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‘We present results for the structural and electronic properties of liquid Si and Ge using ab initio molecular
dynamics. The interatomic forces are calculated from ab initio pseudopotentials constructed within the
local-density approximation. The simulations do not utilize fictitious electron dynamics; the system is con-
strained to reside on the Born-Oppenheimer surface at each step of the simulation. Langevin dynamics are used
to control the temperature of the system. Predicted pair and angular correlation functions, structure factors, and
self-diffusion coefficients are presented for both Si and Ge.

L. INTRODUCTION

The liquid state (/ state) of matter presents formidable
challenges in the application of theoretical methods for pre-
dicting electronic and structural properties. For example,
semiconductors such as Si and Ge, have been extensively
studied in the crystalline phase, but the liquid properties for
these semiconductors have not received similar attention. Al-
though [-state Si and Ge are technologically important (e.g.,
zone refining in laser annealed surfaces or crystal growth),
the high melting points, 1693 K for Si and 1210 K for Ge,
and high reactivity of these liquids make experimental ex-
aminations difficult.’

Theoretical studies of liquid Si and Ge have also been
somewhat limited. Dynamics play a crucial role in determin-
ing the properties of the liquid state. Unlike the solid state, a
key issue in modeling the liquid state is constructing a rep-
resentative ensemble. The crystalline form of Si and Ge is
covalent, and corresponds to the diamond structure. This is
an open structure with a coordination number of 4. Open
structures cannot be reproduced by simple pairwise interac-
tions. In the solid state, many-body interatomic potentials are
required to replicate the diamond structure. Although the co-
ordination number increases upon the solid — liquid transi-
tion to ~6, and the conductivity jumps by a factor of 20 for
Si and 11 for Ge, there are indications that the materials do
not have entirely free-electron character, but still retain co-
valent properties.

For example, [ structures of Si and Ge remain somewhat
“open” if we compare? with close-packed liquid metals with
coordination number ~ 12. Also, liquid Si and Ge structures
differ from simple metals in terms of long-range
correlations.> These attributes of Si and Ge make it very
difficult, if not impossible, to simulate the / state using
simple pairwise atomic potentials, or by using a model based
on the packing of hard spheres. In this sense, the best ap-
proach to calculating the properties of liquid Si and Ge (or
other covalent liquids) would be to utilize fully quantum-
mechanical methods.

Only recently has it been possible to apply quantum meth-
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ods to complex systems such as liquids. Early theoretical
studies attempted to use empirical, many-body interatomic
potentials, or semiempirical approximations.*~” More recent
methods have focused on ab initio calculations. These calcu-
lations have become feasible owing both to hardware devel-
opments, e.g., parallel computers, and to software develop-
ments, e.g., new algorithms. An example of an algorithm
development is the ab initio method in the work of Car and
Parrinello.® Their approach can be applied to complex sys-
tems, and has been used to examine semiconductor liquids.
The Car-Parrinello method uses fictitious dynamics for the
electrons and Newtonian dynamics for the ions, simulta-
neously minimizing the energy with respect to the electronic
and ionic degrees of freedom. However, it is not necessary to
employ fictitious electron dynamics to achieve an efficient
simulation procedure.®~'3

We introduce a different approach from the Car-Parrinello
method.!% As in their method, we use ab initio pseudopo-
tentials to compute quantum interatomic forces which are
then incorporated into a dynamical simulation. In contrast to
the Car-Parrinello method, we do not involve fictitious
“electronic degrees of freedom.” We restrict our simulation
to reside on the Born-Oppenheimer surface. This procedure
allows us to take much longer steps in integrating the equa-
tions of motion. The longer time steps compensate for per-
forming a fully self-consistent calculation, and implementing
the real quantum forces, at each time step.

Our simulations also differ from previous ab initio calcu-
lations in the way we thermalize the liquid system. We use
Langevin dynamics”’]4 rather than Nosé!’ dynamics. In
Langevin dynamics, particles are subject to random fluctua-
tive and dissipative forces which simulate a coupling to a
heat bath. The work imparted to the system by the random
forces is dissipated by the viscous forces from the hypotheti-
cal medium. Since we are not only interested in statistical
properties, but also in the dynamical behavior of the system,
we adopt the following strategy. Once the desired equilib-
rium temperature is achieved by Langevin thermalization,
the viscosity of the hypothetical medium is reduced to zero.
The canonical ensemble from the Langevin simulation is
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thus converted into a microcanonical ensemble with the de-
sired temperature. With the temperature of interest estab-
lished, we can then follow the dynamical behavior of the
liquid.

We apply this method to compute the properties of liquid
Si and Ge. We calculate the pair-correlation functions, the
angular distribution functions, the structure factors, the self-
diffusion coefficients, and the coordination numbers. We
compare our calculations to previous theoretical results, and
to experimental data, where available.

II. COMPUTATIONAL METHODS

A key aspect of simulating a liquid is preparing a repre-
sentative ensemble. We started our simulation with 64 atom
supercells for both Si and Ge. Studies using realistic inter-
atomic potentials16 have suggested that a 64-atom system is
sufficiently large to capture the essential features. In the case
of Si, we prepared the liquid state by first arranging the at-
oms in crystalline Si configuration and then heating it. The
size of the cell was taken in such a way that it corresponds to
a cubic diamond unit cell with a doubled lattice constant, 2a.
The size of the cell for Si was taken to be 10.48 A. This cell
size corresponds to the known experimental density of the
liquid near the melting point. The densities of Si and Ge are
greater than densities of solid phases by 10 and 4 %,
respectively.'

To avoid any ‘“memory” or hysteresis effects, we start the
systems far above the melting point and anneal the systems
to just above the melting g)oint temperature. This procedure
has been used elsewhere.>'7!® For Ge, we proceeded in a
similar manner. However, we started the simulation from a
random configuration of Ge atoms in the supercell. This pro-
cedure is probably superior in that the initial random state is
closer to a liquid state. As for Si, we determine the supercell
size for the Ge [ state by fixing the density to correspond to
the experimental value. The lattice constant for the Ge cell
was taken to be 11.24 A. Again, the initial temperature was
taken to be well above the known melting point of Ge.

In our simulation, the trajectory of each silicon or germa-
nium atom is computed from the Langevin equation:

dv;

Mld_tl:_yvl+Fl+Gl(T)’ (1)

where F; is the interatomic force on ith particle, M; is the
mass of Si or Ge, and v is the viscosity of the hypothetical
medium. The temperature of the medium is taken to be 7.
The particles are subject to rapidly varying random forces
G, . The random forces, temperature, and viscosity are inter-
related by the fluctuation-dissipation theorem.!® The inter-
atomic forces F; are computed quantum mechanically from
ab initio pseudopotentials with a plane-wave basis set.’
Pseudopotentials were constructed in the Troullier and
Martins?® form with the Ceperley and Adler?! form for cor-
relation. Cutoff radii were r.=2.50 for Si and r,=2.68 for
Ge. We used a plane-wave cutoff of 8 Ry, and tested higher
cutoffs. This cutoff is probably the smallest cutoff which one
can employ, and still maintain accurate dynamics. A Klein-
man and Bylander?? factorized form for the pseudopotential
was used. For Si, the form of the pseudopotential consisted
of three angular projectors, with s and d nonlocal compo-
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nents. The local part of the pseudopotential was taken to be
the p component. For Ge the form had four angular projec-
tors, with s, p, and d nonlocal components. The local part
was taken to be the f component. This choice for Ge avoids
problems associated with “ghost states.”?> The Brillouin
zone was sampled only by the I' point. While the use of only
one k point has been questioned3 for determining the elec-
tronic density of states, it appears to be satisfactory for other
properties such as the charge density, and for dynamical
properties. We use a modified Beeman algorithm to integrate
the equation of motion.'*

A Broyden procedure was used to iterate the potential to
self—consisten(:y.24 Our criterion for self-consistency requires
the rms error of the “input” and “output’ potentials to be
less than 10~ a.u. Typically, 5-6 iterations were required.
The charge density from the previous time step was used to
construct a starting potential. An iterative diagonalization
procedure®® was used to obtain the eigenvalue/eigenvector
pair. The eigenvalues were converged to 1077 a.u.

The initial temperature of the medium for both Si and Ge
was taken to be 6000 K. In atomic units, the viscosity pa-
rameter vy was taken to be 0.001 and the time step At to be
250. The initial state was quenched rapidly to just above the
melting point. For Si we took 240 time steps, or 1.4 ps, to
reach 1800 K. For Ge we used a slower quench, i.e., 440
time steps, or 2.6 ps, to reach 1350 K. In our silicon simu-
lation, the system was thermalized to the initial temperature
of 6000 K in ~50 steps. The temperature of the system is
taken from the kinetic energy of the atoms. For the germa-
nium simulation, the system was equilibrated to the initial
temperature within 10 time steps owing to the initial random
configuration (which is more representative of a higher-
temperature state). In both cases, the Langevin method pro-
vides an effective and convenient thermalization procedure.
This method does not require any ad hoc rescaling of the
particle velocities, or the use of Nosé dynamics.

In order to ensure the correct dynamical behavior of the
liquid, once we have reached the desired temperature, we
slowly decrease the viscosity to zero. At zero viscosity, the
random forces must also vanish due to the fluctuation-
dissipation theorem, and the system is transformed to a mi-
crocanonical ensemble. We then follow the trajectories of
the particles to examine the liquid-state dynamics. Since the
atoms of Ge are heavier than the atoms of Si and thus diffuse
more slowly, we take more time steps for the simulation of
liquid Ge than for liquid Si. With the temperatures estab-
lished at 1800 K for Si, and 1350 K for Ge, the viscosity
parameter was lowered by a factor of 2 for every 10 time
steps for a total period of 40 steps for Si, and for every 20
time steps for a total period of 80 steps for Ge. At the final
step, the viscosity was reduced to zero. We also shorten the
time step Az in order to insure accurate dynamics. During the
Langevin thermalization process, energy is not conserved
and small errors in the dynamics can be tolerated. After turn-
ing the Langevin dynamics off, the rms error in the energy
conservation was approximately 10™* eV/atom. The drift in
the total energy over the simulation time (~1 ps) was less
than 0.01 eV/atom.

The system of /-Si was examined for 240 time steps (1 ps)
and the system of /-Ge was examined for 300 time steps (1.2
ps). These simulation times should be satisfactory for obtain-
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FIG. 1. Theoretical (solid line) and experimental (dashed line)
pair correlation functions, g(R), for Si and Ge.

ing an accurate description of the pair-correlation function,
the structure factor, and the angular distribution functions.
For example, work using tight-binding molecular dynamics
for semiconductor liquids indicates that diffusion properties
can be determined on such short time scales.®

In a microcanonical ensemble, the energy should be rig-
orously conserved. However, owing to the small size of the
system, there are fluctuations of the kinetic energy. Our cal-
culated rms fluctuation of the kinetic energy was about
~150 K for Si and ~100 K for Ge. The temperature as
determined from the kinetic energy averaged over the simu-
lation time was within a few percent of the desired tempera-
ture as fixed in the Langevin equation. This confirms the
utility of Langevin procedure for establishing the desired
temperature.

III. THE STRUCTURAL PROPERTIES
OF LIQUID SILICON AND GERMANIUM

A key measure of a liquid state is the pair-correlation
function, or the radial distribution function. This quantity
characterizes the structural properties of a liquid in an aver-
age sense. In Fig. 1, we show the calculated pair-correlation
functions for Si and Ge. The pair-correlation functions were
obtained by averaging over the liquid structure at different
times during the microcanonical (zero viscosity) simulation.
For both Si and Ge, the last 100 time steps of the simulation
were incorporated into a histogram giving the average radial
distribution. For distances greater than the length of the su-
percell, no new information is collected in calculating the
radial distribution function of the liquid. At half the distance,
it is possible for the particles to begin to sense the supercell
geometry. It is possible to make use of some information in
the radial distribution function for distances greater than half
the cell size, but this procedure is complex and yields poor
statistics.
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FIG. 2. Theoretical (solid line) and experimental (dashed line)
structure functions, S(Q), for Si and Ge.

In Fig. 1, we compare our calculated results with the pair-
correlation functions taken from neutron measurements.?®
For silicon, there is a good agreement for first peak: 2.40 A
from experiment and 2.43 A from theory. For germanium,
the agreement is not as good. We find a 4% difference in the
first peak positions for Ge. One problem with the current
simulation is that we have fixed the density of the liquid. It
may be that the theoretical density at this temperature is not
entirely consistent with experiment. For example, the calcu-
lated lattice constant for crystalline germanium is too small
compared to experiment by a few percent. This error which
can be attributed to the local-density approximation may be
also reflected in the liquid state.

The calculated structure factor function S(Q) is repre-
sented in Fig. 2 along with experimental data.?® Although we
are limited by the size of our supercell in performing the
transform of g(R) into S(Q), we obtain fairly reasonable
structure factors.'® The calculated structure factors for both
Si and Ge have an asymmetric shoulder on the first peak.
This feature agrees with the experimental results. The pres-
ence of this shoulder indicates that semiconductor liquids
have a more complex structure than simple liquids. For ex-
ample, this shoulder is absent in liquid tin and liquid lead.
The shoulder is more pronounced in Si as opposed to Ge.
This is consistent with the more metallic behavior of Ge
when compared to Si. Also, the rapid damping of g(R)
shows that the packing of atoms in liquid Si and Ge cannot
be replicated by hard-sphere packing as can be done for
simple liquid metals. The origin of this shoulder is related to
the depth of the first minimum of g(R) which follows the
first peak. For a more structured liquid, the depth of this
minimum is accentuated. The position of the first peak in the
structure factor has an 8% discrepancy with experimental
data for Si and a 10% discrepancy for Ge. The first peak for
Ge is shifted to the right more so than the corresponding
peak in Si. This is expected because of the difference in
g(R) for Si and Ge. For other peaks, the discrepancy for the
second peak is 5% for Si and 10% for Ge, for the third peak:
3% for Si and 5% for Ge.
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FIG. 3. Angular correlation functions, g(6,R,,) (solid line) and
g(8) (dashed line), for Si (a) and Ge (b). See text for definitions of
8(6,R,,) and g(0).

Some of these discrepancies may arise because of techni-
cal differences in the transformation from g(R)—S(Q) in
theory and S(Q)—g(R) in experiment. For example, arti-
facts from the supercell can exist in the theory and Q cutoffs
in the experiment can affect the transformation to g(R). It is
also possible that g(R) will start to reflect periodic boundary
conditions when R exceeds half the cell size. However, this
does not appear to be a serious limitation on defining the
salient features of the distribution function.'® With respect to
the integration procedure in transforming g(R)—S(Q), we
integrate out to R=L where L is the edge size of the cell.

Given the nature of the many-body interactions in silicon,
or germanium, it is interesting to examine the angular distri-
bution function, or pair-correlation function of order higher
than 2. In Fig. 3, we show the angular functions for both Si
and Ge. We plot unnormalized angular functions so that a
homogeneous distribution of atoms would be a sin( ) curve.
We distinguish two types of angular distribution functions.
The first type of angular distribution function, g(#8), consid-
ers an angle defined by a vector drawn from a reference atom
to the nearest atom, and a vector drawn from the reference
atom to the next-nearest atom. The second type of angular
distribution, g(#6,R,,), is an average of angles between a
reference atom to the nearest atom, and a vector drawn from
the reference atom and all pairs of atoms within a radius
R,, of the reference atom. In the calculations presented, as is
common practice, we defined R,, to be the first minimum in
the pair-correlation function, i.e., 3.15 A for Si and 3.20 A
for Ge. For both angular functions, angles below ~40° are
not found. Such small angles are forbidden by steric con-
straints for the g(#) distribution. In principle, such small
angles could occur in the g(6,R,,) distribution, but this
could only occur for atoms which are “onefold” coordinated.
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The peak in both distributions near ~110° are suggestive of
a fourfold-coordinated silicon atom, i.e., a covalent configu-
ration. We expect Si and Ge to be less covalent and become
more metalliclike in the liquid state. This is reflected in the
existence of a peak near ~60° in the distribution function.
Such an angle would occur in a close-packed solid. In the
solid state, covalent bonds in Si and Ge are shorter than
metalliclike bonds. If this trend persists in the liquid state,
then we would expect shorter bonds to favor a locally tetra-
hedral arrangement as indicated in the g(6) distribution. If
we only had a metalliclike arrangement in the angular func-
tion, then we might expect the distribution shown in the
g(0,R,,) distribution. For example, in the hexagonal close-
packed structure for a metallic system, we would expect dis-
tinctive peaks at 60° and at 90°. Calculations using inter-
atomic potentials often do not replicate a two-peak structure;
the “60° peak” is often absent.?” This suggests the inter-
atomic potentials emphasize the “covalent” character of the
liquid at the expense of the “metallic”’ character.

The metallic bonding component of [-Si or [-Ge is con-
firmed by experimental measurements. The liquid state of
these semiconductors shows no energy gap. An analysis of
the liquid charge density indicates electrons in the liquid
state become delocalized and contribute to conductivity.>!7-18
The experimental results, obtained from the measurements of
the Hall coefficient and electrical conductivity show that the
density of conduction electrons increases by 10°—10!!' com-
pared to solid state. While the density of electronic states
increases at the Fermi level in the liquid state, the electron-
scattering rate also increases in the liquid. This latter effect is
due to disorder in the liquid state compared to the crystalline
state. The combination of these two factors results in in-
crease of the conductivity by a factor of 20 for /-Si and by a
factor of 11 for [-Ge.!

In Fig. 4, we present the distribution of coordination num-
ber, C(N), in [-Si and /-Ge. C(N) is defined as the probabil-
ity of an atom to have N neighbors within the limiting sphere
of radius R,,. We compare our results to previous theoretical
work.!7!'® For both Si and Ge, the agreement with previous
work is quite striking. Our calculations use a different
pseudopotential, different thermalizing procedures, and dif-
ferent dynamics to examine the liquid state. This result sug-
gests that the simulation of the liquid is not overly sensitive
to the details of the procedure. We can determine the average
coordination for the liquid state by integrating the radial dis-
tribution function up to the cutoff. We find an average coor-
dination number of 6.4 for Si and 5.6 for Ge.

IV. THE DYNAMICAL PROPERTIES
OF LIQUID SILICON AND GERMANIUM

By following the atomic positions in the liquid state as a
function of time, we can calculate the self-diffusion of Si in
[-Si and Ge in /-Ge. For this calculation, we set the viscosity
to zero and follow the trajectories of each atom in the liquid.
The diffusion constant can be determined from®

D= lim SROT)
61t

1—0

2
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(solid line) for Si and Ge in comparison with theoretical results
obtained in previous work (Ref. 18) for Si and for Ge (Ref. 17).

where the mean-square displacement is given by

1 N
([RT)= 52 [R(D=R(O)P, 3)

R;(¢t) is the position of the ith atom. The average is over all
the atoms N in the unit cell. The t=0 point is arbitrary,
provided the simulation is performed over a sufficiently long
time. One issue which merits careful attention is the center-
of-mass rotation motion of the atoms in the supercell. When
the simulation is initiated, the center-of-mass motion of the
unit cell is taken to be zero. However, as the simulation
proceeds, the Langevin thermalization procedure which con-
tains a stochastic term does not guarantee a zero velocity for
the center-of-mass motion. We have taken care to zero this
motion before calculating the root-mean-square velocity.

In Fig. 5, we plot the root-mean-square displacement for
both [-Si and /-Ge. In both cases, the root-mean-square dis-
placement is quite linear with time, although some small
“statistical fluctuations” are evident.

The self-diffusion coefficient for Si is approximately 1.9
X 10™% cm?/sec. This value is consistent with previous ab
initio calculations,'® but higher than simulations based on
tight-binding, or interatomic potentials. We attribute this dif-
ference to the “inflexibility” of a tight-binding basis which
may effectively increase the kinetic barriers. The interatomic
potentials are even less flexible in that they omit any elec-
tronic degrees of freedom. The diffusion coefficient for Ge is
1.0X10™* cm?/sec. Again, this value is in good agreement
with other ab initio calculations.!” We summarize calculated
values for the self-diffusion coefficient in Table I.

V. CONCLUSIONS

We have presented a molecular-dynamics approach using
quantum forces for simulating the properties of liquid semi-
conductors. We focused on examining the liquid properties
of Si and Ge. Our approach uses Langevin dynamics with
quantum forces to thermalize the system. When the desired
temperature has been achieved, we “turn off” the viscous
heat bath present in the Langevin dynamics. This procedure
allows us to prepare the system with the desired temperature
in a “natural” manner. We have tested this procedure starting
from two different initial conditions. In the case of Si, we
initiated the simulation from a crystalline configuration. In
the case of Ge, we initiated the simulation using a random
configuration of atoms. The random configuration appears to
be a more realistic starting point; however, in both cases, we
obtained results consistent with previous work based on an
initial crystalline environment. The lack of sensitivity of our

TABLE I. Self-diffusion constant D, for liquid silicon and ger-
manium as calculated from various theoretical methods.

Self-diffusion parameter Si Ge
(107* cm? s7 1)

ab initio simulations

Microcanonical ensemble 1.9 1.0
with quantum forces
Car-Parrinello with Nosé 2.1% 1.0°

Semiempirical simulations

Tight binding © 1.7,1.3,1.1
Empirical simulations
Interatomic potentials ¢ 1.0

aReference 18.
bReference 17.
‘References 4—6.
dReference 7.
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simulation to the initial state is very reassuring as it rein-
forces the validity of our assumptions with respect to the
construction of a realistic liquid ensemble.

Once the system is thermally prepared, there is no need
for any ad hoc dynamics to control the temperature. Our
procedure allows the system to remain on the Born-
Oppenheimer surface. Energy states are occupied in straight-
forward fashion for metallic systems. We take much longer
time steps than in the Car-Parrinello approach. These longer
time steps compensate for the additional computational labor
of obtaining a self-consistent solution for each time step.

In our simulations, we are able to predict structural prop-
erties of liquid semiconductors such as the pair-correlation
function, angular correlation functions, the structure factor,
the distribution of coordination number, and the self-
diffusion coefficient. Our calculated pair-correlation func-
tions and structure factors are in good agreement with ex-
perimental data. We also considered two types of angular
distribution functions. The first type of angular distribution
function, g( @), considers an angle defined by a vector drawn
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from a reference atom to the nearest atom and a vector
drawn from the reference atom to the next-nearest atom. The
second type of angular distribution, g(é,R,,), is an average
of angles between a reference atom and a/l pairs of atoms
within a radius R,, of the reference atom. If we considered
only nearest neighbors to determine an angular distribution
function, we observe a predominantly ‘“‘covalent” bonding
configuration, i.e., the distribution is strongly localized
around the tetrahedral angle. If more distant neighbors are
considered, then a more ‘“‘metallic”” configuration is ob-
served, i.e., there is a peak in the function near angles appro-
priate to close-packed structures. This situation is consistent
with both covalent and metallic bonds coexisting in the lig-
uid state.
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