the magnetization M and the chemical
potential p, as functions of the total number of electrons N.
If we neglect the last term in (2.54) we have

Therefore we have

XMF'=I:x ']"'+(x ']'"=2(I:40(PO)] ' —U),

which corresponds to the mean-field result. If we denote

@0(PO) by the graph in (2.24), the graphs of XMF are repre-
sented by so-called ring diagrams. Thus we see that as the
result of the inversion an infinite number of graphs has been
summed up to reproduce the Stoner theory.

In order to derive the second order of the inverse of the
susceptibility we first note

(2) ~Ji ~J2 ~ ~
(2)( i 2)IJ =J('),J =J(') ~

(3.6)

aJ a (aJ i a
J2 F (J).J2)IJ, =J( ) .,=.()

(3.7)

/)/= g [fP(tk Um ——P,)+fp(ti, + Um —P,)],

(2.57)

Since the susceptibility for T~T, and h=O is evaluated at
J(T ) = J(l ) = P0, in the above equations, aJ;/a@ reduces to

[$0(po)] ' as before and the quantity

1
m= g [fP(tk Um —P, )—f/3(tk+ Um——P,)],2V k

a'J; a (ap ) ' (ay ) 3a2@
(3 8)

where p, = p, —Un)2. These two equations are the self-
consistent equations of I and p, for a given N in the Stoner
theory. Thus we see again that the inversion method up to the
first order reproduces the mean-field result.

reduces to —[$0(PO)] $0(PO). Thus from (3.1) and

(2.48) the second order of X
' is given by

III. STUDY OF THE SUSCEPTIBILITY FOR T&T,

The inverse of the static susceptibility is given by the
second derivative of the free energy with respect to M. The
susceptibility X for T)T, with h = 0 is given by

1 8 F—1
X PV am (p) (p)1 =J =pa

l' 00(PO)

( 4'0(P0)) 40(P0) aJ1 aJ) aJI aJ2

0 0X X Xk( 1)Xk( 2)
J&=12=pa

(3.9)

We now obtain the inverse of the susceptibility for T~T,
and h =0 up to the second order of the inversion method,
which is given by

PV TT ll Tl)J =J =u ' (3.1)
X XMF+ ~x (3.10)

where F i = a F/aqb a$ i. [Note that in the above equa-

tion the subscript J
t

= J~ = p p does not imply that the de-(o) (p)

rivative with respect to m is taken by fixing J ) but implies
merely that J is set to p, p after the derivative, see below
(2.45).] Hence the zeroth-order of the inverse of the suscep-
tibility is obtained as

(3.2)

with (3.5) and (3.9). This expression is exact except for the
approximation by the inversion method so that we expect
that it approaches the correct value if the coupling constant
U becomes small. We note here that without further approxi-
mation the even-frequency summation in (3.9) [see o)„ap-
pearing in (2.51)]can be performed although the result is not
used explicitly in what follows:

0 0
VX Xk(Jl )Xk(J2)

By noting (2.45) we get

LX ']")=2I:4o(pp)] '. (3.3)

1

2V3 X (fP(P i) —fP(P )))(f)3(P2) fP(P'2))
k, k),k2

where $0(J)= a@0(J)/aJ and $0(J)= —XkGk/PV The.
first order is easily given from (2.36):

coth( Pe 2/2) —coth( Pa, /2)
X

6( 82
(3.11)

[X-']("= -2U. (3.4) where p, ; = tk + k
—J;, p, ;= tk. —J;, e;= tk +„—tk .



13 364 K. OKUMURA 52

To examine (3.10) numerically we make two approxima-
tions.

(1) Use a parabolic band with cutoff momentum. We em-

ploy the parabolic band structure tk= k /2m where the upper
boundary of the band is taken into account by cutting off the
momentum integration at k, .

(2) Keep only the zeroth-order of the Sommerfeld expan-
sion. We keep only the first term of the following expansion:

where the upper limit of the integral of K' is automatically

set to PJ by the 0 function. Here K—= iK~.
On the other hand, AX ' is given from (3.9) as follows

with the above approximations:

1 ~x„'(J) ~'x,'(J)
I DF) pV t, eF (2 BJ BJ

1

P( — )+ 1

'7T 0= —~(e —
/ ) —

2 2 ~(e —
/ )+O(T')

(3.12)

l ~x„'(J)

)
(3.23)

4o(/ o) (3.13)

This amounts to the assumption 1&)(m2/12)(T/TF)~.
We stress here the fact that T/TF may be smaller than 0.1

in most of real substances even at the temperature of melting
point where TF is the Fermi temperature. With these approxi-
mations the following replacement can be used:

with p= (n, K). By introducing the quantities

1 K (2+K) +t3„
„x.=—ln

K(2 —K) +

K (4 —K )+ su„
gnZ =

4~2

(3.24)

(3.25)

4'o(/ o)

)(po) 2eF
(3.14) K (4 —K) —co,

h„~=4K
co, +2K (4+K )c3„+K (4 —K )

PP~BF,

fp(& no) ~ /I(&F e)

where aF has the following relation with p, p..

(3.15)

(3.16) e„) 2K+ K'
l„z= arctan

~n

(3.26)

(3.27)
ton )

2K —K'i
+ arctan

) 7r2/ Ti~
pp —sF 1 —

l + ~ ~ . , TF —8F .
12 i TF) )

(3.17)

one gets, after some calculation using the above expression
for x„(J) in (3.22),

DF is the density of states at Fermi surface of the free elec-
tron:

U «, 47rK kF f„x+h„~
4P „= g o (27r) eF 2K

3n
DF=

4eF
(3.18)

fnag nX nIC fnX+ (3.28)

In addition we have the well-known relations

kF
2

8F=
2m

kF' ——3~2n, (3.19)

1 8(J—tk +k) —8(J—t„)
x„'(J)=—

V kt tkt ~kt+k+ ) Con
(3.20)

with p =(n, k). Now we introduce dimensionless quantities

where kF and n are the Fermi momentum and the number
density of the free Fermi gas, respectively.

By the approximation fp(x) ~ 9(—x) one gets from
(2.51)

where we have introduced the cutoff momentum
K, = k, /kF . We get in this way a formula for the normalized
(dimensionless) susceptibility:

2

1/x= 1 —n+ A(T)—
2

(3.29)

with

where

(3.30)

l )K
A(T) = —T g dK( ,'(f„x+h„tr)(K+f-„~g„tr l„~)—

n= — Jp

k
K=—,

kF'
JJ=-
8F

(3.21) X
DF/2

' n= UDF, T= T/TF= T/eF . (3.31)

Thus in these approximations we have to set J= 1 in the end.
One then obtains, with the approximation tk= k /2m,

DF t ~J (K'+K/2) +(co„/2K)
X„(J)= dK'K'ln

(K' —K/2) + (to„/2K)
(3.22)

Note here that in the Stoner theory y is given by
1/y=1 —n+RT where R is determined by the derivatives
of the density of states at the Fermi level. Equation (3.29) for
y is estimated numerically. As is clear from the expression,
parameters of this theory are K, and cv= UDF. The param-
eter a is directly related to the Stoner criteria a)1, which
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FIG. 1. The relation between 1/y and T. The values of a indi-
rectly determine the critical temperature T, . The Curie-gneiss law
is well reproduced.

FIG. 2. The relation between a and T, . The critical temperature
T, in the present theory is generally lower than that in the Stoner
theory.

gives a sufficient condition for realizing the ferromagnetic
phase in the mean-field approximation.

Through the numerical calculation we confirm that the

A(T) in (3.29), which is n independent, is almost linearly
dependent on T if K, is slightly smaller than 2.0 (see below)
and T= 0.01—0.15. Note that since the typical value of TF for
metal may be about 10 K, this range of temperature covers
that of the normal experiment situation on the susceptibility.
Thus for rather special value of K, we obtain the linear de-
pendence of the inverse susceptibility on temperature —an
important property realized in most kind of metals.

The significance of the special value of K, can be consid-
ered as follows. The integrand in (3.30) is singular for n =0
at E=2. This singularity is originated from the adaptation of
the parabolic band which may be unphysical if we do not
require cutoff. Thus it is natural that we cut off the momen-
tum integration at smaller value than the singular point that
corresponds to twice the Fermi momentum. By letting the
E, close to the singular point from below, the contribution
from the n=O term in (3.30) which is independent of the
temperature comes to dominate, resulting in the linear behav-
ior of A(T). The fact that the reproduction of the Curie-
Weiss law requires K, to be slightly smaller than 2 implies
that the present theory is sensitive to the behavior of the
density of states near the singularity.

Furthermore we interpret the result as follows. The
temperature-independent part of the correction term, namely
A(0), has the role to renormalize n so that the renormalized
n takes its critical value at a=1 as in the Stoner theory;
1 —n+ (n /2)A(0) = 1 —n„. Thus we simply keep only the

temperature-dependent part of A(T) in what follows. This
interpretation will be reconsidered later. In this way we ar-
rive at Fig. 1 where the Curie-Weiss law is well reproduced.
Furthermore as seen from Fig. 2 we see that the Curie tem-
perature T, is substantially lowered in the present theory
compared with that in the Stoner theory, which is more
agreeable to the real situation than the Stoner theory. The
parameter K, in these figures is 1.9999. We made sure that
the linearity in Fig. 1 is improved if K, becomes closer to
2.0. In the numerical calculation we have used the double

exponential formula, which is strong in integration where the
integrand has a singular point at the upper bound of integra-
tion.

IV. APPROXIMATIONS IN THE SCR THEORY

f(M, U) =f(M,O)+ U(N /4 —M2)/V2+ 3,f(M, U),
(4.1)

where bf is given by

b f(M, U) =— den pcs 1
coth

—00 7r 2 V k Jo

&&[ImyMU (k, co+ iO") —ImgMO(k, co+iO+)]

(4.2)

+ [XMU'(k i~ ) XMO(k i~ )] (4.3)

where Im represents the imaginary part, and 0+ a positive
infinitesimal quantity. In what follows, we review the SCR
theory only for the paramagnetic case. EMU (k, co) is the
dynamic susceptibility under the magnetic field that stabi-
lizes the value M of the magnetization but the strength of the
on-site Coulomb interaction taking the value O'. Note that

can be expressed by the fiuctuation of the spin by the
fluctuation-dissipation theorem so that Af originates from
the spin fluctuation. The first two terms of (4.1) are the free
energy of the Stoner theory. Since the inverse of &he static
susceptibility is given by the second derivative of the free
energy with respect to M, for T) T, (M =0) we obtain

1 8 f(M, U)

yo U(0,0) BM
(4.4)

The SCR theory starts from an exact formula for the free
energy (per unit volume) f(M, U) at temperature T= p ' for
a given M;
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or

Xoo(0 0) = 1 —2 UXoo(0, 0) + k(T, U),
XOU

wlleie k(T, U) is glvell by

(4.5)

After collecting all these approximations involved in the
SCR theory the author came to the conclusion that it is
worthwhile to develop the theory of the ferromagnetism of
the itinerant electrons in a systematic, mathematically well-
defined manner, for example, by using the inversion method.

8 f(M, U)
X (T, U) = V2Xpp(0, 0) 2

M=0
(4 6)

In (4.5) the first term terms are the Stoner contribution. Fol-
lowing (4.5) we write the dynamic susceptibility as

XMO(k ~) = 1 —2UXMp(k, co) + X(T, U, k, to, M).
XMv k to

(4.7)

If k has dependence on T, U, k, co, and M this expression is
still exact, that is, Eq. (4.7) is merely a definition of )i.. Now
we enumerate the approximation used in SCR.

Approximation I. X is approximated by k given in (4.6),
which is actually X evaluated at k=co=M=O. In other
words we assume the form

with

XMo(k to)

1 2 UX~p(k, co) + P (T, U)XMu k to) = (4.8)

dc' pe)
cothk(T, U) = —UXpp(0, 0) j —oo 7T

U g2
Xg dU' 2[imXMo (k, co+tO+)

go BM

ImXMo(k ~+ '0 ) l lM =o. (4.9)

Now we have to solve (4.8) and (4.9) self-consistently in
terms of )i.(T, U) to get the static susceptibility given by (4.8)
at oi=k=O by using known expression for XMo(k, cu). Note
here that k(T, U) defined by (4.8) does depend on co and k
while )i.(T, U) given by (4.9) does not. In the SCR theory we
further make several approximations.

Approximation II. Neglect the U' dependence of
X(T, U') when integrating over the variable U' in (4.9).

Approximation III. Neglect )i.(T, U') compared with 1 in
the numerator when we take the derivatives with respect to
M in (4.9).

Approximation IV. Rewrite coth(P ai/2) as sgn( cu)

[I —2/(e~~ "~ —I)] where sgn(co) denotes the sign of co and
then neglect the first term 1. In other words replace coth
(Pcs/2) by sgn(co) [2/(e~I "I—I)].

APProximation V. RePlace X~p(k, co) with several leading
terms of the expansion of XMp(k, co) by powers of k and
o)// k f.

Approximation VI. Use the parabolic band with the cutoff
momentum.

They think that approximations I—III may be physically
justified if one assumes that the density of states has a sharp
peak at the Fermi surface and that this point may limit the
applicability of the theory to the weak ferromagnetism. Ap-
proximation IV is not necessarily easy to be justified' as
well as approximation V.

V. DISCUSSION

Although we have obtained preferable results for the
Curie-Weiss law, the present theory leaves much to be de-
sired if we returned to our original motivation. First, the
parameter K, has to take rather special value to reproduce
the linear dependence of A(T) on T. This fact suggests that
the present theory is subject to the details of the band struc-
ture as mentioned before. This sensitivity to the cutoff pa-
rameter may be caused by the parabolic band approximation.
We give up dealing with the larger momentum region pre-
cisely at the cost of calculational simplicity in the approxi-
mation. In this respect the study for the case of other more
realistic band structures is an interesting future problem.

Second, it is not necessarily easy to justify the interpreta-
tion which leads to the neglect of the temperature-
independent part of A(T) although similar approximation
has been employed in the literature (for example Refs. 2 and
4). According to Ref. 4, the justification of such an approxi-
mation can be stated as follows (although such a process
contradicts our original scope); "Since we are mainly inter-
ested in the temperature dependence of the physical quanti-
ties, the approximation is reasonable if no significant
temperature-dependent terms are omitted as a consequence. "
If we do not make this approximation, T, takes a minus
value which forces us to interpret the theory to be no good
around the critical point although at least the linear depen-
dence of A(T) on T is reproduced.

Finally, it is not obvious to what degree the approximation
of keeping only the first three terms of the inversion series
can be justified. Though the inversion method itself is sys-
tematic at least formally, it does not guarantee to give a
well-controlled approximation. The parameter Ul t should be
small for the present approximation to be valid, where t is
the characteristic order of the hopping term of the Hamil-
tonian. If it is small, J~"~(P) (and Ft"i) becomes smaller as
n gets larger in principle. But it is possible for Ft"~(P) to
become large after Ft"i(@) is estimated at the desired value
of P. Thus the behavior of the higher order of the inversion
series of the present model should be studied, for example,
by using the formal graph rules for the series that has been
already known, ' which needs a separate study.

We note here that the inversion method has the possibility
to be used to justify the paramagnon theories. This is because
it can be shown that the result of the inversion method up to
the second order coincides with the leading term of the para-
magnon theories and that a class of the graphs appearing in
the inversion series reproduces the paramagnon theory. '

As discussed above, it may be inappropriate to say that
only mathematically well-defined approximation is used in
order to reproduce the Curie-Weiss law in our theory. But at
least our theory does not rely on the equation established
through physical approximation that is thus hard to be im-
proved. Instead we develop a theory in which we can ad-
vance the approximation systematically up to the desired or-
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der in principle. In addition, since this framework or the
inversion method has a wide applicability, it is very impor-
tant to give a concrete and nontrivial example of the method,
which is what we have done here.
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APPENDIX: FEYNMAN RULES

Although well known, we summarize for clarity the rule
to get algebraic expressions from the corresponding Feyn-
man graphs in the imaginary time formalism. First we note
the path-integral representation of 0 (see, for example, Ap-
pendix D of Ref. 16);

0= —ln of& ~g s I g, g,I] (Al)

where z and z* are Grassmann numbers and S[z*,z,J] is
given by

S[z,z,J]= g z Gx~iz~' + Ug z~tz tz~iz„t
XX C7

X

J z z (A2)

where x or x' denotes the set (r, r) or (~', r'), respectively.
X, implies fdry, where 7 is the imaginary time.

Rule 1. In one specific way (as one likes), assign n labels

xt, . . . ,x„(internal points) to all the four-point vertices
where n is the total number of vertices.

with [GI ],~ and [G~& l],~, respectively, and the factor U is
assigned to the four-point vertex. No factor is assigned to the
external point.

Rule 3. Associate a factor ( —1) '( —1) f for each dia-

gram where V is the number of the factors U in the graph
and I.f is the number of Fermion loops.

Rule 4. Associate the inverse of the symmetry factor 1/S
for the diagram.

Rule 5. Sum (integrate) the product of all factors in 2—4
over the space and imaginary time indices xi, . . . ,x„.

As is well known, the symmetry factor S for each graph is
given by the product of the line symmetry factor and the
vertex symmetry factor. The line symmetry factor is 1 in this
theory and the rule for the vertex symmetry factor Sz is the
following.

Rule Sz. Assign n labels 1, . . . , n to n vertices in one
specific but arbitrary way. Count the number of all possible
other ways of assigning n labels that give the same topologi-
cal structure as the first specific way. The number thus ob-
tained plus 1 is Sz. Note that we have to distinguish the
spin-up and spin-down propagators and the directions of the
arrows when we consider the topological equivalence.

For definiteness we give some examples; the graph in

(2.16) or (2.17) has S=1 and three graphs in (2.18) have
S= 1, 2, and 1, respectively.
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