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Magnetic relaxation in a polycrystalline Hg, 3 Tl, ,Ba,Ca,Cu;05. 5 [(Hg,T1)-1223] superconductor was
measured in the temperature range 1.85-20 K with different magnetic fields applied during the cooling
process. The relaxation curves show a nearly perfect linear In(¢) behavior. The temperature dependence
of the normalized relaxation rate, R =|d (M /M,)/dIn(t)|, was studied for two applied magnetic fields.
With the lower applied field (H, =3 kOe), a temperature-independent R is found below 2.1 K and ex-
plained in terms of quantum tunneling of vortices. As the applied field increases (H, =10 kOe), the tran-
sition from the thermal to the quantum regime is not found in the experimentally accessible temperature
range above 1.85 K. The field dependence of R at 2.8 K is studied in order to analyze the dimensionality

of the flux-line lattice.

INTRODUCTION

In the last few years, large temperature-independent,
time-logarithmic magnetic relaxation at low temperatures
in several high-T, superconductors (HTSC’s) has been re-
ported.! "1 The temperature dependence of the normal-
ized relaxation rate, R=|d(M/M,)/d In(t)|, i.e., the
slope of the time-logarithmic curves normalized to the in-
itial magnetization M, was studied. In all those reports,
R presents a large, constant value as temperature goes to
zero. This effect cannot be accounted for with the models
based on thermally activated flux motion,'!™!3 which
predict a vanishing magnetic relaxation at zero tempera-
ture. Among the suggested mechanisms,'*!> quantum
tunneling of vortices was proven to be the most plausible
explanation for the observed nonthermally activated de-
cay with time. The first description of this phenomenon
was given within the quantum creep (QCC) theory by
Blatter and co-workers, first for isotropic!® and later for
anisotropic!’” and layered (extremely anisotropic'®)
HTSC’s. In the framework of the weak collective pin-
ning theory,'” they derived expressions for the effective
Euclidean action of the tunneling process at zero temper-
ature, S Eﬁ, which is directly related to the normalized re-
laxation rate as R ~#/SgM.

For anisotropic materials in the single-vortex regime,
they obtained, in the limit of strong dissipation,17

Rqce,sp =#/S§=(e*/#)p, /L.) . 1)

#i/e? is the quantum of resistance (~4.1 kQ), p, is the
normal-state resistivity in the ab plane extrapolated to
zero temperature, and L, is the collective-pinning length
along the c axis, which represents the longitudinal dimen-
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sion of the tunneling object:
ch(g/,},)(jo/jc)l/l ’ (2)

where ¥y =(A./A,,) is the anisotropy parameter (A, and
A4, are the London penetration depths along the ¢ axis
and the ab plane, respectively), and £ (superconducting
coherence length at zero temperature), j, (despairing
current density), and j, (critical current density) denote
values in the ab plane.

For discrete layered superconductors, where the
collective-pinning length L, is smaller than the interlayer
spacing d, the length of the tunneling object is given by d,
so Eq. (1) is replaced by!®

R occ,op =A/SET=(e* /) (p, /d) . (3)

Very recently, Feigel'man et al.?° pointed out that
there should be no dissipation in HTSC’s at low tempera-
tures. Dissipation of the vortex motion originates from
the scattering of the normal excitations, which exist in
the bound states at the vortex core.?! As temperature de-
creases, the spacing between the low-lying core levels wg
becomes much larger than the level width 1/7. Dissipa-
tion is then strongly reduced, and the magnus force
becomes the main force in the equation of vortex
motion.?"?2 In this case, Hall tunneling of vortices should
be the mechanism responsible for magnetic relaxation at
low temperatures. The condition for this limit, wym>>1,
can be expressed as [ >>&(ep /A), where [ is the mean-free
path of the normal excitations, £ is the superconducting
coherence length, € is the Fermi energy, and A is the su-
perconducting gap. This condition is much stronger than
the usual condition for the clean limit in type-II super-
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conductors, so the material is said to be in the ‘“super-
clean” regime. Due to the values of the parameters in the
condition [/~70 nm, £(er/A)=10-20 nm],”®> HTSC’s
are likely to be in this regime. Feigel’'man et al.?° ob-
tained the following expressions for the quantum creep
rate for HTSC’s in the nondissipative or Hall regime:

Rysp~#/Sg=~(n&L)7", @)
for an anisotropic material, and
Ry =#/SF=~(ne)", (5)

for a layered superconductor. In these equations, n, and
n?) are the superfluid density in a three-dimensional (3D)
system and per superconducting layer, respectively (actu-
ally, n/? can be expressed as n,t, where ¢ is the layer
thickness), & is the superconducting coherence length at
zero temperature, and L, is the longitudinal dimension of
the tunneling object.

In this paper we present an observation, by means of
magnetic relaxation measurements, of quantum tunneling
of vortices in a polycrystalline Hg, 3T1; ,Ba,Ca,Cu;O0q4, 5
[(Hg,T1)-1223] HTSC’s. This material belongs to the re-
cently discovered family of the Hg-based cuprates,?® and
shows the highest zero resistance temperature at atmos-
pheric pressure known to the date.?*

EXPERIMENT

The process of preparation of the (Hg,T1)-1223 super-
conductor is described in Ref. 24. We just mention here
the main steps. A nominal Ba,Ca,Cu;0, precursor was
first prepared, subsequently mixed with HgO and T1,0;,
and ground in a plastic bag filled with N, gas. The cation
ratio of (Hgy ¢Tl, ,)/Ba/Ca/Cu was 1223. The ground
powder was then pressed into rods of 6 mm in diameter
and 15 mm in length. The pressed rods were introduced
in a furnace at 860°C for 400 min. After sintering, the
sample was annealed in O, at 500°C for 10 h. The resis-
tance of the sample was measured by the standard four-
probe technique with an ac frequency of 27 Hz. These
measurements give a zero resistance temperature
T.=138 K, which is larger than that of Tl-free Hg-1223
phase.”* Powder x-ray diffraction was performed by
Cu-Ka radiation using a GEIGER-FLEX CN2029
diffractometer. According to the diffraction patterns, the
sample is dominated by the 1223 phase, which is greater
than 80%. The impurities include the lower T, phase
(Hg,T1)Ba,CaCu,0O¢, s [(Hg,T1)-1212] and some nonsu-
perconducting oxides, such as CaHgO, and BaCuO,. All
the peaks for the 1223 phase in the pattern can be in-
dexed with a tetragonal (space group P4/mmm)
unit cell, with lattice parameters @ =3.8574(5) A and
c=15.794(2) A.**

All magnetic measurements were performed in a com-
mercial (Quantum Design) superconducting quantum in-
terference device magnetometer. The temperature depen-
dence of magnetization was measured as follows. First,
the sample was cooled from the normal state down to 5
K, with zero applied magnetic field [zero-field-cooling
(ZFC) process]. Then, H, =50 Oe was applied on and
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M ;5c(T) was measured by heating the sample up to the
normal state. Secondly, the sample was cooled with the
same applied field, down to 5 K again [field-cooling (FC)
process]. Thus, Mgc(T) was measured by heating up the
sample. After a ZFC process, initial magnetization
curves M (H) with magnetic field applied up to 54 kOe
were measured at different temperatures. From these
curves, the lower critical field for intergranular (H"")
and intragranular (Hg ) flux penetration, and the first full
flux penetration field (H *), were determined.

The relaxation measurements were performed as fol-
lows. The sample was field cooled down from the normal
state to the target temperature. In this process, the mag-
netic field was carefully applied in a no-overshoot mode.
The fluctuation of the field in this mode should be less
than 0.05 Oe. The sample was then assumed to be homo-
geneously penetrated. Once the temperature of the sam-
ple was stable, the field was removed and the time decay
of the remanent magnetization was measured. The evolu-
tion of the magnetization is only because of the escape of
trapped flux from the sample. At each temperature, the
first magnetization point was recorded at 60 s, and subse-
quent data were taken approximately every 70 s, during a
period of 1 h.

RESULTS AND DISCUSSION

Figure 1 presents the ZFC-FC curves obtained with
H,=50 Oe. In this and the following figures, magnetiza-
tion is expressed in units of emu/g (the mass of sample
used in all the measurements was 0.0439 g). The zero-
field-cooled diamagnetism at the lowest temperature
[Mzpc(5 K)=~—0.31321 emu/g] is about 50% of perfect
diamagnetic shielding, while the Meissner flux expulsion
[Mgc(5 K)=—0.037 36 emu/g] is small, being approxi-
mately a 6% of that of an ideal superconductor. The
temperature of onset of the transition from the normal to
the superconducting state is defined as the superconduct-
ing transition temperature, T, =~133.5 K. A knee in

c,on

the data can be observed at T=~110 K, which could cor-

0.00 [ ! ! ! ! T T gubessss |
. FC .
-0.05 |- oooomoooooOOO 4
""""mmmu«\t

-0.10 | 2 1
- T=1335K
©.0.15 | 4 y
E i
E q
2..0.20 | 4
E 1

-0.25 | 4

ZFC
-0.30—....“.."...“ H, =50 Oe
-0.35 1 1 " 1 " 1 1 1 !
0 20 40 60 80 100 120 140 160

T (K)

FIG. 1. Temperature dependence of the magnetization M (T)
obtained with H, =50 Oe. The lower and upper curves corre-
spond, respectively, to the ZFC and FC processes (see the text
for a description of the processes).
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respond to the lower T, 1212 phase. Initial magnetiza-
tion curves in the low field range for 7T=3 and 5 K are
shown in Fig. 2. The field at which the deviation from
the very-low-field linear dependence (Meissner state of
the whole sample) occurs, determines the lower critical
field for intergranular flux penetration: H3*"(3K)
~H1*r (5 K)~10%1 Oe. As magnetic field increases, a
second linear regime corresponding to the Meissner state
of grains starts developing at H, =35 Oe. A linear re-
gression allows us to determine the lower critical field for
intragranular flux penetration as the field of departure
from the linear dependence: HE (3 K) =~160t10 Oe,
HE (5 K)=140%10 Oe. Complete initial magnetization
curves with H, up to 54 kOe are presented in Fig. 3. We
chose the peak of each initial M (H) curve as a lower
bound for the first full flux penetration field:®
H*(3 K)~4.5kOe, and H*(5 K) ~3.8 kOe. Such a cri-
terion does not affect the analysis of the experimental
data here reported.

Figures 4(a) and 4(b) present magnetic relaxation
curves obtained at different temperatures (1.85-20 K)
with H,=3 kOe applied during the FC process. All
curves are linear with the logarithm of time in the
scanned time window, except for an initial nonlinear
transient decay, which could correspond to a
reconfiguration of the inhomogeneous flux distribution,
caused by the sudden suppression of the magnetic field
just before the measurement started.?® The data were
fitted to the logarithmic law M (¢t)=a +b In(z), where
a=M,=M(t=1s), and b/a =R. Figure 5 shows the
temperature dependence of the normalized relaxation
rate R (7). As temperature decreases from 20 K, a max-
imum at ~8 K is observed, leading to a linear decrease
down to Tp ~2.1 K (see the inset in Fig. 5). Below T,, R
suddenly becomes temperature independent down to 1.85
K. As stated in the Introduction, this temperature in-
dependence is the signature of quantum vortex motion.
The linear R (T) dependence observed in the thermal re-
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FIG. 2. Low-field dependence of the magnetization M (H)
obtained for two different temperatures, T=3 and 5 K. The
sample was first zero-field-cooled from the normal state down to
the target temperature.

o ' ' ' II--iSO
se®"5,00°
2 -" o i
l.-OOOO
- [e]
-4 " oo 4
Q (o]
a 1°] s o 1
~
S -6la s ©
£ o 1
o ] » 1
- P o
s 8 2 1
e &S = T=5K
“0f% FS .
o]
L S o T=3K
12} .
1 1 1 1 1
0 10 20 30 40 50 60
H (kOe)

FIG. 3. Initial magnetization curves M (H) in the whole field
range (the maximum magnetic field applied was H, =54 kOe).
These curves are an extension of the low-field M (H) curves of
Fig. 2.
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FIG. 4. Magnetic relaxation curves M vs In(z) obtained at
different temperatures: (a) from 1.85 to 4 K and (b) from 5 to 16
K. The magnetic field applied during the preliminary FC pro-
cess was H, =3 kOe.
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FIG. 5. Temperature dependence of the normalized relaxa-

tion rate R (T) obtained with H, =3 kOe in the FC process. In-

set: Magnification of the low-temperature regime (from 1.85 to
3.6 K).
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gime is the usual prediction of the simplest model for
thermally activated flux motion, the Anderson-Kim mod-
el:!' in the investigated low-temperature range, and for
the studied time window, R (T) equals k3T /U,, where
U, is the average pinning energy, which is temperature
independent. In addition, the Bean model?’ relates the
initial magnetization M, which enters the definition of
R, to the critical current density in the absence of
thermal activation j., (M < j.). Therefore, the peak in
R (T), which is a common feature of many high-T, super-
conducting systems,?®?® can be explained? as originating
from two competing effects: the explicit linear T depen-
dence and the implicit dropoff with temperature of the
critical current density jq.

A similar R (T) dependence obtained with H, =10 kOe
is shown in Fig. 6. In this case, the maximum occurs at
=~6 K, and the T-independent regime is not found, indi-
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FIG. 6. Normalized relaxation rate as a function of tempera-
ture R(7T). The inset presents a magnification of the low-
temperature regime (7., =5 K). The field applied during the
FC process was H, =10 kOe.
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cating a shifting of the whole curve to temperatures lower
than for H, =3 kOe. This phenomenon can be explained
considering that increasing the applied field reduces the
energy barrier, which separates two neighboring pinning
centers, so thermal activation is still responsible for relax-
ation at the lowest investigated temperature (1.85 K).
Therefore, one should go to temperatures below 1.85 K
to find the quantum regime with H, =10 kOe.

In the following, we will focus our attention on the
quantum regime. In order to compare the experimental
results with the predictions of the QCC and Hall tunnel-
ing theories [Egs. (1)=(5)], the dimensionality of the flux-
line lattice was studied. Figure 7 presents the field depen-
dence of the normalized relaxation rate at 7=2.8 K: R
increases with H, up to =~1 T and subsequently reaches a
saturation value (=~1.85%). This field dependence,
which was recently observed by Moehlecke and Kopele-
vich® in polycrystalline Bi,Sr,Ca,Cu;0,, is a manifesta-
tion of a crossover in the dimensionality of the flux-line
lattice, and it can be explained as follows. HTSC’s can be
modeled as a stack of weakly Josephson coupled super-
conducting CuO, layers. Application of a magnetic field
along the ¢ axis of the system creates 2D pancake vor-
tices within the CuO, layers, which interact via Joseph-
son and electromagnetic interaction.*® The actual dimen-
sionality of the flux-line lattice, however, depends on the
intensity of the applied magnetic field. Below a dimen-
sional crossover field Hsp,p =®,/(yd)?, the Josephson
interaction between vortices is important, and the pin-
ning length L, is larger than the interlayer spacing d.
The flux-line lattice is then 3D in nature. Daemen et al.
recently demonstrated’! that in very anisotropic HTSC’s,
the anisotropy parameter y increases as H, increases,
directly reflecting the field dependence of the penetration
depth along the ¢ axis A (H,). Then, from Egs. (1), (2),
and (4), L, is expected to decrease and the tunneling rate
to increase with the increasing field. Above H;p,p, L,
becomes smaller than the interlayer spacing d, and the
2D pancake vortices in neighboring layers are essentially
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FIG. 7. Field dependence of the normalized relaxation rate

R (H) obtained at T'=2.8 K. The rates were calculated in the
same way as for the R (T) figures.



decoupled. The tunneling rate is then given by Egs. (3)
and (5), in which only field-independent parameters enter
the expressions. We would like to remark that the value
obtained for the dimensional crossover field, H;p,p(2.8
K)=1T, is just a lower bound for the H;p, correspond-
ing to the quantum regime. Nevertheless, as this regime
manifests itself up to 7,~2.1 K with H,=3 kOe,
H;p,5(2.8 K) should be not far from the actual value
that one would obtain if the field dependence of R, was
studied.

From the definition of the dimensional crossover field
Hspop =®,/(yd)?, the anisotropy parameter y can be
evaluated. With H;p,,~1 T, and assuming a value for
the interlayer spacing d similar to the value of the c axis
of the (Hg,T1)-1223 tetragonal unit cell, d ~c=15.8 A,
v =30 was obtained. This value, which is similar to the
anisotropy parameters of the T1-2223 (y =~20) (Ref. 32)
and Bi-2223 (y =~30) (Ref. 33) phases, was used to evalu-
ate the theoretical predictions of the QCC and Hall tun-
neling theories. Using typical numbers for the parame-
ters entering Egs. (1)-(3) [£,=20 A, (o/j)?=20,
pn(0)=15 pQcm], L,~d and Rgccip =Rqcc2p
~2.3% were obtained. The 2D prediction compares
well to the field-independent plateau observed at T =2.8
K, R,p(2.8 K) =1.85%. As was argued before,
R,(2.8 K) is not the tunneling rate, but we expect this
value to be similar to the actual 2D quantum creep rate.
If we wish to compare the estimations with the experi-
mental plateau observed with H, =3 kOe, we must keep
in mind that the applied field is smaller than the dimen-
sional crossover field H;p,p, so the flux-line lattice
should be three dimensional. The value given above for
the 3D prediction, R gcc,3p =2.3%, is larger than R(3
kOe) (~1%) but compares well in order of magnitude.
Nevertheless, we believe that Rgcc3p gives an overes-
timation of the 3D quantum creep rate, because it was
evaluated by substituting a constant L, (=~10 A) in Eq.
(1) instead of a field-dependent L, correspondlng to the
3D flux regime [L.(H,)]. Substltutlon of a collective-
pinning length L (3 kOe) larger than 10 A would give a
tunneling rate RQCC,SD(3 kOe) smaller than 2.3% and
closer to the experimental value Ry(3 kOe) (=1%). On
the other hand, the Hall tunneling rate can be estimated
by substituting in Egs. (4) and (5) the values for £, and L,
given above, and considering that in HTSC at low tem-
peratures, n, is comparable to the carrier density n. 20
This gives RH,3D:RH’2D:1%, which compares fairly
well to Ry(3 kOe). Finally, the crossover temperature
from the thermal to the quantum regime 7, may be eval-
uated by equating the quantum creep and thermal creep
rate Ry=kpT, /U, This gives T, ~2.6 K (with
Uy=290 K, as calculated in the thermal regime), in good
agreement with the plateau temperature 7, ~2.1 K.
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CONCLUSIONS

The decay with time of the remanent magnetization of
a polycrystalline (Hg,T1)-1223 sample was studied for two
magnetic fields applied during the cooling process, H, =3
and 10 kOe. For both fields, a peak in the temperature
dependence of the normalized relaxation rate was ob-
served and explained in terms of thermally activated flux
motion. A temperature-independent rate below T, 2.1
K was found with H, =3 kOe, and interpreted as quan-
tum motion of vortices. This plateau was not detected
with H, =10 kOe. The order of magnitude of the plateau
was in good agreement with the predictions of the QCC
and Hall tunneling theories, but its absolute value com-
pared better to the Hall prediction than to the QCC one.
Actually, very recent experiments in 60- and 90-K
YBa,Cu,;0,_; demonstrated® that these materials lie in
the superclean regime, so the Hall term should be respon-
sible for the vortex motion at very low temperatures. A
similar proof is not available for any other HTSC, not
even for (Hg,T1)-1223. Nevertheless, for lack of actual
parameters for (Hg,T1)-1223 and the uncertainty of the
parameters entering the QCC and Hall tunneling estima-
tions, we find it hard to draw a sound conclusion about
the mechanism dominating the tunneling process in the
present material. Relaxation measurements extending
down to very low temperatures (below 1.85 K), together
with alternative experiments, need to be performed to go
deeply into the knowledge of the mechanisms involved in
the quantum tunneling of vortices.

The field dependence of the normalized magnetization
rate at T =2.8 K was also studied. The field at which R
reached a saturation value was determined as the dimen-
sional crossover field H3p,p(2.8 K)=~1 T. The satura-
tion value ( =~1.85% ) compared well to the 2D prediction
of the QCC theory (=~2.3%). H;p,p Was used to esti-
mate the anisotropy parameter y =30. This value is
larger than the anisotropy parameter given in Ref. 35 for
a grain-aligned Tl-free Hg-1223 sample, ¥ =7, obtained
by analyzing, with the modified Lawrence-Doniach mod-
el,’ normal-state magnetization measurements per-
formed with the magnetic field applied perpendicular to
the CuO, planes. The incorporation of thallium to the
Hg-1223 phase appears to be the most plausible reason
for the remarkable increase of the anisotropy parameter.
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