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Applications of lattice-dynamic models to Zn Lamb-Mossbauer factors and second-order
Doppler shifts
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Using various lattice-dynamic models available in the literature we have calculated the Lamb-Mossbauer
factor (LMF) and the second-order Doppler shift for the Zn resonance in Zn metal, P' brass, ZnF2, and the

chalcogenides ZnO, ZnS, ZnSe, and ZnTe. Agreement with experimental results is satisfactory, in particular
when lattice-dynamic models are used which include a good representation of eigenvectors. The large anisot-

ropy of the LMF in Zn metal and in ZnF2 is well reproduced. The shortcomings of the Debye approximation
are pronounced even for systems with high symmetry.

I. INTRODUCTION

The 93.31-keV Mossbauer transition in Zn offers re-
markably high resolution for the determination of small
changes in y-ray energy. ' Using ZnO single crystals and
enriched ZnO powder a relative energy resolution of
1.3 X 10 ' has been achieved. This exceptionally high sen-
sitivity has been used in gravitational redshift experiments
and for precision measurements of nuclear quadrupole
interactions. ' In addition, it has been demonstrated that this
resonance is also a highly powerful tool for investigating
lattice-dynamic properties, the Lamb-Mossbauer factor
(LMF), and the second-order Doppler shift (SOD). '" ln Zn
metal, for example, the LMF was found to be highly aniso-
tropic: the ratio (f~ /f~~) of the LMF's perpendicular and par-
allel to the crystallographic c axis is =25 at 4.2 K and rises
to =2000 at 47 K."Furthermore, at 4.2 K and high external
pressures (=6.5 GPa) an electronic topological transition is
observed where the LMF averaged over all directions in
space abruptly drops by a factor of 2.'

The second-order Doppler shift Ssoo is difficult to deter-
mine experimentally. It is only one contribution to the ex-
perimentally observed center shift 5&=S+SsoD where the
isomer shift 5 is determined by the s-electron density p(0) at
the nucleus. With most Mossbauer transitions, SsoD is rather
small and completely overwhelmed by S. In Zn, however,
5 and SsoD can be of the same magnitude. To investigate
5 soD it is essential to derive 5 separately, usually by theo-
retical calculations or vice versa, Ssoo has to be known to
study changes of S.

In recent years various theoretical ab initio methods have
been developed to calculate hyperfine interactions in
solids. ' ' The electric-held gradient can successfully be de-
scribed even in systems with more complex crystallographic
structures like the high-temperature superconductors. ' '
The theoretical calculations of changes in p(0), however,
turn out to be much more demanding on the accuracy of the
theoretical procedure because most often these changes are
very small, typically 1 part in 20 000 or even less.

Theoretical calculations of p(0) have been available for
the zinc chalcogenides and for ZnF2. ' '"' Together with
the experimentally determined center shift Sc the results of

these calculations can be used to predict SsoD. Although
lattice-dynamic models have been available in the literature
for quite some time, these models have hardly been ern-

ployed for calculations of LMF and SOD. In contrast to other
more common lattice-dynamic properties like the specific
heat, the LMF as well as the SOD are sensitive to the distri-
bution of the kinetic energy among the various chemical con-
stituents of the crystal. Therefore, for a detailed calculation
of the LMF and SOD it is not sufficient to know the fre-
quency distribution and dispersion relations. The eigenvec-
tors or polarization vectors of the phonon modes are equally
important in order to obtain reliable values for the LMF and
SOD. The exceedingly high sensitivity of the Zn resonance
provides a stringent test for lattice-dynamic models. In this
paper we report on our results of the direct calculation of
SsoD and the LMF for zinc systems from such models avail-
able in the literature.

II. PROCEDURE

A. General aspects

In the harmonic approximation, the equations of motion
lead to an eigenvalue problem of the dynamical matrix
D p(, ), ' ' which yields a relation between the eigenfre-
quencies cu, (q) and the wave vector q:
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The primitive cells of the lattice are labeled by I and l', ~
and sc' are the indices of the basis within the lattice cells l
and l', respectively, and m is the mass of the basis atom

Ir. 4' p( z, ) are the general second-order expansion coeffi-I At'

cients of the potential energy, usually referred to as the force
constants The polarization vect. ors e(K~~) describe the direc-
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tion of motion of the basis atom Ic in the mode (q,j) asso-

ciated with frequency co (q). For further details we refer to
Ref. 21.

The Lamb-Mossbauer factor fk can be written

fk= exp( —k'(x')k), (3)

where k is the photon wave vector, (x )k is the mean-square
vibrational displacement of the Mossbauer nucleus in direc-
tion of the wave vector k.

Expressing the mean-square displacement by phonon gen-
eration and destruction operators leads to the quantum-
mechanical expression for the LMF,

f,=exp—
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with cu,„and Z(co) being the maximal phonon frequency
and phonon frequency distribution, respectively. '

The second-order Doppler shift SsoD is given in velocity
units:

1
SSDD — (U ),

where (U ) is the mean-square velocity of the Mossbauer
atom. The quantum-mechanical expression then becomes

q) ( 1
SsoD= — g co, (q) e ~ n, (q, T)+-
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Again, only in the special case of monatomic systems where

Eq. (7) can be expressed by

t ~max /

Sson= — des coZ(co) n(co, T)+ — . (8)2m cN o

In general, however, the eigenvectors e(lr~~) play a sig-
nificant role for both LMF and SOD, and their knowledge is
crucial for reliable numerical calculations. When employing
rather simple lattice-dynamic models like the Debye model,

where ~ labels the site of the Mossbauer nucleus, N is the
number of unit cells of the finite crystal and

i h, (o,(q) i

nj(q, T)= exp —1
ksT

is the occupation number of the phonon mode (q,j) at tem-
perature T. Because of the term ~k e(lr~~)~ in Eq. (4) the
LMF usually is anisotropic in systems of .less than cubic
symmetry. Only in the case of monatomic systems with iso-
tropic lattice-dynamic properties where ~k e(a~~)~ =k /3,
Eq. (4) can be reduced to the more familiar expression

this fact is not taken into account. For monatomic and iso-
tropic systems such simple models may be sufficient.

8. Lattice-dynamic models

To calculate fk and SsoD numerically according to the
1'

equations given in Sec. I the force constants 4 &(',) have

to be obtained from lattice-dynamic models. A considerable
number of models has been available in the literature. Most
of them have been developed to provide a theoretical fit to
experimental phonon-dispersion relations. For our investiga-
tions we have selected three models. They are preferred be-
cause of their widespread use and relative simplicity. One of
them is suitable for metals, two have been extended to ionic
systems which are partially covalent.

Within the force constant model or Born von K-arman

model all force constants are treated as independent
parameters. To simplify the model, interactions extending
past a specific cutoff length are neglected. Such an approach
may be sufficient for metals where the long-range Coulomb
interaction can be expected to be effectively screened by
conduction electrons. To reduce the relatively large number
of independent force constants often an axially symmetric
interaction between nearest neighbors is assumed (axially
symmetric model).

The rigid ion mode-l (RIM) describes the interaction be-
tween two ions in the crystal by two contributions: a short-
range interaction due to the covalent bonding and repulsive
overlap forces and a long-range interaction due to the Cou-
lomb forces between the ions. The short-range interaction
usually extends to the next- and second-nearest neighbors.
For the Coulomb interaction the ions are assumed to be point
charges with no internal structure, i.e., "rigid ions. " The
long-range Coulomb interaction leads to a more detailed de-
scription of the physical properties of the crystal and gives
rise to a splitting of the optical-phonon branches at the I
point.

The basic assumptions of the shell model (SM) are
the same as in the RIM, except that the point charges of the
ions are replaced by polarizable ions consisting of a spherical
massless shell and a heavy core. Both shell and core are
charged and the intraionic shell-core interaction is described
by an isotropic harmonic force. In addition, shell and core
interact with the shells and cores of neighboring ions via
Coulomb interaction and short-range interactions. The dy-
namical matrix consists of that of the RIM and an additional
term which arises from the induced dipolar forces. In the
simplest version of the SM the short-range interaction is as-
sumed to be mediated only by the shells and, furthermore,
the polarizability of the small cations is neglected. However,
even the extended versions of the shell model often require
effective positive electronic shell charges to satisfactorily re-
produce experimental phonon-dispersion relations.

The overlap shell model (OSM) is based on the SM but
takes an additional contribution to the dynamical matrix due
to "overlap polarization" into account. When the overlap of
two neighboring electronic shells is enhanced due to the dis-
placements of the ions, electronic charge is repelled from the
regions of increased overlap. The redistribution of electronic
charge contributes to the polarization of the ions. This so-
called overlap polarization sometimes shows up as effective
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positive shell charges within the SM. Although the equations
of motion within the OSM are the same as within the SM,
the overlap polarization gives a physically satisfying expla-
nation of the effective positive shell charges.

Within the so-called valence fovce field model (VFFM)
the interaction potential is expressed as a function of bond
angles, leading to bond bending forces, and of bond lengths,
giving rise to bond-stretching forces. ' ' ' This model does
not contain any long-range Coulomb interactions and is
therefore well suited to describe the lattice dynamics of crys-
tals with predominantly covalent bonding and of metals
which are characterized by effectively screened ionic
charges. In particular in combination with other lattice-
dynamic models, the VFFM is a highly successful approxi-
mation to describe the short-range interaction due to partially
covalent bonding.

The parameters of these phenomenological models have
to be determined empirically. This is usually accomplished
by fitting the calculated phonon-dispersion relations to in-
elastic neutron-scattering data, symmetry-point frequencies
determined by first- or second-order Raman scattering or
macroscopic quantities as elastic constants, and, in the case
of the shell model, the dielectric constant in the limits of zero
and infinite frequencies. Unfortunately, these quantities are
not sensitive to the eigenvectors of the dynamic matrix but
only to the frequency spectrum, thus allowing only the de-
termination of the eigenvalues of the dynamic matrix.
The eigenvectors can only be derived if additional experi-
mental data like neutron-scattering cross sections are avail-
able. As already mentioned, the calculation of LMF and SOD
from the lattice-dynamic models described above requires
the knowledge of the eigenvectors as well as of the fre-
quency spectrum.

C. Details of calculation

Concerning the numerical procedure, in a first step, the
force constants are calculated from the model parameters.
Then the dynamical matrix is calculated and the resulting
eigenvalue problem solved at each point of a dense q mesh in
the irreducible Brillouin zone. The q points are located on
straight lines ("rays") from the center to the boundary of the
Brillouin zone. The LMF is sensitive to low-frequency pho-
non modes. For this reason we did not distribute the q points
on these rays uniformly but rather chose a smaller spacing in
the central region of the Brillouin zone. Thus we were able to
increase numerical accuracy considerably. The contribution
of short-range interactions to the dynamical matrix is calcu-
lated via Eq. (2) directly from the force constants. In this

respect the q mesh described above offers also a calcula-
tional advantage: the contribution of short-range interactions
to the dynamical matrix decomposes into a product of two
sums, one of them depending solely on the direction and the
other solely on the magnitude of q. Thus the direction-
dependent sum has to be computed only once for each ray.
To determine the dynamic matrix of the long-range Coulomb
interaction we used the Ewald method. ' This method de-
composes the Coulomb matrix into two rapidly converging
sums, one involving a summation over the direct lattice and
the other a summation over the reciprocal lattice. For further
details and explicit expressions for the two sums we refer to
Ref. 19.

TABLE I. Experimental data for zinc metal compared to the
numerical results obtained from the model of Ref. 36 using
mz„=67. f~ and fl denote the LMF perpendicular and parallel to
the c axis, respectively. ASc and ASsQD are the measured center
shift and the calculated SOD relative to 4.2 K. The absolute SOD
was calculated to be —53.08 pm/s at 4.2 K.

Experimental (Refs. 6, 35) Theoretical (Ref. 36)

T
(K)
4.2
20.8
47

fi
(%)

1.07(+o.t 3)

0 8P(+ 0.18)

0 4p( + o.10)

(%)
P 043(+0.088)

0.098( —o.oso)

P PPP 18(+0.0067

fi
(%)
1.19
1.08
0.62

(%)
0.032
0.022
0.0016

T
(K)
4.2
20.8
47

Sc
(pm/s)

0.0
0.37(8)
4.46(19)

~SsQD

(p, m/s)

0.0
0.267
4.38

III. RESULTS AND DISCUSSION

A. Zinc metal

Zinc metal which crystallizes in hexagonal close-packed
structure with an unusually large c/a ratio (c/a = 1.86) pro-
vides a stringent test for lattice-dynamical calculations be-
cause of the pronounced anisotropy of many physical prop-
erties including the LMF. In Table I experimental data on
LMF and SOD at various temperatures are compared with
our calculations using the lattice-dynamic model of Refs. 36

We have investigated the following systems: zinc metal,
P' brass, ZnF2, ZnO, ZnS, ZnSe, and ZnTe. For all cases we
have first calculated the dispersion relations to check for cor-
rect implementation of a particular model against published
data. The LMF and SOD were obtained from Eqs. (4) and

(7)
To assure good convergence, we used relatively dense q

meshes, especially in cases of rather complex crystal struc-
tures. For ZnF2, for example, a very dense q mesh with
23 900 points in the irreducible Brillouin zone was chosen.
Such a dense q mesh proved to be necessary since ZnF2
crystallizes with tetragonal rutile structure with two mol-
ecules within the unit cell. To test for convergence we cal-
culated the lattice-dynamic parameters also with a drastically
reduced q mesh of 8040 points. We found that f, and f,
changed only by about 2X10 and fY stayed practically
constant.

For all zinc chalcogenides which crystallize either in the
wurtzite or in the sphalerite structure, we chose a q mesh
with 3680 points in the irreducible Brillouin zone. For ZnO
with a hypothetical sphalerite structure (see Sec. III D), the
LMF and the magnitude of S&OD increased by only
1.6X 10 and 2.0X 10, respectively, when the number of
points was raised to 24 600, indicating again good conver-
gence. The same situation holds for all other zinc chalco-
genides investigated. For zinc metal which crystallizes in hcp
structure and p' brass (ordered CsCI structure), q meshes
with 2880, respectively, 2240 points were sufficient to obtain
good numerical accuracy.
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TABLE II. Experimental data for P' brass compared to the numerical results obtained from the force
constant model of Ref. 39 using mz„= 67 and from the corresponding phonon density of states Z(co) (Ref. 7).
In the latter case the inliuence of the eigenvectors is neglected. f denotes the LMF. ASc and ASsoo are the
measured center shift and the calculated SOD relative to 4.2 K. The absolute SOD was calculated to be
—64.34 p, m/s at 4.2 K and —63.51 p, m/s at 4.2 K from the force constant model and the phonon density of
states, respectively.

Experimental (Ref. 7) Theoretical (Ref. 39) Theoretical from Z(co) (Ref. 7)

T
(K)
4.2
20
40
55
60

(%)
0.80(14)
0.67(10)
0.34(6)
0.12(3)
0.11(3)

(%)
0.95
0.80
0.43
0.21
0.17

(%)
0.85
0.74
0.42
0.21
0.17

T
(K)
4.2
20
40
55
60

Sc
(~m/s)

0.0
0.128(48)
1.887(59)
4.98(13)
5.91(14)

~ssoD
( p, m/s)

0.0
0.148
1.77
4.58
5.82

~ssoD
( p, m/s)

0.0
0.149
1.85
4.80
6,09

and 37. This modified axially symmetric (MAS) model is an
extension of the axially symmetric VFFM proposed by
DeWames. The pronounced lattice-dynamic anisotropy in
zinc metal is taken into account by different bond-stretching
forces perpendicular and parallel to the crystallographic c
axis. The corresponding force constants were obtained from
a fit of the model to experimental dispersion relations. The
interactions extend to the sixth-nearest neighbors. References
36 and 37 also aimed at the calculation of LMF and SOD,
thus providing a test for our calculation procedure. The MAS
model is able to reproduce our experimental data, in particu-
lar the large anisotropy of the LMF, very well. At 4.2 K, the
LMF parallel to the c axis (f~~) is =25 times smaller than
perpendicular (f~) to it. For this reason the experimental
derivation of fl is a difficult problem which is reflected in the
relatively large error bars for fl.

The measured change (ASc) of the center shift and
the calculated variation (ASsoD) of the second-order Dop-
pler shift with temperature are in good agreement. This
strongly confirms our earlier conclusion" that there is no
explicit temperature dependence of the isomer shift (S) up to
=50 K.

B. P' brass

The alloy Cuo&Znos (P' brass) forms an ordered CsCI
structure below 725 K where each Zn atom is surrounded by
eight Cu atoms and vice versa. Also this system has been
investigated earlier by Zn-Mossbauer spectroscopy. '

From point of view of lattice dynamics p brass is an inter-
esting case because of its cubic structure, the similar masses
of Cu and Zn, and similar binding forces between them. The
kinetic energy, e.g. , is expected to be shared almost equally
between both constituents. Since eigenvectors are not impor-
tant, it should be possible to obtain LMF and SOD directly
from the phonon frequency distribution Z(co) in analogy to

monatomic isotropic systems. The phonon density of states is
introduced into Eqs. (4) and (7) by setting

&.Ie.(~l,')I'=I/2 and 2 Ik 'e (&I )I =k /6 for two-

atomic, cubic compounds and employing the definition of the
phonon density of states. For comparison, we have also used
a detailed Born-von Karman model with eight adjustable
parameters for our numerical calculations. For a good de-
scription of the experimental phonon-dispersion relations
force constants out to the fourth-nearest-neighbor shell are
required. However, all tangential-type force constants except
for the first-nearest neighbor she11 have been neglected. As
demonstrated by Table II, the experimental results are repro-
duced very well by the numerical calculations. Comparing
the force constant model with the density-of-states scheme
we also find very good agreement. This justifies the use of
the phonon density of states in cubic intermetallic com-
pounds with similar constituents. A small discrepancy, how-
ever, remains due to the slightly different masses and force
constants introduced by the model for the two constituents.
The close agreement between the changes of the experimen-
tal center shift S& and the calculated SOD clearly demon-
strates that also for this alloy the explicit temperature depen-
dence of the isomer shift is negligibly small within the
temperature range investigated.

C. Zinc fluoride

ZnF2 cry stallizes with rutile-type structure with two
ZnFz molecules in the tetragonal unit cell. Each Zn is sur-
rounded by six F at the corners of a distorted octahedron.
Several physical properties show anisotropic behavior, e.g. ,
the axial compressibilities, the coefficients of thermal expan-
sion at low temperatures, and the LFM. We have performed
lattice-dynamic calculations using a shell-model
description. In addition, in Ref. 40 short-range interactions
due to the partially covalent bonding are taken into account
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50-
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TABLE III. Compilation of models employed with the zinc
chalcogenides. nP denotes the number of parameters, VFFM is the
valence force field parametrization scheme, RIM and SM are the
rigid-ion model and the shell model, respectively. OSM is the over-

lap shell model, an extended version of the SM (Ref. 30). Zno
which crystallizes in the wurtzite structure is in some models ap-
proximated by sphalerite (ZnS) structure, as for example in Ref. 42.
Where a single reference contains different alternative parameter
sets, the model is further specified by Roman numbers in parenthe-
ses.

Compound Description Reference

0 20 40 60 80 100 120 140 160

T (K)

FIG. 1. Experimental specific-heat data (circles) for ZnF2 com-
pared to theoretical results (full line) obtained from the model of
Ref. 40. The experimental values are taken from Ref. SS.

within a two-parameter VFFM which includes only bond-
bending forces. " Contrary to simpler continuum models dis-
cussed in the literature ' ' this "expanded" shell model is
able to describe the specific-heat data of ZnF2 quite well as
shown in Fig. 1. There is a slight tendency to smaller values
compared to the experimental data, in particular at tempera-
tures above =40 K. Still, we are convinced that this model is

by far the best which is available at present. It also repro-
duces the SOD as well as the pronounced anisotropy of the
LMF. Simpler models ' ' fail, essentially because they do not
take into account optical-phonon modes which are already
excited at temperatures of =30 K. Details concerning the

Zn-Mossbauer measurements and the results of our nu-

merical calculations have recently been published and will
not be considered further in the present paper.

D. Zinc chalcogenides

1.Ambient pressure

The zinc chalcogenides ZnO, ZnS, ZnSe, and ZnTe are
representatives of II-VI semiconductors which are expected
to gain enormous technological importance due to applica-
tions in optical devices. The compounds crystallize in either
the hexagonal wurtzite or the cubic zinc-blende phases, or
both. Each cation is tetrahedrally coordinated by four anions,
and vice versa. Such a coordination favors sp bonding, the
ionic part of the chemical bond, however, plays an important
role, even in ZnTe. For this reason the shell model (SM) and
the rigid-ion model (RIM) are well suited to describe the
lattice dynamics in zinc chalcogenides. Table III gives a
short characterization of all models used in the present in-
vestigation. Most models have been optimized to reproduce
experimentally derived phonon frequencies and elastic con-
stants. Unfortunately, these properties are not sensitive to the
eigenvectors of the dynamical matrix. The overlap shell
model (OSM) of Kunc and Bilz, however, has successfully
been extended to include nonlinear probabilities of the atoms
to reproduce experimental cross sections of second-order Ra-

ZnO

ZnS

ZnSe

Zn Te

10P VFFM+OSM Sphalerite

10P VFFM+SM Wurtzite

10P UFFM+OSM
11P RIM

10P VFFM+SM
10P VFFM+SM
10P VFFM+SM
10P VFFM+ SM
6P VFFM+RIM
10P VFFM+OSM

7P RIM
11P RIM
11P RIM
7P RIM

10P VFFM+OSM
10P VFFM+ SM
10P VFFM+SM

7P RIM

42
46
42
47

54 (I)
54 (Ia)
54 (II)

31
31
42
4S
43
47
44
42

54 (I)
S4 (Ia)

44

man scattering. Since these cross sections depend on the
eigenvectors this model is expected to provide also a good
eigenvector representation.

All models investigated give a good description of avail-
able data on bulk properties, like the specific heat. As an
example, Fig. 2 shows experimental specific-heat data in
comparison with theoretical results obtained from the com-
bination of OSM and VFFM. A similarly close agreement
was found for the other models. However, as can be noticed
from Table IV the variation is much larger for the Mossbauer
parameters LMF and SOD. As mentioned earlier this can
mainly be attributed to the different eigenvector representa-
tions. From a comparison of the LMF values we have to
abandon several of the parameter sets. For ZnSe, e.g. , the
models of Refs. 43, 44, and 45 can be ruled out.

For ZnO, the model of Ref. 46 is of particular interest.
Since it is tailored to the hexagonal (wurtzite) structure, it
allows the investigation of anisotropic effects. Table V shows
that, in agreement with experiment, the anisotropy of the
LMF is rather small. The model of Ref. 42 which has been
designed for a hypothetical zinc-blende structure gives an
isotropic (average) value for the LMF. Both models repro-
duce the experimental data on the LMF and the SOD, includ-
ing their temperature dependences, very well.

The model of Kunc and Bilz provides a good systematic
description of the LMF and the SOD for a11 zinc chalco-
genides. We have used this model to calculate the second-
order Doppler shift SsoD for these systems. From the experi-
mentally known center shift Sz we can then derive the
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FIG. 2. Experimental specific-heat data
(circles) for zinc chalcogenides compared to
theoretical results (full line) obtained from the
model of Ref. 42. The experimental values are
taken from Ref. 56 for ZnO, Refs. 57 and 58 for
ZnS, Refs. 57 and 44 for ZnSe, and Ref. 44 for
Zn Te.

20-

10-

0-
0 50 100 150 200

T (K)

20-

10-

0-
0 50 100 150 200

T (K)

isomer shift 5 which itself is determined by the s electron
density p(0) at the Zn nucleus. As described in more detail
in Refs. 13, 14, and 35 this procedure fits very well to theo-
retical results for p(0) obtained from ab initio Hartree-Fock
cluster calculations.

2. High external pressure

The pressure dependence of lattice-dynamic parameters is
a consequence of anharmonic properties of the lattice. In

quasiharmonic approximation this pressure dependence is
described by assuming a harmonic potential at each pressure
but allowing the force constants to be pressure dependent.
Only few models have been published so far which are op-
timized for pressure-dependent lattice-dynamic effects. For
zinc chalcogenides the model of Talwar et al. is available
which describes the pressure dependence of force constants
for ZnS, ZnSe, and ZnTe. It is a rigid-ion model with 11
independent parameters (RIM11) which have been optimized

TABLE IV. Experimental data obtained for the zinc chalcogenides at 4.2 K compared to theoretical
results using mz„=67. f denotes the LMF, 5$QQ the absolute SOD. In the case of ZnO, where a weak
anisotropy is present, average values for the LMF are given. AS sQD denotes the SOD relative to the result for
ZnO calculated from the model of Ref. 42.

System

ZnO

ZnS

ZnSe

ZnTe

Experimental (Ref. 35)

(%)
2.0(1)

0.74(5)

0.50(6)

0.30(5)

f
(%)
1.94
2.28
0.670
0.511
0.878
0.439
0.672
0.781
0.689
0.626
0.949
1.20

0.420
1.85

0.241
0.351
0.429
0.300

Theoretical

SsQD

( p, m/s)

79.67
86.13
65.07
60.45
69.86
67.74
66.50
69.61
62.06
66.43
75.69
76.05
61.19
79.50
57.52
60.73
61.91
56.10

~SsoD
(pm/s)

0.0
—6.46
14.60
19.22
9.81
11.93
13.17
10.06
17.61
13.24
3.98
3.62
18.48
0.17
22.15
18.94
17.76
23.57

Reference

42
46
42
47

54 I
54 Ia
54 II

31 SM
31 RIM

42
45
43
47
44
42

54 I
54 Ia

44
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TABLE V. Experimental data for ZnO at various temperatures compared to theoretical results using
mz„=67. f~ and f~~ denote the LMF perpendicular and parallel to the crystallographic c axis, respectively,

ASsoD is the SOD relative to 4.2 K. The model of Ref. 42 is designed for the hypothetical sphalerite structure
and thus is intrinsically isotropic; therefore f denotes the average LMF.

Experimental (Ref. 53) Theoretical (Ref. 46) Theoretical (Ref. 42)

T
(K)
4.2
19.4
20.7
40.8
56.2
77.3

fi
(%)

2.06(21)

1.42(15)
1.24(13)
0.64(7)

(%)
2.03(12)

2.oo(14)
1.48(10)
o.8o(6)
0.44(3)

fJ.
(%)
2.34
2.18
2.16
1.62
1.12
0.58

(%)
2.28
2.12
2.10
1.58
1.09
0.57

f
(%)
1.94
1.84
1.83
1.41
0.98
0.51

T
(K)
4.2
19.4
20.7
40.8
56.2
77.3

Sc
(p, m/s)

0.0
0.080(3)
0.08(3)
1.5O(3)
4.22(4)
9.01(3)

~SsoD
(p,m/s)

0,0
0.051
0.068
1.16
3.45
8.55

~SsoD
(p, m/s)

0.0
0.045
0.062
1.30
3.85
9.36

1.4—
1.2—
1.0—
0.8—
0.6—
0.4—
0.2—
0.0—

hV/V (%)
6 8 10

I I

14
I

I I I I I I I I I I I I I I I

0 2 4 6 8 10 12 14

P (GP~~

FIG. 3. Volume dependence of the LMF of ZnSe. Dotted line:
theoretical results (RIM11); circles: experimental data.

for pressure-dependent Raman-scattering data. Unfortu-
nately, such data are only available at ambient pressure and
close to the structural phase transition at =13.7 GPa." For
pressures within this region the model parameters were lin-
early interpolated. Figure 3 shows a comparison between
our experimental and theoretical results for the Lamb-
Mossbauer factor of ZnSe. The agreement at ambient pres-
sure is very good. At elevated pressures, the experimental
LMF increases at first and then drops when the volume re-
duction exceeds =8%. The RIM11, however, predicts a con-
tinuous decrease of the LMF. As has been discussed in more
detail in Refs. 49 and 50 the decrease of the LMF with re-
duced volume is caused by the attractive short-range next-
nearest-neighbor interaction. It decreases due to an increased

screening of the Coulomb force between the zinc ions by
bonding electrons. This leads to a reduction of the frequency
of the transverse acoustic (TA) mode which is rejected in the
decrease of the LMF.

The discrepancy between the prediction of RIM11 and
experimental results at high pressures is probably due to the
linear interpolation of the model parameters mentioned
above and shortcomings within the simple RIM itself. For a
detailed description of the LMF more elaborate models are
required. Still, for ZnSe RIM11 reproduces the LMF at am-
bient pressure quite well and shows how the crystallographic
phase transition is already rejected in a softening of phonon
modes much below the phase transformation.

In addition, we have used RIM11 to calculate the pressure
dependence of the second-order Doppler shift SsoD in order
to derive the isomer shift S=S&—SsoD from the measured
center shift Sz. We find a considerable rise of the s electron
density p(0) at the Zn nucleus with pressure due to a strong
increase of covalency of the Zn-Se bond. Further details in-
cluding the results of Hartree-Fock cluster calculations are
given in Refs. 49 and 50.

E. Comparison with Debye model

One might argue that for systems with cubic symmetry
and nearly equal masses of the constituents the Debye model
can be expected to represent a good approximation to de-
scribe lattice-dynamic effects. In this respect P' brass and
ZnSe are cases of particular interest. To answer this question
we have calculated the moments m( —1) and m(+ 1) of the
phonon density of states Z(tu). At low temperatures, these
moments are proportional to the mean-square atomic dis-
placements (x ) and mean-square atomic velocities (v )
which in turn determine the LMF and SOD, respectively.
From an observed value for the LMF an effective Debye
temperature OLMF can be derived assuming that the phonon
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frequency distribution can be approximated by a Debye-type
behavior. Similarly, from an observed value for the SOD, an
effective Debye temperature OsQD can be obtained. If the
Debye approximation holds, the ratio of the corresponding
Debye temperatures OsQD/HLM„should be equal to unity.
This, however, is not what we find. For P' brass and ZnSe
we obtain the values 1.07 and 1.20, respectively. The latter
number is typical for other zinc chalcogenides as well: we
derive 1.12 (ZnO), 1.16 (ZnS), and 1.24 (ZnTe). The main
reason for OsQD/'gLMF being larger than unity can be attrib-
uted to an outstanding feature which is colz&mon to the fre-
quency distributions of all zinc chalcogenides (and to a lesser
extent also to the case of P' brass): optical branches exhibit
pronounced peaks and they are well separated from the
acoustic branches. In the calculations of the LMF, these
high-frequency phonons are less important, because Z(co) is
weighted by cu '. However, for the SOD the weighting fac-
tor is co+' and high-frequency phonons are essential. For

Zn-Mossbauer spectroscopy a difference in the Debye tem-
perature of 20% (at 0= 300 K) would result in a change of
SOD by = 14 p, m/s. This value, unfortunately, is comparable
to typical isomer shifts between zinc chalcogenides. ' '

Therefore, in almost all zinc systems investigated, the Debye
model turns out to be too poor an approximation. We reach
the same conclusion with respect to a satisfying description
of the specific heat in these compounds.

For noncubic systems the Debye approximation may in-
deed fail completely. A case in point is zinc metal at high
external pressures. ' ' Within the Debye approximation the
increase in LMF with pressure leads to a considerable rise in

OLMF. If the same rise is assumed for OsQD a change of the
SOD is predicted which is larger than the observed change of
the center shift. Thus the s electron density p(0) at the

Zn nucleus in zinc metal is expected to increase with pres-
sure. Theoretical linearized augmented plane-wave calcula-

tions, however, show that p(0) actually decreases when

pressure is applied,
' i.e., the Debye model seriously overes-

timates the change of the SOD.

IV. CONCLUSIONS

Zn-Mossbauer spectroscopy is a sensitive tool to inves-
tigate the mean-square atomic displacement and the mean-
square atomic velocity of Zn atoms in solids and provides a
basis for a stringent test of lattice-dynamic models. Using
various force-constant models available in the literature we
have calculated the LMF and the SOD for zinc metal, a
Cu-Zn alloy, and several zinc compounds. Good agreement
with experimental results can be reached if the models pro-
vide not only a detailed description of dispersion relations
and phonon density of states but also a reasonable represen-
tation of eigenvectors. This has convincingly been demon-
strated in particular for the anisotropic systems, Zn metal and
ZnF2. For all systems investigated, the Debye model is an
insufficient approximation for a reliable derivation of the
LMF and SOD even in cases of high symmetry. The cubic
zinc chalcogenides (sphalerite structure) and P' brass (CsCl
structure) are pertinent examples.
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