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We show, using an atomistic model with a Stillinger-Weber potential (SWP), that in the absence of recon-
struction, the basic assumption of the Peierls-Nabarro (PN) model that the dislocation core is spread within the

glide plane is verified for silicon. The Peierls stress (PS) obtained from the two models are in quantitative
agreement (=0.3p, ), when restoring forces obtained from first principles generalized stacking-fault energy
surfaces are used in the PN model [B.Joos, Q. Ren, and M. S. Duesbery, Phys. Rev. B 50, 5890 (1994)].The
PS was found to be isotropic in the glide plane. Within the SWP model no evidence of dissociation in the
shufAe dislocations is found but glide sets do separate into two partials.

I. INTRODUCTION

The Peierls-Nabarro (PN) model, ' although relatively
simple, has the potential of providing quantitative estimates
for key dislocation properties. In that model the crystal is cut
into two halves, along the glide plane, the plane which con-
tains the dislocation line and the Burgers vector. The two
halves are treated as elastic mediums, while the interface
atomistically. In the original model, the restoring forces at
the interface were assumed to vary sinusoidally as a function

of the displacement f of one block with respect to the other
with the appropriate elastic limits. Better results are expected
if, instead, the restoring forces are obtained from the gener-

alized stacking fault (GSF) energy surface, y(f), as was sug-
gested a while ago by Christian and Vitek and applied to bcc
crystals by Lejcek and Kroupa and Lejcek, and recently by
us to silicon (paper I, Ref. 6). The question is, how reliable is
this model' ?

Silicon has been chosen as the test case because of the
importance of dislocations in this system and because a first-
principles GSF surface is available. Silicon is not just the
prototypical covalent semiconductor but also a thriving
industry. ' In Si the dislocations are particularly important
because the cores harbor localized in-gap electronic levels
which can destroy the electrical properties of a device. If
they are not mobile, device logic can be made to avoid the
dislocated areas. A new generation of optoelectronic devices
based on strained superlattices" adds additional motivation
to the understanding of dislocation nucleation and mobility.
In spite of extensive studies of dislocations in Si, described
in numerous reviews, ' ' these two properties are not well
understood. '

An important quantity characterizing dislocation mobility
is the Peierls stress (PS), the stress required to move the
dislocation from one lattice site to the next at 0 K. Due to
brittle fracture it is usually difficult to obtain the PS at low
temperature, especially for silicon where it is large. It is even
harder to distinguish the contributions from the different dis-
locations. The PS can or, ly be estimated by extrapolating the

yield strengths to the absolute zero temperature. For Si this
gives a value' ' of the order of (0.1 —0.5) p, , where p, is
the shear modulus [the averaged value for Si is
p, =6.81X 10" dyn/cm =0.425 eV/A (Ref. 22)]. This is a
rough estimate because it relies on high-temperature values
of the yield strength.

Another interesting issue for silicon is the shuffle-glide
controversy. ' ' Dislocations in silicon can be present in the
glide or shuffle set configurations for which different core
structures are expected. The structure is referred to as the
shuffle set if the inserted lattice plane is terminated between
the widely spaced (111) planes of the same index in the
diamond structure, and the glide set, if between the closely
spaced planes of different index (see Fig. 1). In silicon, it has
been found that the glide dislocations could dissociate into
two partials separated by an intrinsic stacking fault' ' and
glide in the dissociated form. ' ' This is not the case for the
shuffle set which has no low-energy stacking fault. The dis-
sociation into partials in this case is more complex and their
motion has been argued to be akin to a shuffling motion
involving movement of interstitials. The direct observation
of the glide of dissociated dislocations ' has usually been
used to argue in favor of the glide set, but high-resolution
electron microscopy (HREM) results are not fully consistent
with the expected simple structures. '

Our studies in paper I of dislocations in silicon within the
PN model were based on the first principles y surfaces cal-
culated by Kaxiras using local density functional theory. '

The energies y(f) are generated by displacing the two halves
of the crystal above and below the cut plane by arbitrary

GSF vectors f In Duesbery et al. . no relaxation of the atoms
perpendicular to the cut plane was allowed. In Kaxiras and
Duesbery, relaxed values were obtained for the unstable
stacking faults yUs in the glide and shuffle planes. The un-
relaxed y surfaces scaled down with those yUs were used in
the PN model. More recently Juan and Kaxiras obtained the
fully relaxed y surfaces. The most relevant directions for the
PN model are the (112) directions in the glide plane, the
direction of the Burgers vectors of the partials, and the
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II. STILLINGER-WEBER POTENTIAL MODEL

(a)

x [112)

To assess the validity of the PN model, we wanted to test
it within an atomistic model. The Stillinger-Weber potential
(SWP) was chosen for several reasons; it is the most widely
used empirical potential for silicon and it produces a gener-
alized stacking fault (GSF) energy surface which, overall, is
similar to the one obtained from a first principles density
functional calculation. ' This potential has proven to be
valid in many studies, such as critical layer thickness, ' the
Si surface, ' silicon indentation, and the phase diagram
of silicon. Some questions have been raised about its va-
lidity in reproducing dislocation reconstructions in Si in
detail. The 30 partial at least has the correct reconstruc-
tion. Bulatov, Yip, and Argon made an extensive study of
complexes involving 30' partials within the SWP model.
The emphasis at this point is using an atomistic model which
is compatible to the PN model. The Stillinger-Weber poten-
tial includes both two-body interactions U2 and three-body
interactions V3.'
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FIG. l. (a) Four layers of perfect silicon lattice with the x, y, z

directions used in the simulations. (b) The same plot but with dif-
ferent symbols for each layer. Solid circles, squares, open circles,
and asterisks represent in the usual notation for the diamond lattice,
a c plane, an A plane, an a plane, and a B plane, respectively.

(110) directions in the shuffle plane, the direction of the

Burgers vectors of the full dislocations. For the glide plane,
Juan and Kaxiras find little change from the scaled y surface,
in the (112) directions, but significant changes in the other
directions. The fully relaxed shufle plane y surface is very
similar to its scaled counterpart. The smooth variations of

y(f) in the shuffle plane lead to low PS for the shuffle set of
dislocations (=O.lp) within the PN model; 0.083p, for the
60 dislocation and 0.112p, for the screw dislocation. The
full dislocations in the glide plane are very narrow and have
high PS. The partials, taking advantage of smaller GSF en-

ergy variations along their Burgers vector, have considerably
lower PS than the full dislocations in the glide plane. These
PS are of the same order of magnitude than those for the
shuNe dislocations although still higher, 0.30p, for the 90'
partial and 0.37p, for the 30 partial, the 90 partial having a
lower PS as observed experimentally. The PN model is a
zero-temperature model and no reconstruction is allowed be-
cause lattice periodicity is imposed along the dislocation
line. The absence of reconstruction may artificially favor the
shufle set. Kaxiras and Duesbery have argued for an en-
tropic effect.

a=50 kcal/mol, o =0.209 51 nm. (3)

Rectangular parallelepiped crystallites of a certain number

of repeat units bounded by (112), (111), and (110) planes
were constructed. The dislocation line was always aligned
along the (110) z axis with periodic boundary conditions
along this axis so that effectively an infinite dislocation was
studied. The atoms were displaced from their equilibrium
(perfect lattice) positions as given by elasticity theory for the
given Burgers vector (partial or perfect dislocations) and the
position of the slip plane (shuffle or glide). The boundaries in
the x and y directions were fixed while the rest of the atoms
were relaxed by minimizing the atomistic potential energy as
in Ref. 38. By fixing those boundaries, reconstructions are
inhibited, facilitating comparison with the results of the PN
model.

The stress was imposed by introducing a homogeneous
shear strain over the entire region containing the relaxed
dislocation. "' Then, again, keeping the atoms along the
x-y boundary regions fixed, the remaining atoms were re-
laxed. When fully relaxed, the resultant configuration was
examined for any change in the location of the dislocation.
Starting each time with the relaxed unstressed dislocation,
the stress imposed was varied until the change in the location
of the dislocation was one exact repeat lattice distance. The

for r, (1.8o and r;&(1.8o, (2)

where r,, and r;k are interparticle distances, and the param-
eters e and o. are
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corresponding stress was taken as the minimum stress re-
quired to move the dislocation. The PS for that particular
dislocation and orientation was deduced by projection unto
the Burgers vector. Different sizes of models with atoms
from 3000 to 15 000 were tested in order to eliminate finite
size effects.

III. SIMULATION RESULTS

A view of the perfect silicon lattice with our choice of
axes is shown in Fig. 1(a). In Fig. 1(b) different symbols are
used for each layer for ease of understanding. Solid circles,
squares, open circles, and asterisks represent in the usual
notation for the diamond lattice, a c plane, an A plane, an a
plane, and a B plane, respectively. Shufle dislocations are
introduced between planes of the same index, i.e., between
the squares (the A plane) and the open circles (the a plane),
and the glide dislocations between planes of different index,
i.e., between the solid circles (the c plane) and the squares
(the A plane). Examples of the most relevant types of dislo-
cations are displayed in Figs. 2 and 3 as projections along the

y direction into the x-z plane, the glide plane. The z direction
is chosen as the dislocation line direction. The 30 and 90
glide type partials are shown in Fig. 2 (these are the angles
the respective Burgers vectors make with the dislocation
line). Only the sets of atoms in the 8 and c planes are used
for the representation. All arrows appearing on the plots are
drawn from the atoms' original positions to their displaced
positions on the bottom c plane. For a screw dislocation in
the shuffle plane such as in Fig. 3 the planes of the same
index a and A are more suitable. The dashed and solid lines
show what happens to a set of atoms in the a and A planes
lying above each other in the perfect lattice when the screw
dislocation is introduced.

A. Dislocation profiles

One of the important assumptions of the PN model is that
the dislocation core is planar; i.e., the largest displacements
are within the glide plane, the x-z plane in our case, and
actually even more specifically along the Burgers vector.
These assumptions are clearly valid in our calculations. We
illustrate this fact with the screw dislocations whose Burgers
vectors lie along the z direction. Figure 3 shows the shufle
screw dislocation. The relative changes in the position of the
atoms is graphically represented by the displacement of the
solid line with respect to the dashed line.

Displacements along the x, y, and z directions plotted as
functions of the x positions of the atoms are shown in Fig. 4,
The dislocation displacements are seen to be directed mainly
along the Burgers vectors for both glide and shuNe disloca-
tions. The width of the screw shufle dislocation is found to
be 3 A. The corresponding width of the screw glide disloca-
tion is quite narrow, only about 0.3 A. Those results are in
good agreement with our PN model calculations. There are
some small displacements along the x direction for the glide
screw and the y direction for the shufle screw.

B. Peierls stress

To maintain periodic boundary conditions along the z axis
the shear stress was applied within the (111) plane, the x-z
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FIG. 2. (a) A silicon lattice with an ideal 30' partial dislocation
in the glide plane projected normal to the (111) plane. Two layers
of atoms are shown here, the B plane (asterisks) and the c plane
(solid circles). (b) The same lattice but with an ideal 90' partial
dislocation. All arrows appearing on the plots are drawn from the
atoms' original positions to their displaced positions in the c plane.

plane (the Burgers vector for all dislocations lie within that
plane). It was found that the PS is isotropic within that plane.
In other words that the stress required to move the disloca-
tion in any direction within that plane has the same projec-
tion unto the Burgers vector, the PS of the dislocation.

The possible effect of the finite size of the block upon the
calculated PS has been tested by carrying out some calcula-
tions for different block sizes, but the differences were found
to be negligible.

The results are summarized in Table I. The values from
paper I (Ref. 6) for the full glide dislocations would be
greatly reduced if the most recent y surface of Jian and
Kaxiras had been used.

1. SItufge dislocations

As in the PN model the shufle dislocations have also in
this calculation the lowest PS; 0.075p, for the 60 and
0.086p, for the screw dislocation compared with 0.083p, and
0.112p, in the PN model. A variety of starting positions and
stresses were attempted but as expected no dissociation of
the core occurred.

2. Glide dislocations

In contrast the 60 and screw dislocations of the glide set
dissociate to a separation of about one lattice constant when
a glide stress of the order (0.08—0.1)p, is applied to them.
Since the SWP extends only to second neighbor, the intrinsic
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0 K3
TABLE I. Comparison of Peierls stresses in Si obtained from the

Peierls-Nabarro model (Ref. 6), cr„, with those from the atomic
relaxation calculation (present work), a b . (p, = 0.425 eV/A ).

0 ID D C3 Dislocation

0 QO

0 GD

glide

shufle

glide

60'
screw
60'

screw

90
30

dissociation

0.075
0.086
0.25
0.31

16.7
21.3
0.083
0.112
0.282
0.352

Gl 0

3. Partial dislocations

Since single partial dislocations are not observable in ex-
periments, the PS of the partial dislocations were calculated
using dissociated full dislocations, either the 30 and 30
partials (screw dislocation) or the 30' and 90' partials
(60' dislocation), initially separated by an intrinsic stacking
fault on the (111)plane. The results are not sensitive to the
size of the stacking fault because the stacking fault energy is

FIG. 3. A shufle screw dislocation projected normal to the
(111)plane. Two layers of atoms are shown, with the a plane (open
circles) and the A plane (squares). The screw dislocation is intro-
duced between those two planes. The relative changes in the posi-
tions of the lines of atoms in the a plane (dotted line) and the A

plane (solid line) are used to calculate the displacements of the
shuffle screw dislocation.

90 partial

partial

stacking fault energy is formally zero and the elastic con-
tinuum prediction of the partial separation is infinite. The
much smaller observed separation is the result of the large
PS. No dislocation motion is found until the stress exceeds
the PS of one of the partials (see below) and then the partials
can be separated further. The difference between the 60 and
screw dislocations is that the first dissociates into a 30' and
a 90', while the second into two 30 partials. In short the
glide dislocations can only move in dissociated form.

0
30 parti

0
90 partial

0.5-

0.2—

glide screw x displacement

glide screw y displacement

glide screw z displacement

shuffle screw x displacement

shuffie screw y displacement

shuffIe screw z displacement

30 p

screw

partial

-0.1
I-5 I

-15

FIG. 4. Dislocation profiles of the screws. Displacements along
the x, y, and z directions plotted as functions of the x positions of
the atoms. The solid lines are for the glide screw dislocation and the
dashed lines for the shufle screw dislocation.

FIG. 5. (a) A dissociated 60' dislocation with a 90' partial lead-
ing. (b) A dissociated 60' dislocation with a 30' partial leading. (c)
A dissociated screw dislocation with two 30' partials. The shadow
areas are the stacking fault layers.
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zero in the SWP model and the PS is very high. The PS were
found to be 0.25@ for the 90' partial and 0.31p, for the
30' partial, to be compared with 0.282p, and 0.352@, in the
PN model.

IV. DISCUSSION AND CONCLUSION

The quantitative agreement for the PS between the PN
model, which does not consider reconstruction, and the SWP
model, with the same constraint, is promising. A word of
caution is, however, required since the two models do not
have precisely the same GSF surface. But when it comes to
the calculation of the PS, even order of magnitude agree-
ments would have had to be considered as good. The dislo-
cations in the SWP model, in the absence of reconstruction,
are planar with at most a O. lb displacement away from the
Burgers vector direction. Under the same conditions the
shuffle sets are the broadest and most mobile of the disloca-
tions. The isotropy of the 0 K PS with the 90' partial having
a lower PS than the 30 partial is in agreement with the
indications of experiment. Experiment shows that under ap-
plied stress the width of a 60 glide dislocation increases if
the 90' partial leads and becomes narrower if the 30 partial

does. ' The screw formed of two 30 partials seems to
remain fairly narrow. ' As seen in Fig. 5, the Burgers vec-
tors of the partials in the dissociated dislocations are not
parallel, further favoring the 90 partial through the angular
dependence of the minimum stress required to move the dis-
location.

This study is encouraging for the use of a PN model with
GSF surfaces but several questions need to be tackled, most
importantly the reconstruction of the core and its effect on
the PS of the different dislocations. For the shuffle set, will
reconstruction explain their absence, or are other mecha-
nisms responsible such as the entropic effect suggested by
Kaxiras and Duesbery? To finish, this study also points to
the usefulness of empirical potentials which reproduce the
GSF surface accurately.
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