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A method to study the low-temperature conductivity in the Coulomb glass, i.e., a disordered system with
many electrons subject to long-range electron-electron interaction, is introduced. After determining the low-
lying many-electron states of the system we calculate the transition matrix between these states, including
one-electron hopping as well as many-electron hopping processes. The conductivity is then obtained by an
examination of that eigenvector of the transition matrix which describes the stationary state. The results
demonstrate that the low-temperature conductivity in interacting systems is strongly influenced by many-

electron hopping processes.

I. INTRODUCTION

Theoretical investigations of the low-temperature hopping
conductivity in disordered systems of localized electrons
with long-range Coulomb interaction such as doped compen-
sated or amorphous semiconductors are still controversially
discussed. On the one hand, theories such as the variable-
range hopping theory by Mott,! have been developed which
are based on one-electron hopping processes. For noninter-
acting systems the variable-range hopping theory predicts an
Arrhenius law of the conductivity o at high temperatures T’
and a behavior o (T)xexp[—c(To/T)?* D] at low tempera-
tures (the constants ¢ and T, depend on the system under
consideration and d is the dimension of the system), where
the energies of the individual states become more important.
Efros and Shkovskii? have shown that the Coulomb interac-
tion slightly modifies this behavior so that o(T)
cexp[—c(Ty/T)"?] is independent of the dimensionality of
the system. This result is based on single-electron hopping. A
special kind of variable-range hopping, which is restricted to
hops up to a range R was implemented by Levin et al.?
According to the authors? this so-called R model is useful for
studying the equilibrium properties of the system, but the
restriction strongly influences the determination of the con-
ductivity. For the calculation of the conductivity there exist
some Monte Carlo simulations®® which also take into ac-
count one-electron hopping only, and which have been
evaluated at relatively high temperatures.

On the other hand, it seems unlikely that many-electron
processes can be neglected in the theoretical investigation of
the conductivity in interacting systems. Especially at low
temperatures many-electron hopping is expected to influence
the conductivity of the system strongly. The relevance of
many-electron effects was pointed out by Pollak® as early as
1970 and stressed repeatedly,”™ but it remains a matter of
controversy.'® This is at least partly due to the fact that the
exact effect of the Coulomb interaction on the density and
the nature of the low-lying states was unknown for a long
time and therefore an appropriate theoretical treatment of the
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many-electron conductivity has been impossible until now.
Based on assumptions on the many-electron density of states
Pollak’ was able to predict a power law for the temperature
dependence of the conductivity.

In recent years different groups have developed and used
different algorithms to determine the low-lying states
explictly.!!~* All these approaches, which have been per-
formed after the pioneering but strongly restricted work of
Levin et al.? have demonstrated the huge number of many-
electron excitations in the considered energy range.!' 182021
The significance of the many-electron states for the determi-
nation of thermodynamic properties was demonstrated
subsequently.'*!%?2 Moreover, rate equations describing the
relaxation of excited states, were derived and solved by
diagonalization®*??* or iteratively.”> In all these cases
many-electron hopping was found to be relevant. This was
similarly true in another investigation?® of relaxation follow-
ing the most likely relaxation path at each step of the pro-
cess. That approach was recently?’ extended to the calcula-
tion of the low-temperature conductivity, determining a
percolation path in the configuration space of the many-
electron states. For low temperatures it could be demon-
strated in this way that the percolation paths incorporated at
least two-electron transitions.

For clarification we point out that even if many-electron
excitations would be less important, correlation effects might
still be significant for the conductivity: even if one-electron
hops dominate the transport, sequential correlations may still
be essential. However, as we intend to demonstrate below,
many-electron hopping is not to be neglected.

From the experimental point of view, the observed tem-
perature dependence of the conductivity seems to be de-
scribed in a sufficiently accurate way by one-electron theo-
ries. For low temperatures the conductivity can be well
described by the theory of Efros and Shklovskii; for higher
temperatures, where the Coulomb interaction becomes less
important, Mott’s law was observed.?3* But recently an
Arrhenius law of the conductivity at very low temperatures
has been observed experimentally,?*33~¢ which cannot be
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understood by the above-mentioned theories. It has been ar-
gued, that this strange behavior might be related to the mag-
netic properties of the systems,?®>>¥ but in some of the ex-
periments a magnetic influence can definitely be excluded.®

A Monte Carlo study®® of only single-electron hopping
yielded an activated behavior at temperatures above the
Efros-Shklovskii regime. In that study no simultaneous cor-
relations could be included, but sequential correlations be-
tween successive one-electron hops were taken into account.
On the other hand, the more comprehensive multielectron
percolation treatment?’ yielded the Efros-Shklovskii predic-
tion for the temperature dependence of the conductivity, but
with a deviating prefactor in the exponent.

Consequently, there is still a lack in the understanding of
low-temperature conductivity in disordered systems of local-
ized electrons with long-range Coulomb interaction. With
this paper we want to shed some light on this problem. We
present a new method to compute the conductivity taking the
many-electron transitions into account. The analysis of our
results allows us to explain the Arrhenius law at low tem-
perature.

II. TRANSITION RATES
BETWEEN MANY-ELECTRON STATES

Our study is based on the Coulomb glass model.? The
Hamiltonian for N/2 electrons on N sites reads

N
\%4
2 P nn;. (1)

i,j=17Fij
i<j

N
H=2, (n;+12)¢,+
=1

Here n; is the occupation number of the ith site which is 1/2
or —1/2 for an occupied or unoccupied site, respectively.
The disorder in the system is described by the potential ¢;,
which is taken from a uniform distribution of width W. The
second term of the Hamiltonian characterizes the long-range
Coulomb interaction with r;; being the distance of sites i and
Jj. We consider the sites positioned on a regular lattice, i.e., a
lattice-gas model. For the results presented below we have
chosen W=V=1 so that disorder and interaction are equally
important.>*? Due to the necessary computational effort we
restrict ourselves to the examination of systems of size
N=N,XN,=10X6 in two dimensions.

We are aware that this small system size constitutes cer-
tainly a severe limitation, because due to the periodic bound-
ary conditions only half the sample length is significant
which means that hopping in the x direction is limited to five
lattice constants (the extension of the sample in y direction is
less significant because we intend to study the current in the
x direction, which is the reason for choosing a rectangular
instead of a square sample). This length is shorter than the
critical correlation length of a current-carrying percolation
network, but on the other hand, the notion of such a
percolation-based current usually depends on single-electron
hops. This means that one should be extremely careful about
drawing conclusions from one-electron paths contributing to
the conductivity, because on larger samples their share might
be reduced. The current-carrying percolation path has also
been investigated on the basis of the percolation treatment?’
of the conductivity in the multielectron configuration space.
In this case the maximum hopping length of the participating
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electrons was found to be four for the highest temperatures
considered; of course, for lower temperatures this length in-
creases so that the sample size limits the temperature range
in which the results are reliable. If, however, many-electron
effects turn out to be important for our small samples, it is
reasonable to assume that their significance increases for
larger samples.

In the first step of our investigation of the low-
temperature conductivity we determine the energetically
low-lying many-electron states W, of the systems by means
of a Metropolis algorithm as described in Refs. 20 and 22
using periodic boundary conditions. A detailed analysis of
these states has shown that a large number of the low-lying
states can be reached from the ground state of the system by
short-range many-electron hopping rather than by one-
electron hopping,”’m’zz’26 which strongly supports the im-
portance of many-electron hopping for the low-temperature
conductivity.

Each n-electron tranistion can be constructed from »n one-
electron hops. In the second step we determine for each pair
of states W, and V¥, the initial and final sites i,,(k) and
Jm(1) for those hops which yield the shortest possible overall
hopping distance

n

Ry= 21 Fi (10, (1) - (2)
=

This can be easily performed up to n=10 by comparing all
n! combinations of initial and final sites. For n>7, however,
we have used a Metropolis procedure in analogy to the trav-
eling salesman algorithm to optimize the overall hopping
distance. Up to n=12 the results were explicitly checked by
comparison with the systematic analysis of all combinations.

We now examine the system in an electric field
€=(€,0,0) parallel to the x axis to investigate the conductiv-
ity. The transition rate for phonon-induced hopping between
W, and ¥, is then given by

Yii= Yoe  PErie *Rula 3)

for a process with increasing energy E;;>0 at the inverse
temperature 8. Here the Boltzmann factor e ~#Exl arises from
the phonon density. The second exponential factor is due to
the overlap of the electronic wave functions with the local-
ization radius a. For the results presented below we have
chosen a = 1/2 in contrast to previous investigations, because
this rather large localization length yields larger transition
rates and thus simplifies the computation of the currents.
This phenomenological equation (3) for the many-
electron transition rates is only approximate because, e.g.,
the interaction energy enters only indirectly via the energy
difference Ej; between the many-particle states. However,
the rates should depend explicitly on the interaction, because
for vanishing interaction strength correlated hops of two or
more electrons become impossible. Moreover, Eq. (3) is ap-
proximate, because for the same energy difference E;; and
the same overall hopping distance R,; the rate should still
depend on the number of displaced electrons, as many-
electron hops constitute a higher-order process in compari-
son to single-electron transitions. Similarly the phonon-
assisted hops should become more difficult to correlate if the
distance between the hopping electrons (not the length of the
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hops) increases. On the other hand, two different analytical
approaches®*? yielded the conclusion that the phenomeno-
logical transition probability (3) describes the essential de-
pendence on energy and hopping distance. Due to its sim-
plicity the formula (3) has been widely used to study
transport and relaxation properties of the Coulomb glass
(see, e.g., Refs. 3,9,22 and 25-27).

For a process with decreasing energy the transition rate
(3) simplifies to

Y= Yoe 2Ru’e. 4)

It is worth mentioning that the energy difference E,; is in-
fluenced by the electric field and the change of the dipole
moment wuy; of the system in the x direction, i.e., the com-
ponent of the dipole moment in the field direction, associated
to the transition via

Ey=E(€e=0)+euy, 5

where E,;(e=0) is the energy difference of the states ¥,
and ¥,.

Considering periodic boundary conditions the dipole mo-
ment of a one-electron transition between the sites i and j is
given by

Xj= X, |x;—x;|<N,/2
Iu’ij: xj—xi—Nx, xj—x,->Nx/2 (6)
Xj=x;t Ny, x;—x;>N,/2.

In the case of many-electron transitions one has to sum over
the n one-electron transitions:

n

M= 21 M, (6, (D) - @)
=

III. DETERMINATION OF THE CURRENT

To determine the current in the system we consider a mas-
ter equation, i.e., a rate equation for the occupation probabili-
ties p; of the states ¥, :

a =T 8
ZP=TIp. (8)

Here the vector p comprises the probabilities p; and I' is the
matrix of the transition rates y,,; between each two of the
states, as given in Egs. (3) and (4). For the situation without
electric field we have previously shown??*2?* how the eigen-
vectors and eigenvalues of the transition matrix I' can be
used to solve the differential equation (8) efficiently for a
given initial occupation p(¢=0). In this way the relaxation
of an initially excited many-electron state towards the
ground state could be followed over many orders of magni-
tude in time and the importance of many-electron hopping
for such relaxation processes was corroborated.?%>>24
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In the present situation, however, we consider an electric
field in Eq. (5). In this case a single electron can be imag-
ined, which hops on a percolation path through the system in
the x direction gaining energy within each single hop as a
consequence of the electric field. Due to the periodic bound-
ary conditions it is possible that after a few hopping pro-
cesses the electron reaches its starting point with an energy
gain. In other words the electron can move on a closed path
through the system gaining energy in each circuit. Therefore
the system with periodic boundary conditions is equivalent
to a toroidal system embedded in an electrical vortex field.
Consequently an electric current exists in the stationary state.
This argument needs not to be changed when more than one
percolation path or many-electron hopping is included.

Thus the task to determine the electric current can be
performed, if the stationary solution of Eq. (8) can be deter-
mined, which means that dp/dt=0 or

I'p=0 9)

has to be solved. Consequently, the stationary solution is
given by that eigenvector py=v of the transition matrix
I'=(y;;) which corresponds to the eigenvalue A=0. The
knowledge of this eigenvector is the key for a detailed analy-
sis of the conductivity of the system including the effects of
many-electron transitions. To determine this eigenvector a
homogeneous system (9) of linear equations has to solved.

We note that such an eigenvalue A=0 and thus a non-
trivial stationary solution v always exists. This can be seen in
the following way: charge conservation requires that

21‘, pi=1. (10)

This condition determines the diagonal elements y;; of the
transition matrix according to

; Yu=0. (11)

This means that the rows of the matrix I are not linearly
independent. Consequently,

det(I")=0. (12)

As the determinant of a matrix is equal to the product of all
eigenvalues of the matrix, it follows that at least one eigen-
value of I' has to be zero.

Usually the transition matrix I" features exactly one eigen-
value A =0. In principle, one could imagine that an acciden-
tal degeneracy occurs, taking into account the randomly dis-
tributed potentials in the Hamiltonian (1) which yield
“random” energy differences E;; and thus ‘“‘random’ matrix
elements vy, . In practice, however, we have never encoun-
tered such a degeneracy neither when diagonalizing the en-
tire matrix I' in our relaxation studies?®?*?* nor when solv-
ing Eq. (9) in the present investigation.

Once the stationary state v is known it is possible to cal-
culate the related current via
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1= Ez Va1V (13)
where v; denotes the /th component of the stationary state
v. In the linear region of the current-voltage characteristics
the conductivity can be obtained as o=1I1/e. We have
checked that the system is in the linear region for
e~kT/100, but we observe strong deviations from the linear
behavior of the current for e=k7/10 in contrast to Refs. 4
and 5.

A sensitive test of the quality of the obtained conductivity
is a closer examination of the current path. Between any two
sites i and j of the system the current

k#1

n

Ii_>j=; ; Yii 21 (81,005,710~ Ojui, (1) Bij, (1) ji Vi
=

(14)

flows, where the Kronecker &’s ensure that the sites i and j
are the initial and final sites (or vice versa) of one of the
one-electron hops from which the many-electron transition
from state ¥, to state ¥, is constructed. A typical example
of the current is displayed in Fig. 1. It can be seen that
different paths through the system contribute. Thus it be-
comes clear that the above described procedure of determin-
ing the stationary solution of the master equation (8) does
not single out an optimal percolation path but rather includes
all continuous paths through the sample which transfer one
or more electrons between periodically related sites without
changing the state of the system. Most of these paths, how-
ever, are extremely unlikely. This is due to the fact that the
stationary solution in the case with a (relatively small) elec-
tric field differs only slightly from the thermal distribution
without electric field. The occupation probabilities of the
states ¥ are typically changed by less than 1%. Due to the
electric field the transition rates 7y,; and 7y, do not fulfill the
principle of detailed balance. But nevertheless the total cur-
rent between two sites, which is determined by many differ-
ent contributions according to Eq. (14), vanishes in most
cases as can be seen in Fig. 1.

The currents between the different sites can be used to
check the accuracy of our calculations. In thermal equilib-
rium, the charge conservation must be granted at each site.
Consequently at each site j the equation

L=2 1,.,;=0 (15)
i#j
must be fulfilled which is equivalent to div(Z) =0. In the case
of nonzero I; the site j would be an electron source or an
electron drain. If a site exists where Eq. (15) is violated, an
error occurs in the calculation of the current according to Eq.
(13). Consequently the value

o=—LL = (16)
measures the quality of the determined current (13). Q
should be much smaller than 1 in any case. We have checked
this condition carefully for all our data. In some cases the
condition is violated, which can be explained by numerical
instabilities in the determination of the stationary state v.
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a)
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FIG. 1. Current path in a noninteracting system of size
N=10X6 with periodic boundary conditions for (a) =50 and (b)
B=350. The dots indicate the sites of the system. The line thickness
is proportional to the strength of the current contributions according
to Eq. (14) before performing the summations in Eq. (14). The
largest contribution between two sites therefore covers smaller con-
tributions in the plot so that the current conservation (15) at each
site cannot be perceived. Solid and broken lines correspond to a
current flow in and opposite to the direction of the electric field
€. For clearness the current contributions, which are less than 1% of
the maximum current, are neglected.

Our analysis shows that the exact determination of this ei-
genvector is the crucial point in the numerical calculation
due to the fact that the elements of the transition matrix
differ by several orders of magnitude.

Another crucial point should be mentioned again, namely
the very limited system size. We have taken care in our an-
laysis of the current path with respect to variable range hop-
ping that the longest significant hopping length in the x di-
rection is given by half the sample length, i.e., five lattices
constants. (Longer hops have to be shortened by shifting one
of the participating sites by =N, according to the periodic
boundary conditions.) For single-electron hopping one can
estimate the hopping length to be of the order of \/ﬁ which
yields six lattice constants already for 8= 72. This impedes
the correct observation of variable-range hopping and we
shall mention the consequences for the computed conductiv-
ity in the discussion of the results below. But variable-range
hopping is not our main concern, because variable-number
hopping will be demonstrated to be significant. In this case
the average hopping distance of the participating electrons is
of the order of m /n, which is smaller than the sample
length even for 8=200. In this respect we note that for the
investigated sample the number n of displaced electrons was
determined*’ to be 3 or 4 in most energetically low-lying
excitations.

Another bottleneck of our examination arises from the
fact that only a finite number of low-lying states can be in-
cluded in our investigation. Our results are therefore only
valid with sufficient accuracy up to a maximum temperature
T. As the density of states increases very strongly with in-
creasing energy!!"17202! jt would be necessary to consider
many more states to reach slightly higher temperatures. In
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our studies we concentrated on the lowest 200 or 1000 states,
which allows us to perform our calculations on a worksta-
tion. For the highest temperatures in our results presented
below we have found only small differences depending on
the number of states. This is not really surprising, because
already the lowest 200 states cover the relevant energy inter-
val for the temperature range considered below. For one-
electron hopping one can estimate this energy interval to be
of the order of \T/a. Although the validity of this formula
has to be questioned when multielectron transitions are sig-
nificant, so that hopping transport becomes feasible already
at lower energies, it is nevertheless an upper estimate for the
reasonable energy range. For 8=50 this estimate requires
the inclusion of about 200 states. This explains that only
small differences in the results were obtained upon including
the next 800 states. Expanding the set to 1000 states does of
course not increase the energy interval very much, because
of the drastic increase of the density of many-electron
states'!~1720.21 with increasing energy. But we have explicitly
checked that the consideration of another 300 states does not
yield any further difference in the results.

As a further test of the power of our method for the cal-
culation of the low-temperature conductivity we have also
performed*’ a Monte Carlo simulation of hopping in an elec-
tric field, but for a system of very small size (10X 1, i.e., one
dimensional), for which all 252 many-electron configurations
in the half-filled case are exactly known. The one-electron
hopping results were comparable with the respective solution
of the master equation (8), but the computational effort
needed for the Monte Carlo method was 30 times larger than
for our new method. Moreover, even then the Monte Carlo
simulation featured still strong statistical fluctuations. The
reason for the inferiority of the Monte Carlo method in this
case can be found in the huge differences of the rates in Eq.
(3) for different transitions which to our best knowledge can-
not be taken into account by an appropriate importance sam-
pling. This renders the Monte Carlo approch inefficient.

IV. RESULTS

A detailed analysis of all contributions to the current ac-
cording to Eq. (13) yields some interesting quantities, e.g.,
the temperature dependence of the mean hopping distance. In
the following we summarize the main results of this exami-
nation.

(i) In systems without Coulomb interaction, i.e., under
neglection of the second term in the Hamiltonian (1), we
observe an increase of the hopping distance with decreasing
temperature. As an example the current path of a two-
dimensional noninteracting system is shown in Fig. 1 for
B=150 and B=350. The smaller number of corners in the
current path for =350 in Fig. 1(b) indicates the larger hop-
ping distances. This behavior corresponds to the predictions
of the variable-range hopping by Mott.! Despite this fact the
conductivity does not follow Mott’s law in any temperature
region. This can be understood as a consequence of the small
system size (N=10X6). For the lowest temperatures under
consideration there are already some hopping processes
which span half the system size [see Fig. 1(b)], which means
that the hopping distance cannot increase further with de-
creasing temperature.
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FIG. 2. Current path in an interacting system of size
N=10X6 for 8=100. The presentation corresponds to Fig. 1. In
(a) all hopping processes are considered whereas in (b) only the
contributions of the one-electron hopping processes are included.

(ii) In systems without Coulomb interaction, the neglec-
tion of many-electron transitions in the transition matrix, i.e.,
setting ;=0 for many-electron transitions, yields the same
results for the stationary state and the current as the consid-
eration of the full transition matrix. This means that many-
electron hopping is not important in noninteracting systems,
as commonly expected. We note that even sequential corre-
lations do not exist at all in these noninteracting systems,
because the contributing one-electron hops are independent.

(iii) In interacting systems we observe an increase of the
mean hopping distance with increasing temperature. This ob-
servation is in agreement with the prediction of variable-
range hopipng in interacting systems. Again we do not ob-
serve the predicted temperature behavior of the conductivity.
But as in the noninteracting case, this can be explained by
the small system size.

(iv) With decreasing temperature in interacting systems
we observe contributions of more and more many-electron
hopping processes. The importance of the many-electron
hopping processes becomes visible if the current path includ-
ing all hopping processes is compared to the current path
obtained by analyzing the stationary state only with respect
to the one-electron transitions. This is demonstrated in Fig. 2.
In Fig. 2(b), where the multielectron hopipng processes are
neglected, one observes several electron sources and drains
in contrast to Fig. 2(a) indicating the importance of many-
electron hopping. Especially prominent in this respect is the
thick vertical line on the right-hand side of Fig. 2(b). This
one-electron hop is completely balanced by the respective
contributions of many-electron transitions so that no such
line appears in Fig. 2(a). A determination of the stationary
state under neglection of all many-electron processes in the
transition matrix yields the following result: In some systems
there exists still a closed current path through the system but
the absolute value of the current decreases in comparison to
the consideration of all possible hopping processes; in other
systems such a current path does not exist anymore when
many-electron hopping processes are neglected, the station-
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FIG. 3. Temperature dependence of the conductivity ([1, <)
and its many-electron part (+,X) in the interacting system of size
N=10X6. 1,4+ and <, X are calculated on the basis of 200 and
1000 low-lying states, respectively. The solid line is a fit of the
Arrhenius law in the low-temperature region. The many-electron
part of the conductivity is obtained by neglecting all one-electron
transitions in Eq. (13), i.e., all those terms in which the sum over m
in Eq. (7) or, equivalently, in Eq. (14) contains only one term (m
=n=1).

ary state v coincides with the thermal distribution without an
electric field and the total current in the system vanishes.
Considering only contributions of the many-electron transi-
tions to the conductivity an increasing importance of the
many-electron processes with decreasing temperature is ob-
served, which is reflected by the comparatively flat slope of
the many-electron conductivity in Fig. 3.

(v) In interacting systems the conductivity is smaller than
in noninteracting systems. This observation is in accordance
with the results of one-electron Monte Carlo simulations.*! It
is not surprising, because the one-electron hopping as well as
the many-electron transitions become more difficult as the
repulsive interaction energy with the other charge carriers
has to be overcome.

(vi) Our main result is that in interacting systems the con-
ductivity follows an Arrhenius law at very low temperatures
(cf. Fig. 3). This behavior is in contrast to the result of the
percolation treatment®’ of the multielectron conductivity,
which yielded the Efros-Shklovskii dependence on tempera-
ture.

We do not attribute this difference to the random spatial
distribution of the sites chosen in Ref. 27 in contrast to our
lattice structure. We do not think that the difference is due to
our system size (albeit this is extremely small), as long as the
hopping length does not span half the system length of five
lattice constants; we have rather used this criterion to limit
the temperature range displayed in Fig. 3. We have further
checked that the observed Arrhenius law is not a mesoscopic
effect specific to the particular random sample: Different
samples yield similar behavior. We have also checked as
mentioned above that the number of states which were in-
cluded in our investigation was sufficiently large. At first
view it may be surprising that the consideration of 1000
instead of 200 many-electron states seems not to establish
further significant hopping paths through the system. Such
paths are indeed established but do not contribute to the con-
ductivity at low temperatures, because these paths involve
configurations of relatively high energy which are very dif-
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ficult to reach at low temperatures even under the influence
of an electric field in Eq. (5).

We rather believe that the conceptual difference between
the percolation treatment?’ and our stationary solution of the
master equation (8) is significant: at a given temperature the
percolation approach takes into account one path through the
system while the stationary solution of Eq. (8) comprises all
the continuous paths with their appropriate weights [cf. Eq.
(14) and the subsequent discussion]. We attribute the con-
trasting results of Ref. 27 to this different ansatz. We note the
same conceptual difference between the relaxation
studies?>?6 following the most likely relaxation path at each
step of the relaxation process and the more comprehensive
solution of the relaxation rate equation [similar to Eq. (8)],
which takes all possible relaxation paths into account with
their appropriate weights.?%2324

A detailed analysis of the current paths shows that there
are always some bottlenecks which have to be passed by the
same hopping processes independent of the temperature. It is
interesting to note that the same bottlenecks occur for several
different paths which make significant contributions to the
stationary solution of the master equation (8). It seems that
there is no other possibility to pass these regions of the sys-
tems. Consequently the transition rates of the same few hop-
ping processes, which are necessary to pass the bottlenecks,
determine the conductivity of the systems independent of the
temperature. In this case it is obvious that the conductivity
follows an Arrhenius law.

V. SUMMARY

To conclude, we have presented a method to determine
the conductivity of interacting systems with the full influence
of many-electron hopping processes. It turned out that with
decreasing temperature the hopping distances as well as the
importance of many-electron hopping increase in interacting
systems. In some interacting systems no current exists if only
one-electron hopping processes are considered. At very low
temperatures we observe an Arrhenius law of the conductiv-
ity, as recently measured in some experiments.?>*3~3¢ This
temperature dependence seems to be related to bottlenecks in
the current path in the interacting systems. In this paper we
displayed our results for a two-dimensional system. First
computations have been performed in three-dimensional sys-
tems of size N=5X5X5 with qualitatively comparable re-
sults, in particular yielding the Arrhenius law for the conduc-
tivity at very low temperatures, too. Although it is difficult to
give quantitative predictions from our examination, as the
systems under consideration are very small, it follows nev-
ertheless, that one-electron theories®® are unsuitable for the
description of the transport properties of doped compensated
semiconductors at low temperatures.
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