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The peculiar polar properties of KTa, Nb, O& (KTN) are determined by the presence of electric dipoles
associated with randomly distributed Nb off-center ions. Because the latter also possess an elastic quadrupole,

they should permit a coupling between electric polarization and strain. In order to investigate this coupling, we

have carried out an ultrasonic study of KTN for different Nb concentrations. The elastic constants C» and

C44 and the corresponding attenuations have been measured in the presence of dc bias electric fields of varying

strengths. These fields were also applied in different directions relative to the acoustic polarization of the

ultrasonic waves. The present ultrasonic results confirm the formation of polar nanoregions at T~ —= T,.+20 K,
marking the transition to a strong-coupling regime. They can be described by a microscopic model in which the

primary polarization fluctuations are associated with the collective reorientations of the Nb off-center ions

within a polar nanoregion. These fluctuations and their coupling to the sound waves can be enhanced or

depressed by a dc bias electric field. An E dependence of the elastic constant indicates the electrostrictive

nature of the coupling.

I. INTRODUCTION

The mixed ferroelectric KTa, Nb, 03 (KTN) is a very
interesting example of highly polarizable systems in which a
strong electrostriction is induced by off-center ions. KTN
crystallizes with the perovskite structure, typical of many
ferroelectrics in which the central atom (Ta or Nb) is co-
valently bonded to the face-centered oxygens. Its parent sys-
tem KTa03, although possessing a soft mode and therefore
being highly polarizable, does not become ferroelectric.
Most likely for bonding reasons, because of its electronic
structure, Nb in KTN has been shown to reside off center,
even above T, , in one of eight (111) directions, thus pos-
sessing a dipole moment. Due to the high polarizability of
the KTa03 host, each dipole polarizes the surrounding re-

gion, thus forming what we shall call a polar cluster. The
reorientation of the polar cluster thus corresponds to polar
fluctuations that have been observed in dielectric and

polarization and in Raman scattering measurements. At

high temperature, the dielectric constant has been shown to
follow a Curie-Weiss (CW) law e- C/(T To), with-
To) T, . At T*—= T, +20 K, the dielectric constant deviates
from the CW behavior and exhibits "reduced softening. " At
approximately the same temperature, the appearance of a
symmetry-forbidden nonpolar mode in the Raman spectra
indicates the growth of quasistatic distortions. The concur-
rent observation of odd harmonics in the electric polarization
suggests the occurrence, at that temperature, of a condensa-
tion of the dynamic polar clusters into slow-relaxing polar
nanoregions (40—60 A).

Besides a dipole moment, off-center Nb ions also neces-
sarily possess an elastic quadrupole moment that is insepa-
rably linked to their electric dipole moment. A reorientation
of one necessarily reorients the other, hence providing the
basis for a coupling between polarization and strain and a
strong electrostrictive effect.

In a previous publication, we reported on the temperature
dependence of the longitudinal elastic constant C» of KTN.
For intermediate concentrations and at high temperatures,
C» exhibits a pronounced softening, revealing a strong elec-
trostrictive coupling between polarization fluctuations and a
longitudinal strain. In another publication, C» and C44 were
shown to be strongly influenced by an external dc bias field
applied perpendicular to the direction of propagation of the
wave but only within 20 K of the transition. In the present
paper we have extended these measurements of C» and

C44 to several niobium concentrations and to fields applied in
different directions relative to both the direction of propaga-

tion (k) and the polarization direction (p) of the acoustic
wave. We also propose a microscopic model to explain the
coupling of this wave to the polarization fluctuations at
higher temperature and to the strains induced by the forma-
tion of polar nanoregions, closer to the transition.

Finally, KTN at high concentrations has been shown to
undergo three successive transitions, each marked by a peak
in the dielectric constant. At low concentrations, however,
only one peak is observed in the dielectric constant, sug-
gesting the occurrence of a single transition from the cubic to
the rhombohedral phase. Here we use the field dependence
of the ultrasonic measurements to gain some insight into the
number and character of the transition(s).

II. EXPERIMENTAL RESULTS

The experimental system made use of an ultrasonic pulse
echo technique with superheterodyne phase detection and an
intermediate frequency (IF) of 60 MHz. The setup has been
previously described in detail. ' For each temperature run, a
single absolute transit time was made and relative changes in
the transit time were recorded thereafter. The precision of the
absolute and relative measurements was typically 0.5% and
0.005%, respectively.
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ferroelectrics which usually first transform to a tetragonal
phase. Here, in fact, C44 is only observed to soften close to
the transition, and, interestingly, starting at T*—=T,+20 K
where C» deviates from its high temperature behavior in
Fig. 1.

The frequency dependence of the elastic constant C» has
also been studied. The results are presented in Fig. 3 for two
very different concentrations. No frequency dispersion what-
soever could be detected on this figure, although the mea-
surements at higher frequencies do not extend to lower tem-
peratures. This latter limitation is due to the fact that the
attenuation n, which usually goes as cu, is greater and that
the signal therefore falls below the level of detectability ear-
lier for higher frequencies.

The attenuation for longitudinal waves corresponding to
the elastic constant C» is shown in Fig. 4 for different con-
centrations. This attenuation is seen to increase in a steplike
fashion, starting precisely, again, at the "deviation tempera-
ture" previously identified on the C» and the C44 curves.

All the above ultrasonic results are quite consistent with
the dielectric, polarization, and Raman results obtained on
crystals from the same boules and described in the Introduc-
tion. We briefly compare them here, keeping a more detailed
comparison for the discussion section. At high temperature,
the dielectric constant follows a Curie-Weiss law and the
present ultrasonic results correspondingly indicate a mean-
field type of coupling between strain and 3D dynamic polar
fluctuations. The Curie-Weiss temperature found from the
present ultrasonic measurements agrees well with that found
from the dielectric measurements. At T*—= T,+20 K, both
the dielectric and elastic constant C» deviate from their
above corresponding behaviors and exhibit "reduced soften-
ing. "This reduced softening has recently been shown to be
due to the condensation of dynamic polar clusters into polar
nanoregions. This corresponds quite well to the present ul-
trasonic results; the formation of these regions will necessar-
ily be accompanied by local strains that can couple to sound
waves resulting in a reduced softening of the elastic constant
C» and a rising attenuation. The concurrent softening of the
elastic constant C44 is attributed to the fact that, because the
local distortion is most likely tetragonal and because the dis-
tortion axis is randomly distributed amongst the three cubic
directions, the lattice is likely to accommodate the strains via
softening towards a rhombohedral distortion.

B. Field dependence

The zero-field ultrasonic measurements having revealed a
coupling between strain and polarization, it appeared impor-
tant to carry out measurements in the presence of a dc bias
field. The purpose of the electric field was to modify this
coupling and thereby obtain more quantitative information
about it. dc fields were consequently applied parallel and
perpendicular to the wave vector of longitudinal and trans-
verse acoustic wave propagating along the [100] and [110]
directions of the crystals. The crystals investigated in this
part of the study were the 1.2% Nb crystal with [100] exter-
nal faces and two high concentration crystals, a 15.7% Nb
crystal with [100] external faces and a 15% Nb crystal with
four [110]and two [001] external faces.

The effect of a dc field can be understood on the basis of
a microscopic model. In order to facilitate the interpretation
of the experimental results, we describe the model for each
separate configuration of the acoustic wave vector polariza-
tion and dc bias electric field. However, in order to justify the
applicability of this microscopic model to ultrasonic results,
it is important to note the following remark.

The wavelength of sound being much longer than the av-
erage size of the nanoregions, the ultrasonic strain can be
regarded as uniform across a given nanoregion. Within a
given nanoregion, the motion of Nb ions and that of sur-
rounding Ta ions are strongly correlated and, under a uni-
form strain, these ions will all move in unison. The model
can therefore be described at the level of a single unit cell in
which the polarization fluctuations are associated with the
local reorientation of a single niobium ion.

1. Czz under de bias fields

Relatively low fields are required on low Nb concentra-
tion crystals. On the 1.2% Nb crystal, fields of 0, 150, and
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III. DISCUSSION

A. Zero-6eld ultrasonic results

Based on the above ultrasonic results, one can distinguish
two dynamics regimes. At high temperature, the elastic con-
stant C» softens as (T To) .
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all the data for the field parallel case which continues to decrease
with temperature down to 114 K.

field model in which the longitudinal acoustic wave couples
to 3D dynamic fluctuations of the order parameter, here the
polarization; the lattice dynamics display a purely displacive
character. Wc note, howcvcl; that Tp~ T . The same behav-
ior has been observed in a dielectric study of crystals with
the same nominal concentrations in which the dielectric con-
stant was found to follow a Curie-Weiss law also with

Tp + T . In this region, C44 does not show any softening
and neither longitudinal nor transverse waves show any at-
tenuation.

At approximately T, +20 K for any concentrations, C»
deviates from the above mean-field behavior, C44 rapidly
softens, and the attenuation increases in a steplike manner.
The reduced softening of C» and the increasing attenuation
clearly reveal the appearance of strains in the crystal, which
coincides with a rise in the remanent polarization and in the
coercive field measured from hysteresis loops. This is shown
in Fig. 12 for the 15.7' crystal but is also true for other
concentrations, including 1.2% Nb. The present observation
of an increasing strain strengthens significantly our recent
interpretation of dielectric and polarization results in terms
of a cooperative condensation.
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verse acoustic waves. This model shows that the electrostric-
tive coupling is induced by the collective motion of off-
center Nb within polar nanoregions, the existence of which
had been demonstrated earlier.

The experimental evidence for the development of strains
at T*=—T,+ 20 K is also important in that it strengthens the
conclusions of a recent dielectric and polarization study. In
this study, we interpreted the results as indicating the occur-
rence of a condensation of dynamic polar clusters into polar
nanoregions at T*.

Finally, the present ultrasonic results suggest that, at low
Nb concentrations, several transitions simultaneously take
place, which can be separated by the application of a bc bias
field.
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