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The band-structure results for elastic and acoustic waves propagating in a composite (consisting of periodi-
cally placed spheres in a host material) are analyzed by employing the frequency dependence of the scattering
cross section from a single sphere. Two limiting modes of propagation can be visualized. According to the first

the wave propagates mainly through the host material; according to the second the wave hops coherently from
a sphere to its neighbors using the resonances in the single-sphere scattering cross section. This second mode
is the analog of the linear combination of atomic orbitals in electronic propagation, with the atomic orbitals

replaced by the resonances.

I. INTRODUCTION

There has been growing interest in recent years in the
propagation of classical waves' (CW) such as
electromagnetic ' (EM), acoustic' ' (AC, in fiuids) and
elastic' (EL, in solids) in composite materials either pe-
riodic or random. The interest in CW in periodic materials, is
mainly connected to the question of the existence or not of
spectral gaps (stop bands). This same question applied to the
electron waves, constitutes the heart of solid-state physics
and has been studied extensively over the last 65 years.

However, CW propagation in composites, where each
component allows free propagation, presents novel aspects
not encountered in electron waves: (i) The classical wave
equation, V' @+[co /c (r)]@=0, is equivalent with Shrod-
inger's equation, V' P+2[E—V(r)]/=0, if and only if, the
corresponding electronic energy F. is higher than the maxi-
mum value of the potential V(r). In that energy region lo-
calization of the electrons (for random systems) or spectral

gaps (for periodic systems) do not appear easily, although
systematic examination of the problem has not been done (at
least for the random case). (ii) The vector character of EM
and EL waves plays an important and novel role in connec-
tion with the question of spectral gaps. (iii) The spatial varia-
tion of the mass density entering the equations for AC and
EL waves, modifies the wave equation in a nontrivial way
introducing the possibility of novel behavior such as the ex-
clusion of the wave from one of the two components of the
binary by allowing the density ratio to be much larger or
much smaller than unity (while the velocity ratio remains
fixed). The interest in spectral gaps for CW stems from the
possibility of tailoring the EM, AC, and EL spectrum and
thus possibly repeating with photons or even phonons some
of the wonderful things that have been done with electrons in
semiconductors.

CW also possess many advantages over electron waves
for the study of their propagation in random media and es-
pecially for checking experimentally the disorder-induced
transition from propagating to localized eigenstates. Such a
transition, although very important for the transport proper-

ties of many materials, cannot be studied experimentally in
an unambiguous way for electron waves because of the dif-
ficulty of fixing the electronic energy and because of the
interactions among electrons and phonons. In contrast, for
CW, the frequency can be chosen accurately and easily and
the complications due to interactions are absent (at least for
weak fields). However, one has to overcome the difficulty of
constructing composites sustaining localized CW

The solution of this last problem was greatly facilitated by
the suggestion by John and Rangarajan' and by Economou
and Zdetsis that the existence of a band of localized eigen-
states in a random system is directly related to the existence
of spectral gaps in a periodic system, since both are due to
destructive interference of multiple scattered waves. Indeed,
by gradually disordering a periodic system possessing gaps,
we create tails of localized eigenstates within the gap. This
was the main reason for the initial revival of interest in CW
propagating within periodic media.

Scalar waves were the first to be studied. ' ' It was
found ' ' ' that the main parameters determining the ap-
pearance or not of band gaps and of bands of localized eigen-
states were the volume fraction of one of the components of
the binary composite structure and the ratio of velocities of
propagation in each component of the system. Indeed, the
velocity of propagation ratio between the two components of
the composite medium must exceed a certain threshold value
and the volume fraction of the low velocity component must
be in a certain range which depends on the topology and the
geometry of the composite structure for gaps to appear.

Other factors such as the topology (whether the low ve-
locity component consists of isolated inclusions —cermet
topology —or forms a continuous network-network topol-
ogy), the lattice structure, and other geometrical characteris-
tics were found to play a role too.

Led by the experiment of Yablonovitch and Gmitter, at-
tention was directed to the possible existence of gaps in the
propagation of EM waves in periodic composite structures
(where one of the components may be just air). Although the
conditions for gaps in the EM case were more severe than
those in the scalar case, structures were found
computationally and constructed experimentally (see, e.g. ,
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the article by Yablonovitch in Ref. 11), exhibiting gaps up to
the 1O' Hz range. The coupling between the two compo-
nents of the EM wave, through a term involving V E,
seems to be responsible for some notable differences from
the scalar case such as the preference for the network topol-

ogy
Acoustic (ACW) and elastic waves (ELW) attracted atten-

tion in connection with the gap or localization
possibility' ' not only because of their many applications
but for their rich physics as well. The latter stems from the
enormous variety of easily constructed structures, the appear-
ance of a term proportional to V pV u (where u is the acous-
tic field displacement and p is the mass density) and the full
vector character of the elastic case with various velocity ratio
between the longitudinal and the transverse components. The
wealth of computational' ' ' and experimental
data which have been accumulated regarding the midgap fre-
quency, the size of the gap and its dependence on the various
parameters need further physical interpretations.

For all types of CW it has been found that:
(i) The material corresponding to low propagation veloc-

ity embedded in a high propagation velocity matrix is a more
efficient scatterer than the inverse arrangement, everything
else being the same. This is not surprising since low propa-
gation velocity corresponds to negative potential in the elec-
tronic case. It is well known (in the electronic case) that a
negative scattering potential may exhibit strong peaks (reso-
nances) in the scattering cross section.

(ii) The higher the velocity ratio between the two compo-
nents of the composite, the more favorable the condition for
gaps (although saturation appears for very high values of this
ratio).

(iii) The volume fraction occupied by the low velocity
component must be in a certain range for gaps to exist. For
AC and EL waves, in three-dimensional structures, this range
is usually around the 10 —20% mark (although higher values
have been observed' ), while for EM higher values up to
50% have been found. The higher the ratio coga/c, the higher
the favorable volume fraction tends to be (cog is the midgap
frequency, a is the sphere radius, and c is the wave velocity).

(iv) AC and EL waves seem to prefer in most cases the
cermet topology, while the network topology gives better
results for EM waves.

(v) For AC and EL waves, besides the velocity contrast,
the density contrast is very important. However, for AC
waves low-density scatterers (i.e., low-density inclusions in a
high-density matrix) favor gaps, while for EL waves high-
density inclusions in a low-density matrix is the preferable
setup.

(vi) For EL waves the ratio of longitudinal to transverse
velocities (c&/c, ) in each component is another parameter;
usually the smaller this ratio the better for gap creation, al-
though the dependence on this parameter in some cases ap-
pears more complicated and less clear.

Considerable success in understanding the above results
for simple scalar classical waves (corresponding to ACW and
constant density) was achieved by considering a plane wave
scattered by a single inclusion and by connecting the strong
resonances in this scattering cross section with the appear-
ance of gaps. In this way the position as well as the size of
the gap can be. estimated ' by the position and the magni-

tude of the first few strong resonances which occur when half
the wavelength within the inclusion medium is comparable
to an integer times its linear size. By considering also the
condition for Bragg interference of these strongly scattered
waves, one obtains a rough estimate of the optimum volume
fraction. Similar analysis was used to interpret the appear-
ance and the size of the gaps for EM wave propagation,
although the connection is more complicated probably be-
cause of the vector character of the EM waves.

In the present paper we attempt the same approach of
connecting the multiple-scattering-induced gaps with strong
resonances in the single-scattering cross section for AC and
EL waves. For this purpose we calculate the scattering cross
section for a plane ACW and ELW scattered by a single-
spherical inclusion. We compare the features of this cross
section with previous band-structure results ' in periodic
composites, checking thus the connection between the two
and possibly interpreting the existing results, especially the
puzzling observation of the mass density contrast in Auids
and in solids.

II. MODEL AND METHODS OF CALCULATION

As was mentioned above, the main part of the present
work is the calculation of the scattering cross sections by a
single-spherical inclusion and their possible connection with
spectral gaps in periodic composites.

This calculation was done by Yiang and Truell. Also
Gaunaurd and co-workers ' ' (see also Ref. 32) have worked
extensively on the scattering from a single- spherical inclu-
sion.

Here, we calculate this cross section following mainly
Straton ' s notation and formulas. We apply these formulas,
among other systems, to a combination of matrix scatterer
for which band-structure results in composites are
available. ' ' ' O' In Appendix B we write explicitly the
rather complicated formulas for the cross section for com-
pleteness (and because of a few misprints in the existing
literature regarding these formulas).

We shall present the analytical results for the case where
the two materials (matrix-inclusion) are solids. Liquids, in
computational work, can be treated as solids with shear wave
velocity almost equal to zero.

We consider two types of incident wave propagating in
the z direction and incident on the surface of the sphere. (a)
a longitudinal plane wave (L scattering), (b) a shear (trans-
verse) plane wave polarized in the x direction (5 scattering).

For the calculation of the scattering cross section which is
defined as the scattered energy Aux to the incident energy
flux per unit area, the knowledge of the scattered wave and
the wave inside the sphere is necessary. The above waves
result from partial solutions of the elastic wave equation with
application of proper boundary conditions on the surface of
the sphere.

Assuming a time dependence of the form e '"', the time-
independent elastic wave equation in a homogeneous me-
dium can be written as

(X +2 p, )V (V u) —p, V' X V X u+ p co u = 0, (2.1)



52 INTERPRETATION OF THE BAND-STRUCTURE RESULTS FOR. . . 13 319

where u is the displacement vector, p is the mass density and

X, p are the so-called Lame coefficients of the medium.
This equation gives rise to uncoupled longitudinal and

shear waves with velocities c,= g(k+ 2 p)/p and

c,= V p, /p, respectively. These waves are mixed through the
scattering process.

The solution of (2.1) in spherical coordinates can be re-
duced to the solution of three scalar Helmholtz equations
(see Straton ) and has the following general form:

u= 1+m+ n, (2 2)

u'"'(r) = e""l.'z, k, = ~/c, , (2.3)

propagating in the z direction (k&, =k&,z).
This involves the I=O, even 1 components only and can

be written as

where l, m, n are three independent vector solutions of (2.1).
Each of them is obtained as a linear combination of vectors
I „,m „,n „(see Appendix A) each one of which

comes from a solution of the scalar Helmholtz equation (see
Straton ) .

In the following discussion the subscript "o" (out) in the
velocities (c), wave vectors (k), and Z's (see below) is re-
ferred to the medium of the matrix and the subscript "i" (in)
to the medium of the scatterer. In the vector spherical har-
monics 1, m, n, and the constants which appeared in the
formulas for the cross sections (A, B .) th.e. subscripts "e,"
"o"mean even and odd, respectively (note the double use of
ii C

In case (a) we consider a plane longitudinal incident wave
of the form:

OI I&,.ol' I' Zi. 'l
I ~,.o I

'
oi= 2

= g 4(2n+1) 2 +n(n+1)
7TO „=p z z,.) Iz,.

o.,(n)
2

n =p 7TQ
(2.7)

2n+ 1u'"'(r)=e' "-'x= g i" [m,„l(j,k„)
n= 1

—in, „,(j,k„)]
propagating in the z direction (k„=k„z).

In this case the scattered wave is

(2.S)

2n+ 1u"= g i"
1

[A,„ll,nl(h, k„)+B,„,m, „l(h,k„)
n=l n n+1

+ Cenlnenl(h k )]
the wave inside the sphere is

(2.9)

2n+ 1u'"= g i",
)
[E,„,l,„,(j,ki;)+F,„,m, „,(j,k„)njn+

+ G,„,n, „,(j,k„)], (2.10)

and the dimensionless S scattering cross section (o.,) is
given by (see Appendix A)

where a is the radius of the sphere, ZI, = kI a, and
Z„=k„a= (cp/c„) a. ol(n. ) are the partial scattering cross
sections for each mode (n). Each of them, as can be seen
from the above formula, is a sum of two terms; the first
arises from the longitudinal and the second from the shear
scattered wave. For the derivation of o.

&
see Appendix A.

In case (b) we consider a shear x-polarized incident wave
of the form

u'"'= g ( —i"+')(2n+ 1)l,„p(j,k„).
n=p

(2 4)
&z,.~ lw, „,I' IB.„,I'

The scattered wave and the wave inside the sphere result
from the solution of (2.1) in each region and the boundary
conditions on the surface of the sphere (see Appendix A) and
have the form

u"= g i"(2n+1)[A, pl p(h, kl )+C pn p(h, k )]
n=O

(2 5)

and

u'"= g i"(2n+ 1)[E pl p(j, k&;)+ G,„pn,„o(j,k„)].
n=p

(2 6)

The coefficients A, np, C,no, are determined in Appendix
B. The symbols in the parentheses of I, n (or m) denote the
kind of Bessel function the first, and the wave vector the
second which are contained in the definition of 1, n (or m); h
is the spherical Hankel function of the first kind, j is the
spherical Bessel function, and k, = co/c„, kI;= m/cI;,
k„=co/c„.

The dimensionless scattering cross section (o,) for the
case of Eq. (2.3) is given by

z,.
o.,(n)

2n= ] 7Ta
(2.11)

III. RESULTS AND DISCUSSIQN

As was mentioned earlier, a systematic examination of the
elastic wave propagation through various periodic lattices

A, „&,B „&,C, i, are also determined in Appendix B. In
the case of 5 scattering, each partial cross section (o.,(n)) is
a sum of three terms. The first one is the contribution of the
longitudinal scattered wave and the second and third the con-
tribution of the transverse m and n scattered waves, respec-
tively.

The infinite sums appearing in the definition of crI, o, , in
all of our calculations have been approximated with finite
sums (by using a truncation criterion) containing, at most, 15
terms. For small frequencies (Z&,Z, (1), in most of the
cases, three or four terms are able to give satisfactory accu-
racy. In all cases the relative truncation error is less than
&O-4.
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consisting of scatterers periodically embedded in a homoge-
neous matrix —with emphasis in the case of spherical scat-
terers —has been done and the optimal conditions for gap
creation have been extensively studied. '

Here, we try to connect the appearance of a gap and other
characteristics of the band structure in a periodic system con-
sisting of spherical inclusions in an homogeneous matrix
with the form of the cross section from a single-inclusion.
This connection determines to what extent single-sphere
scattering is an important factor in determining some char-
acteristic features in the band structure and how it can be
used to predict the possible existence of gaps.

For this reason we calculated the cross section from a
single scatterer and examined its dependence on

(i) the velocity contrast of the two materials (sphere and
matrix),

(ii) the ratio of longitudinal to shear wave velocity in each
of them,

(iii) the density contrast of the two materials for both the
liquid and the solid case.

We compared this dependence with the aforementioned
dependence of some features of the band structure on the
same parameters and we connected the position of the reso-
nances with fiat bands and possibly with gap positions.

The central idea is to check whether the approach of lin-
ear combination of atomiclike orbitals (LCAO or tight-
binding method), which is so fruitful for analyzing the elec-
tronic band structure in crystalline solids, can be extended to
the case of CW propagating in periodic composite media.
Cross-section resonances in the CW case are expected to be
the analogs of the atomiclike orbitals in the electronic case.

In attempting this extension of the LCAO approach to
CW, one should keep in mind some important differences
between the two cases: (i) Resonances are not true eigen-
states, rigorously localized inside and around each scatterer
as the atomiclike orbitals; actually, as will be discussed later
on, there are some broad "resonances" associated with a
depletion of energy distribution within the scattering sphere.
(ii) Because of the vector character of EL waves there is
much higher degeneracy or near degeneracy than in the elec-
tronic case (e.g. , the n= 1 resonant modes corresponding to
the three p orbitals in the electronic case are now in general
nine); as a result the problem of possible hybridization of the
resonances is much more complicated in the EL wave case.
(iii) Because cu corresponds to the case where the electronic
energy is higher than the maximum of the potential, there is
an additional (besides the hopping from resonances of one
sphere to resonances of neighboring spheres) mode of propa-
gation employing mainly (or at least on equal basis) the host
material. It means that resonant states for CW are states em-
bedded in the continuum; this is an aspect of the problem not
encountered in the electronic case. (iv) Another aspect of the
EL (and AC) case is associated with the role of the mass
density contrast between host and scatterer which seems to
be as equally important as the velocity contrast.

In Fig. 1 we show the dimensionless total scattering cross
sections tT& (a) and tT, (b) for longitudinal and shear incident
wave, respectively, (L and 5 scattering). The parameters are
as follows: p, /p;=1, c, /c, = v2 ("extreme" solids both in
and out) and ct, /ct;=5. 48. The number next to or above

2

3 2

0.0
o.a 0.5 1.0

2

oo
0.0 0.5

kI G.

FIG. 1. Total dimensionless cross section vs k&,a for longitudi-
nal (a) and shear (b) incident wave; c&/c, = P2 for both sphere (in)
and matrix (out), p, /p; = 1 and c„/c„= 5.48. a is the radius of the
sphere and kl, = co/el, the longitudinal wave number in the medium
of the matrix. The number next or above each resonance denotes the
spherical harmonic responsible for this resonance. The height of the
very narrow resonances may be larger than indicated. The arrows
indicate the positions of the flat bands and the double arrow the
position of the gap in the corresponding fcc periodic composite with
volume fraction of the spheres x=0.144.

each resonance denotes the partial wave, the scattering of
which causes the appearance of the corresponding resonance
(note that in the shear incident wave the n = 0 mode does not
exist). The height of the very narrow resonances (presented
as a single vertical line) may be larger than shown in the
figures throughout the present work, because our finite mesh
points do not always coincide with the maximum for such
sharp peaks.

In the case of Fig. 1 the first resonance (appearing in

k&,a =0.45) arises from the n = 1 mode. We found that this
happens in all cases of materials with small c&/c, ratio which
we have examined. Another common characteristic of these
materials ("hard" solids) is that the higher contribution in all
resonances is due to the shear scattered wave.

It is also noticeable that in Fig. 1 and in all other cases
examined, the position of the resonances in the L scattering
case (with the exception of the n =0 resonances) coincides
with the position of the 1 and n resonances in the 5 scatter-
ing. See, for example, that the first and third resonance in
Fig. 1(b), which are both due to the I and n scattered waves,
coincide in position with the first and second (at
k&,a=0.65) resonance, respectively, of Fig. 1(a). In the 5
scattering, there are additional, in most of the cases very
narrow peaks, corresponding to the I scattered wave; see the
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second (at k&,a=0.57), fourth, and seventh resonances in

Fig. 1(b). We shall comment on these sharp resonances later
on.

The matrix-spherical inclusions combination shown in

Fig. 1 has been studied' for various periodic lattice struc-
tures: sc with inclusion volume fraction x=0.144, bcc with
x=0.144, fcc with x=0.144, and simple hexagonal with
c/a' = 3/4 and x = 0.144 (a' is the lattice constant to be dis-
tinguished from the sphere radius a used throughout in the
present work). In all these cases a narrow gap appears at
rnidgap frequency cog such that kg«a = ~go/c«=0. 54 for all
lattices. The position of the midgap frequency is denoted by
a double arrow in Fig. 1. Furthermore, the EL wave band
structure exhibits' fiat bands corresponding to rather sharp
peaks in the density of states; their positions are denoted by
single arrows in Fig. 1. It must be stressed that these flat
bands appear at k«a = cuba/c«=0. 52~0.01, 0.54~0.01, and
0.66~ 0.01, independently of the lattice structure. This
strongly suggests that the positions of the fiat bands are not
infiuenced appreciably by multiple scattering and are mainly
dependent on the single-scattering resonances. Indeed, this
seems to be the case as evidenced by the close correlation of
the arrows with the resonances in the scattering cross sec-
tions. It is worthwhile to note that the first Aat band is above
the first resonance (by a non-negligible margin), while the
second is just below the second resonance [Fig. 1(b)]; the
third flat band is again above the third resonance (although
the margin is now smaller). The gap lies between the first
and the second resonance. Let us mention that one should not
expect an exact coincidence between Oat bands and reso-
nances because of "level" repulsion and hybridization.

As was noticed above in the S scattering, there are some
extremely sharp peaks in the cross section [see Fig. 1(b)].
Sharp peaks correspond to very long lifetimes, i.e., ex-
tremely low radiation which in turn means a very weak scat-
tering field (relative to the field inside the sphere). On the
basis of this argument, to be substantiated later on, one ex-
pects that very sharp peaks in the single-scattering cross sec-
tion may not appreciably inhuence the band structure.

In Fig. 2 we plot the total cross section for an incident
longitudinal wave and for a gold sphere in a silicon matrix
(a) or a lead sphere in a silicon matrix (b) or a lead sphere in
beryllium matrix (c). The cross sections for the shear inci-
dent wave are shown in Fig. 3.

The general features of these cross sections follow what
have been mentioned in the description of Fig. 1 (see, for
example, the extra narrow peaks in the 5 scattering cross
section). Also, here, next to or above each resonance appear,
in some cases, more than one index. This denotes a coinci-
dence in the resonances of two or more modes.

The band structure of all combinations of Figs. 2,3 for a
fcc lattice (with the volume fraction of the spheres being just
below 10%) has been calculated' and the results for the flat
bands (arrows) and the gap (double arrow) are indicated in
these figures (Figs. 2,3). Again we observe a correlation be-
tween the resonances and the Oat bands, although a fiat band
in the Pb/Be combination [Fig. 2(c), 3(c)] appearing in the
middle of the gap does not seem to be related with a reso-
nance.

In all cases shown in Figs. 2 and 3 the first fiat band is
located above the first resonance and the second below the

— Au/Si

5.O-

O.O
O.O OZ 0.4 0.6 08

15.0

5.0—

O.O
O.O OZ' 0.4 0.6 0.8

15.0

0 Fb/Be

5.O-

Q.Q '

O.O OP 0.4
kj a,

I

0.6 0.8.

FIG. 2. Total dimensionless cross section vs k& a for Au spheres
in Si matrix (a), Pb spheres in Si inatrix (b), and Pb spheres in Be
matrix (c). The incident wave is longitudinal; a is the radius of the
sphere and k& = co/c&, is the longitudinal wave number in the me-
dium of the matrix. The numbers have the same meaning as in Fig.
1; the arrows indicate the positions of the Hat bands and the double
arrow the position of the gap in the corresponding fcc periodic
composites with volume fraction of the spheres 10% for (a),
9.8% for (b) and 8.23% for (c).

second resonance (if we ignore the sharp resonances appear-
ing in the shear case). The gap lies between the first and the
second resonance.

In Fig. 4 we plot the trajectory of the first few Oat bands
and the two midgaps vs volume fraction of the spheres for an
fcc lattice consisting of lead spheres (p=11.357 g/cm,
c,= 2.158 km/s, c,= 0.860 km/s) embedded in epoxy
(p= 1.180 g/cm, c&=2.540 km/s, c,= 1.160 km/s); in the
same picture we indicate the position of the first four reso-
nances. We see that the dependence on the volume fraction x
occupied by the spheres is weak for 0.2~x~0.5 with a
downwards tendency for smaller values of x. For very small
values of x the gap disappears while the Oat bands tend to
coincide with the resonances. The weak dependence on x at
intermediate volume fractions is an indication that the mul-
tiple scattering is not so important in determining the midgap
frequency and the Oat bands. The downwards tendency for
small x and finally the disappearance of the gap is the same
with what has been observed for scalar waves. This down-
wards tendency is expected because at very low concentra-
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FIG, 3. Total dimensionless cross section vs kI a for the cases
of Fig. 2 but with shear incident wave.

tions the wave propagates mainly through the host and the
spheres just obstruct its propagation. As the concentration
increases, the resonances can be mixed, broaden into bands
and become the preferable channels of propagation at least at
certain frequency regions. Thus the gaps tend to be opened
near a resonant mode (area of strong individual scattering) at
very low concentration of scatterers and move away from it
as the concentration increases and the resonances offer them-
selves for the propagation.

In Figs. 5 and 6 we plot the cross sections for a steel
sphere (p = 7.8 g/cm, c

&

= 5.94 kiri/s, c,= 3.22 km/s) in an

epoxy matrix and vice versa. For the case of a steel sphere in
epoxy there is some experimental evidence' of spectral
gaps; also recent preliminary theoretical results indicate
wide gaps. The cross sections for a steel sphere in epoxy are
shown in Fig. 5 [panels (a) for longitudinal and (a') for shear
incident wave). We see that the resonances appear weak bur-
ied in a strong background.

Following the analysis of Refs. 30—32 we calculate the
scattering cross sections for a rigid sphere in a place of the
steel sphere [Figs. 5(b), 5(b')]. A rigid sphere is one for
which p; —+~, p, ;~~, X;~~, cI;—+0, c„~0, so that the
displacement field inside and at the surface of the sphere is
zero.

In Figs. 5(c), 5(c') we plot the cross sections calculated
by subtracting from the steel scattering amplitudes the rigid-
sphere scattering amplitudes. Then the background disap-

FIG. 4. Midgap frequency (open circles) and "fiat" band posi-
tion (crosses) vs volume fraction of the scatterers for lead spheres in

epoxy matrix and fcc structure. "Flat" bands correspond to peaks in
the density of states (which may occasionally merge together or
become ill-defined). d is the diameter of the sphere (d=2a) and
P &;=2m/I'k&; the longitudinal wavelength in the medium of the
sphere. The dashed horizontal lines correspond to the first four
single-sphere resonances.

pears (except at very low frequencies) and the two widely
separated resonances emerge very clearly [in Fig. 5(c') the
lowest resonance is a double one]. Figure 5 suggests that in
the spectral regions where the cross sections of the steel
sphere and the rigid sphere are almost identical (e.g. ,

1.5~k&,a~2.5), the field will hardly penetrate inside the
steel sphere.

We had verified this point by calculating the total field
energy density (averaged over the angles) vs r (the distance
from the center of the steel sphere); see the dotted line in Fig.
7 corresponding to k&,a=1.6. This exclusion of the field
from the interior of the sphere implies that in the periodic
composite (steel spheres in epoxy) and for these spectral re-
gions (e.g. , 1.5~k&,a~2.5) the propagation, if any, must
take place almost exclusively through the matrix material
(epoxy); this, combined with the large cross section (more
than twice the geometrical cross section) strongly suggests
that a gap may appear.

Indeed, preliminary results show a rather wide gap [see
Fig. 5(c)] surrounded by fiat bands as indicated by arrows in
Fig. 5(c). These fiat bands may be associated with hopping
propagation (linear combination of resonance "orbitals")
from one steel sphere to its neighbors using the resonances
(linear combination of resonance "orbitals").

This picture is also supported by the results shown in Fig.
7, where the solid line corresponds with k&,a = 0.31 (i.e., the
maximum of the rather broad first peak in Fig. 5) and the
dashed line to k„a=0.867 (i.e., to the sharp first peak in Fig.
6). We see that the resonances correspond to a field distribu-
tion strongly localized inside the sphere (the sharper the
peak, the stronger the localization) with some weak leakage
outside (the sharper the peak, the weaker the leakage and the
less probable the hopping propagation).

From Fig. 7 one can obtain a rough estimate of the opti-
mum volume fraction for a wide gap: the neighboring
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FIG. 5. Total dimensionless cross sections vs

k&,a for steel sphere in epoxy matrix (a, a'), rigid
sphere in epoxy matrix (b, b'). The third column

(c, c') represents the cross section calculated by
subtracting from the steel sphere scattering am-

plitudes the rigid sphere scattering amplitudes.
The upper panels correspond to longitudinal inci-
dent wave and the lower to shear incident wave.
a is the radius of the sphere and kI = co/c&, the
longitudinal wave number in the medium of the
matrix. The arrows indicate the positions of the
fiat bands and the double arrow (with the symbol
G inside) the position of the gap in the corre-
sponding fcc periodic composite with volume
fraction of the spheres x=0.4524. The numbers
have the same meaning as in Fig. 1.

spheres must be close enough to overlap with the broad
maximum of the dotted line (as to make the propagation
through the matrix material more difficult) and far apart to
avoid the strong broadening of the resonance-based bands.
Keeping the neighboring spheres apart by a distance equal to
0.5a to a seems to be a reasonable compromise on the basis
of Fig. 7. This implies an optimum volume fraction between
37.9% and 21.9% (assuming a close-packed type of lattice).

In Fig. 6 we show the results of the same analysis for the
case of an epoxy sphere in a steel matrix. In this case instead
of a rigid sphere, the background (which was calculated
[Figs 6(b), 6(b')] and subtracted [Figs. 6(c), 6(c')]) refers to
a "soft" sphere, defined by p;~0, p, ;—+0, k;—+0, c&;~0,
c„~0.With the subtraction of the background the many
sharp resonances (characteristic of the large cI, /c&; ratio)
emerge very clearly.

On the basis of the arguments developed in connection
with Fig. 5, one expects that the periodic composite, epoxy
spheres in a steel matrix, is not favorable for producing a
wide gap because of the many closely spaced resonances,
which would probably produce overlapping bands. The best
chance is for a narrow band around k& a=1. Even that is

doubtful, because the background cross section around ki, a
is not as large as in the case of Fig. 5.

In Fig. 8 we show the effect of the velocity contrast on the
cross section for the shear incident wave and for a case
where p, /p;= 1/4, c&, /c„= c&, /c„= Q2 ("extreme" solid).
In Fig. 8(a) the velocity ratio c„/c&;=4. The low velocity
scatterer produces as many sharp resonances in the present
elastic case as in the electromagnetic and scalar cases. These
sharp resonances disappear when c&, /c&;= 1 [Fig. 8(b)] or
when c~, /c~;= I/4 [Fig. 8(c)]. For a longitudinal incident
wave the cross section is smaller, smoother, and with fewer
peaks (in agreement with what has been noticed above). The
rigid-sphere background (not shown here) is almost constant
and large [about four (three) times the geometrical cross sec-
tion for a shear (longitudinal) incident wave] but does not
dominate the cross section at any spectral region. No results
for the corresponding periodic case are available. On the
basis of the analysis developed in the present work one
would guess that there is a small chance for a narrow gap
between the first and second (or possibly between the second
and third) peak of Fig. 8(a).

In Fig. 9 we show the effects on the longitudinal incident
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FIG. 6. Total dimensionless cross section vs

kl, a for the case of epoxy sphere in steel matrix

(a, a'). The upper panels correspond to longitu-
dinal incident wave and the lower to shear inci-
dent wave. The second column (b, b') represents
the soft sphere in steel matrix cross section and
the third (c, c') the cross section calculated by
subtracting from the epoxy sphere scattering am-

plitudes the soft sphere scattering amplitudes. a
is the radius of the sphere and kt, =co/cI the
longitudinal wave number in the medium of the
matrix. The numbers have the same meaning as
in Fig. 1 and the arrows indicate the positions of
the flat bands in the corresponding sc periodic
composite with volume fraction of the spheres
x =0.268.
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FIG. 7. Total energy density vs r (the distance from the center of

the sphere) on a "wide" resonance [first resonance of Fig. 5(c),
solid line], on a "narrow" resonance [first resonance of Fig. 6(c),
dashed line] and "off" resonance [between the two resonances in

Fig. 5(c), dotted line]. The energy is in the incident wave energy
density units and the r in units of the sphere radius (a).

wave cross section of increasing the ratio of the longitudinal
to shear velocity for the case presented in Fig. 1(a). For the
upper panels the ratio cI/c, = 2 and for the lower panels the
ratio cI /c, = 2.83.

The background cross sections [panels (b) and (b')] refer
to a soft sphere. For the shear incident wave the picture is
more complicated with many additional peaks.

Figure 9 shows that these combinations are not favorable
for a spectral gap, because the separation between the first
two peaks is not large and the value of the background in
between is not so large. Comparing Fig. 1(a) and Figs. 9(a),
9(a'), we see that by increasing the ratio c&/c, (in both ma-
trix and sphere). the separation of the first two peaks is re-
duced making it more and more difficult for a gap to appear.
The actual calculation' verifies this "educated" guess: in-
deed the narrow gap of the case in Fig. 1(a) disappears in the
cases of Figs. 9(a) and 9(a') because of the overlap of the
first and second flat bands [their midfrequencies are indi-
cated by arrows in Figs. 9(a) and 9(a')]. Note that the first
two flat bands in the cases of Figs. 9(a) and 9(a') conform
with the general picture discussed earlier, i.e., they are lo-
cated above and below the first and the second resonance,
respectively.

In Figs. 10—15 we show results concerning the role of the
mass density contrast and its opposite effect on solid and
quid periodic media which constitutes a puzzling and unre-
solved issue. In Figs. 10 (longitudinal incident wave) and 11
(shear incident wave) we examine a case for which

c
& /c, = Q2 for both the sphere and the matrix,

c&, /c&, = 8.66 and for which p, /p;= 1/4 [Figs. 10(a), 11(a)],
p, /p, = 1 [Figs. 10(b), 11(b)], and p, /p;=4 [Figs. 10(c),
11(c)].

The periodic problem (with volume fraction x = 0.144 and
fcc lattice) has been already studied; the "flat" bands (ar-
rows) and the gap (double arrow) are indicated in Fig. 10.
The main feature of the increase of the density ratio p /p; is
that the peaks become narrower (sometimes to the point of
disappearance) without their maximum value becoming
lower.

Taking into account that the cross section between peaks

O.O
0.0 Q5 1.5 2.0

15.0
(c)

10.0—

5.0—

0.0
0.0 0.5 1.0 1.5 2Q

k~a.

FIG. 8. Total dimensionless cross section vs kI,a for

c& /c, = Q2 (for both sphere and matrix), p, /p; = 1/4 and c„/c„= 4
(a), 1 (b), 1/4 (c). The incident wave is shear; a is the sphere radius
and kI, = co/c&, ~ The numbers next or above each resonance denote
its origin (the corresponding modes).

is very small, the reduction of the strength of the peaks with
increasing p, /p; implies easier propagation and the eventual
disappearance of any gaps in agreement with the actual re-
sults.

In Fig. 12 we show results for the total cross section of
the corresponding ci, /c„=8.66 fluid (c,=0 in both the
sphere and the matrix) case with p, /p;= 1/4, 1, 4 for panels
(a), (b), and (c), respectively (note the change of the vertical
scale).

What distinguishes the Quid from the solid case is the
dominant role of the isotropic oscillation (n = 0) component.
In the solid case the v=0 component makes a relatively
insignificant contribution at high frequency and for the lon-
gitudinal component only (see Fig. 10). On the other hand,
for the quid case the n=0 component dominates the back-
ground and produces a strong first resonance. This resonance
can be studied analytically (see Appendix C) and in the high

p, /p; limit the resonance frequency is given by
cu, = (c;/a) $3p; / p, . Both the background and the first reso-
nance, in contrast to the solid case, become larger as the ratio
p, /p; increases (see Fig. 13). This basic difference is shown
in Fig. 14 where in panel (a) the area under the first n=0
resonance of the Quid case is plotted vs p /p;, while in
panel (b) the areas under the lowest (n = 1) resonance for
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column (b, b') the above sphere has been re-
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cross section was calculated by a subtraction
similar to what described Fig. 5. a is the radius of
the sphere and k„=coIc&, the longitudinal wave
number in the medium of the matrix. The num-

bers and the arrows have the same meaning as in

Fig. 1.

longitudinal (solid line) and shear (dashed line) incident
wave are exhibited. The conclusion is that a large density
ratio p /p; is indeed very favorable for gap creation in Quid

periodic media because of the n =0 component.

30.0

In Fig. 15 we show the cross section for a Quid sphere in
a Quid matrix with velocity contrast c& /c&;=2.65 and den-
sity contrast p, /p;=1/5 [panel (a)], 1 [(panel (b)], and 15
[panel (c)j.The corresponding periodic case has been studied
before. ' The case of Fig. 15(a) exhibits no gaps but show
sharp peaks in the density of states [arrows in Fig. 15(a)].
The case of Fig. 15(b) develops two gaps: a relatively wide
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FIG. 12. Dimensionless scattering cross section vs ka for

c&, /c&;=8.66, c„=c„=o(liquid case) and p /p;= t/4 (a), 1 (b),
4 (c). a is the radius of the sphere, k= co/c„. The number above
each resonance indicates the spherical harmonic responsible for the
resonance.

one between the first and the second "flat" band (arrows)
and a narrow one just above the third "flat" band. The case
of Fig. 15(c) has three gaps: a very wide one extending from
the first to second arrow, a second one extending from
ka = 1.25 to ka = 1.5, and a third one above the fourth arrow.
Note also the correspondence between the resonances and
the "flat" bands with the exception of the second resonance
which was expected to produce a flat band in the middle
(approximately) of the very wide gap; such a band does not

appear in the results of Ref. 15.
The large gaps associated with the case p /p;=15 is

again due to the strong scattering (both the low-lying reso-
nance and the background) associated with the isotropic
(n = 0) oscillation.

In view of the above results, it is interesting to examine
what happens in the mixed cases of a solid sphere in a fluid
host or a fluid sphere in a solid matrix. Preliminary results
indicate that the solid sphere in fluid behaves similarly to the
fluid in fluid case, while the fluid sphere in solid follows the
solid in solid behavior. This is not surprising, since for the
n =0 mode (which is purely compressional) there is no dif-
ference between a solid and a fiuid sphere with the same p;
and B,=X,+ (2/3) p, ;.

FIG. 13. Dimensionless n = 0 partial cross section vs ka for the
cases of Fig. 12.

IV. CONCLUDING REMARKS

We have examined the dependence of the cross sections
of an elastic sphere embedded in an infinite homogeneous
elastic medium on various parameters such as velocity con-
trast ct /c&;, mass density contrast, "solidity" of the sphere
(ci /c. ), and the host (ci c.o).

We have paid particular attention to the various reso-
nances appearing in the cross section and we have connected
them with specific spherical harmonic modes. In many cases
it was useful to calculate and subtract the cross section and
the scattering amplitude, respectively, corresponding to a
rigid or soft sphere. We have connected the above data for
the scattering from a single sphere with the features of the
band structure associated with the propagation of elastic
waves in a periodic medium consisting of spheres embedded
in an homogeneous matrix. In particular we were interested
in "fiat" bands (peaks in the density of states) and spectral
gaps. We found that the resonances in the single scattering
were closely associated with the "flat" bands supporting thus
the idea of a linear combination of resonance states (in anal-

ogy with the LCAO approach in the electronic propagation
in solids).

In addition to this hopping propagation from sphere to
sphere (utilizing the resonances) there is another mode of
propagation utilizing mainly the host material. The analysis
through the rigid or soft sphere is helpful in deciding
whether one of the two modes of propagation (hopping or
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through the host) is dominant or whether the wave utilizes
both the host and the spheres for its propagation.

We have developed some criteria for the appearance of
gaps in the periodic case on the basis of the single-sphere
scattering, e.g. , widely separated resonances (especially the
lowest ones) with a strong background in between (due to
the rigid or soft sphere) are very favorable for wide gaps and
consequently for localized states in a disordered composite
medium.

FIG. 15. Dimensionless scattering cross section vs ka for
c&, /c„=2.65,c,„=c„=O (liquid case) and p, /p;= 1/5 (a), 1 (b),
15 (c). a is the sphere radius and k = ai/c„. The numbers have the
same meaning as in Fig. 1 and the arrows indicate the positions of
the peaks in the density of states of the corresponding fcc periodic
system with volume fraction of the spheres x=0.144.

Assuming the time dependence to be of the form e '"', the
general solution of (Al) in spherical coordinates (r, H, P)
can be written as
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(A2)

where

u= 1+m+ n, (A3)
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APPENDIX A
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(A4)

In this appendix, we present the general solution of the
elastic wave equation in spherical coordinates, the boundary
conditions on the surface of the sphere and the formulas used
for the derivation of the scattering cross sections.

The time-dependent elastic wave equation in an homoge-
neous medium is

and

1
l „=——R„(kir)P„(cosH);„' m@r

1 8
+ R„(kir) P„(cosH),'„' mP H

k(r " 80

8 U
()i.+ 2 p, ) V'( V U) —p, V X V X U = p z .

Bt
(Al) R„(k,r)P„(cosH),",", mP P, (A5)

ki7"Sln 0
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N1
m „=~ . R„(k,r)P, (cose),",", m@ e

o sin g
j r

o.= .;„, dA for r~~,
jz

(A12)

—R„(k,r) —P„(cose);„'mP P,80

n(n+1)
n „= R„(k,r)P„(cose);„' mar"

0 ksr

(A6)
where

j;= g Rs(o'„) Re(~;))
J

(A13)

1 8 8
+ —[rR„(k,r)]—P„(cose);„'mp ekr Br 80

Pl 8—[rR„(k,r)] P„(cose),",", m@ P .
ksrsinO 8r

(A7)
A A

r" e p are the spherical unit vectors; k&=co/c&, k, =co/c,
with cu the frequency, c& is the longitudinal, and c, is the
shear wave velocity in the medium; X = p(c, —2c, ),
p, = pc, are the Lame coefficients of the medium (p is the
mass density); R„ is an appropriate Bessel function (chosen
from the boundary conditions at r~O or r~~); P„are the
associated Legendre polynomials.

The subscripts "e" and "o"which appear in the defini-
tion of le nm ~

~e nm e nm ~ and in the coefficients Ze nm ~

O

H. „,0 ~ „[see (A4)], mean even and odd, respectively,
0 0

and the subscripts n and m are integers going from zero to
infinity the first and from zero to n the second.

The boundary conditions on the surface of the sphere
(r=a) which are the continuity of normal and tangential
displacements and of normal and tangential stresses, can be
expressed as

(a) Continuity of the displacements:

=-,'cup Im[(o.",,)*u'] i,j:(r,e, @) or i,j:(x,y, z)
J

a:sc or inc. (A14)

The symbols () denote time average and the Im, (*) and

( ), imaginary part, complex conjugate and time derivative,
respectively, while the (A14) is valid only for a wave with
time dependence of the form e

APPENDIX B

In this appendix, we present the results from the calcula-
tions of the coefficients A, p, C p, A 1,B 1,C &

which
appeared in the formulas for the cross sections [see (2.7) and
(2.»)].

We present them for completeness and because of a few
misprints which were found in papers where these coeffi-
cients are given, Furthermore, here, both the longitudinal and
the shear incident wave scattering expressions are given un-
der a single heading —something that could be useful for
the interested reader.

The unknown coefficients A. ,„p,C,„p,A, &,B,„&,C,„&
(with the subscripts "e" and "o" to mean even and odd,
respectively, and the subscript n to go from zero to infinity)
are given by

u', "'~„„+u,"~„.=u,'"~„., i:(r, e, y),

(b) Continuity of the stresses:

P,'"')„.+P,")„.=P,'")„„,E:(r, e, y),

where

(A8)

(A9)

Ia 15

la 25
enp D 35

la 45

a12 a13 a14

a23

a42 a43 a44

P, =g o;/n/, i,j,l:(r, e, @),
J

(A 10)

with nJ the components of the outgoing unit vector normal to
the surface of the sphere which in our case is the r.

o.;,=2pc, u;, +p(c, —2c, )8;,g u„, i j,l:(r, e, @).
I

(A11)

are the stress tensor elements and u; the strain tensor ele-
ments which result from the components of the displacement
vector (for the calculation of u; in the spherical coordinate
system, see Ref. 35). The superscripts inc, sc, in, denote the
incident, the scattered, and the inner field, respectively.

The total scattering cross section for an incident plane
wave propagating in the z direction and scattered by a sphere
is given by

S
a15 a12 a13 a14

S
1 a25 a22 a23 a24

A,„i=
Dn a35 a32 a33 a 34

Sa 45 a 42 a 43 a 44

1 a 21
C,„1=

n a3&

a41

Sa» a &3 a14
Sa 25 a 23 a 24

S
a35 a33 a34

S
a45 a43 a44

I
aiba a $5 a]3 a j4

1
1 a2& a25 a23 a24

C,„p=
a3& a35 a33 a34

l
a4& a45 a43 a44

(B1)
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1 [ 13 22 23 12] [ 11 22 e21 121 e11=h„(Z„),

a j ] a12 a13 a14

a21 a22 a23 a24

31 32 33 a 34

41 42 a43 a 44

a;j,e;~ result from the boundary conditions on the surface
of the sphere and have the following form:

a11=h„'(Z1, ), where

e12= —j„(Z„),

e» ———J„(z,.),
e 21

= p,,Z„[h„'(Z„)—h „(Z„)/Z„],

e22 piz i[j„(z;) J„(Z„)/Z;],

e23 p' z o[J„(Z,) —J'„(Z„)/Z„],

(B8)

a,2= n(n+ 1)h„(Z„)/Z„,

a,3= —J„'(Z„),

a14= —n(n+ 1)j„(Z„)/Z„,

aIs= ij„'(Z„),

a'1&= tn(n+ 1)j,(Z,O)/Z„.

a21= h„(Z„)/Z„,

a22= h„'(Z„)+ h„(Z„)/z„,

a23 —— J„(Z„)IZ„, —

a24= —j„'(Z„)—j„(Z„)/Z„,

a25= ij „(Z1,)IZ1, ,

a25= 1[j„'(Z„)+j„(Z„)/Z„].

a 3,=Z„[2p, ,h'„'(Z„) —
11.,h„(z„)],

a32 2n(n + 1 )p, ,[h„'(Z„)—h„(Z„)/Z„],

a33= —Z1,[2pj '„'(j
&, ) —k;j„(Z&;)],

a34 —2n(n+ 1)p, ;[j„'(Z„) j„(Z„)IZ„], —

a 3&
= i Z&,[2p, ,j '„'(Z,.) —X.J'„(Z,.)],

a3&=2in(n+ 1)p, ,[j„'(Z„) j„(Z„)IZ„]-
a41= 2p, [h„'(Z„)—h„(Z„)/Z1, ],

a42= p, ,[Z„h„"(Z„)+ (n —1)(n+ 2)h„(Z„)/Z„],

a43= —2 p, ;[j„'(Z1,) j„(Z1;)IZ1;], —

a44= —p, ;[Z„j,"(Z„)+ (n —1)(n+ 2)j„(Z„)/Z„],

a45= 2i p, ,[J'„'(Z1,) j„(Z1,)IZ&,], —

a4&= ip, [Z„j„"(Z„), + (n —1)(n+ 2)j„(Z„)/Z„],

(B4)

(B5)

ZIp= ktpa = a, Z,p= k,ya = a,
C ly C ~y

2py= pyC y,

kg= pp(e, ~ 2c,~), 8= o—(out), i(in).

The subscripts "o" (out) and "i"(in), refer to the medium
of the matrix and the scatterer, respectively, p~ is the mass
density, c&~ and c,~ are the longitudinal and the shear wave
velocity in the medium E(=o,i), j„denotes the spherical
Bessel function, and h„ the spherical Hankel function of the
first kind (ht'~). [Note the different meaning of subscript
"o" in the definition of B,„1.Also note the difference be-
tween "i" (in) (used as subscript in this appendix) with
i=/ —1.]

APPENDIX C

u'"'= g ( —i"+')(2n+1)1,„11(j,k ).
n=0

(C 1)

The scattered wave and the wave inside the sphere will have
the form

u"= g i"(2n+ 1)A,„ol,„o(h,k, ),
n=O

(C2)

u'"= g i"(2n+ 1)B,„ol,„o(j,k;) .
n=0

(c3)

For the definition of l,„o see Appendix A. The symbols in
the parentheses of l,„o denote the kind of bessel function and
the wave vector which contained in the expressions for the

In this appendix we will calculate the scattering cross sec-
tions for a longitudinal wave, scattered in a liquid sphere
embedded in a liquid host. We will derive analytical expres-
sions for some limited cases.

We assume the incident wave displacement field to have
the form U=e '"'u with u=e'""x and k =k,z=co/c z.
c, is the wave velocity in the host (out) while with c; (see
below) we denote the wave velocity in the medium of sphere
(in). Note the difference between i (in), used as a subscript in
this appendix and i = g —1.

The incident wave —in terms of spherical waves —can
be written as (see Eq. (2.4) and Appendix A)



13 330 M. KAFESAKI AND E. N. ECONOMOU 52

l,„p, k, =co/c, k;=co/c; and j, h are the spherical bessel
function and the spherical hankel function of the first kind,
respectively.

The unknown coefficients A p, 8 p can been deter-
mined from the boundary conditions on the surface of the
sphere which are the continuity of normal displacements,
u, in this case, and the continuity of normal stresses o.„.

cr„„can been calculated as described in Appendix A and
has the form

o„=—g (2n+1)i")i. k D R„(k r)P„(costJ).
n=p

(C4)

The superscript 8 means inc, sc or in. For the incident field
D = —i, R„=j„,k =k, , and P = p c, ; for the scattered

inner field D+= B,„o, R„=j„,k = k;, and X =p, c; (p, ,

p, : the mass density out and in, respectively). P„are the
Legendre polynomials.

The application of the boundary conditions on the surface
of the sphere (r =a) gives for the A,„o

1/tb, y„(Z,)j„'(Z,) =j „(Z,)y„'(Z,).
Equation (C7), which can be rewritten as

(C7)

y.'(z.) j.'(z;)
y„(z.) J„(z,) ' (C8)

y„'(Z, ) n+ 1 n

y„(Z,) Z, 1 —2n

j„'(Z;) n 1

j„(Z,) Z, 2n+ 3
(C9)

Substituting (C9) in (C8) we see that there is no solution
for n40, which means that the lowest n@0 resonances do
not satisfy the conditions Z, Z;(& 1. For n = 0, we have from
(C9) and (C8):

3
Z ——2=

is also the condition for a resonance to appear.
We are interested in finding the low-lying resonances for

which Z, Z;&&1. In this case the Bessel functions can be
expanded:

Pb, i„(z.)J„'(z,) J„(z,)J„'(z.)—
i/tA h„(Z,)j„'(Z;)—j„(z,)h„'(Z, )

(C5) which is valid only if A)&3 and P 5&)3. Under these con-
ditions there is a low-lying resonance at

Z, =k,a, Z; =k;a, 6 = p, /p; (the density contrast of the two
materials) and i/t= c, /c;= Z;/Z, (the velocity contrast). The
dimensionless cross section is given by [see Eq. (2.7)]

3P I'.

Po
(C 10)

CTI IA,.ol'
o.i= 2

——g 4(2n+1)
7Ta „=p Iz. l

(C6)

Taking in to account that h„=j„+iy„we see that

IA „oI

(1; the equality is obtained when

or

c; 3P;CO=-
a Po

(C»)
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