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Small-angle multiple neutron scattering in fractal media
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Multiple small-angle neutron scattering from fractals is considered. It is shown that the mean
free path 1 in many cases is small compared to the commonly used sample thickness L. For multiple
scattering when E (( L the width of the intensity distribution qL, is proportional to L", where
y, = 1/(4 —D, ) and y, = 1/(D„—2) for the surface and volume fractals, respectively, and D, „ is
the corresponding dimensionality of the fractals. In both cases p ) — and the multiple scattering
is a superdiffusion. The large-q tail of the intensity is the same as observed for single scattering.
However, parts of the total intensity for q & qI. and q ) qL, have the same order of magnitude and
transition to the quasi-Guinier regime occurs at q « qz & g where ( is cutoff for behaviour. It is
shown that the failure of the diffusive random-walk description of the small-angle multiple scattering
takes place in all cases when the mean square of the scattering angle 82 for the single scattering is
an ill-defined quantity.

I. INTRODUCTION

The small-angle x-ray and neutron-scattering tech-
niques are widely used as tools for studying large-scale
inhomogeneities in condensed matter. The scattering
experiments reveal that in many cases the scattering
intensity I(q) at large q deviates from the Porod law
I(q) q

4 and falls off as q where E & 4. (See
for example Ref. 1 and references therein. )

In the case of volume or mass &actals one has 4 = D„
where D & 3 is the &actal dimension. For surface
&actals L = 6 —D, where 2 & D, & 3 is the corre-
sponding dimension. ' In the erst case 4 & 3 and in the
second one 3 & 6 & 4. It means that the volume and
surface &actals may be readily distinguished experimen-
tally. The Porod law is restored if D = 3 and D, = 2.
As a rule the &actal structure is limited by an upper
length cutoff or the fractal correlation length ( and at
q & ( we have a transition to the Guinier region. ~ s

However, all these results are applicable in the single-
scattering regime only, i.e., if the sample thickness L is
small compared to the mean &ee path Z. As we will show
below, the opposite situation E (( I may occur in real
experimental systexns. In this paper we present results
of the theoretical study of the small-angle multiple scat-
tering &om the &actal systems. Similar consideration
has been done in Refs. 8 and 9 for the cases when the
single scattering on 6nite-size inhomogeneities was de-
scribed by the Born and quasiclassical approximations,
respectively. The multiple scattering &om critical Quctu-
ations has been considered in Ref. 8. It should be noted
that the double critical scattering in iron has been stud-
ied experimentally using polarized neutrons. Below we
will restrict ourselves to multiple neutron scattering only
because for x rays the absorption has to be taken into
account.

We will estimate the mean &ee path f for the fractal
scattering and show that in some cases it may be of order

of 10 —10 cm. Then we will evaluate the intensity of
the multiple small-angle scattering. It will be shown that
the width of the intensity distribution is characterized by
the momentum qI which is given by

where 4 = D and 6—D, for the volume and surface &ac-
tals, respectively, and g~ 1. We see that q& L"' ",(&)

where@„=(D„—2) ~) land 1)p, =(4 —D, ) ~)
1/2. In both cases characteristic momentum q& in-
creases with L faster than in the case of random walks
when qlR L ~ . This behavior of ql is an example
of the so-called anomalous diffusion or superdiKusion.
It is related to the fact that we have not well defined
mean scattering angle (tl2) ~/2

&& 1 for a single scattering
event.

Indeed, we have by the de6nition

tl2 =
i

d08 do. /dO
i

dA do./dA, (2)

where do/dA is the cross section for the single scattering
event. Obviously 62 is well defined in the small-angle
region if der/dA decreases faster than q . However, in
our case 6 & 4. The exponent 6 = 4 may be con-
sidered as a higher critical dimension for the anomalous
small-angle multiple scattering. This value takes place
for D„= 3 (see below) and D, = 2, when the frac-
tals turn into the finite-size inhomogeneities and for the
Coulomb scattering. At the same time L = 2 is a lower
critical dimension. Strictly speaking if 4 & 2 the scat-
tering cannot be considered as a small-angle one because
the total cross section is not saturated by the small q
region, and below we restrict ourselves by the condition
D ) 2. The multiple scattering for L = 2 has been
studied in Ref. 8.
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We see that the random-walks description of the small-
angle multiple scattering is not valid in all physically
important cases. Even in the Porod case when 4 = 4
the width of the intensity distribution is proportional to
[(L/k) ln(L//)] /2 instead of (L/E)i/2

This paper is organized as follows. In Sec. II we esti-
mate the mean free path 8 for the &actal systems. Sec-
tion III is devoted to the multiple scattering. The con-
clusions are presented in Sec. IV.

if one replaces cos q( by its mean value 1/2 and uses the
well-known expression for the neutron potential energy
in the medium

U = 2vrbNph /m = h Kpb/(~ b ~).

Comparing Eqs. (5) and (6) we conclude that for D„=3
&actals turn into the system of pores with the sizes of the
order of (.

At D = 2 from (4) we have

II. NEUTRON MEAN FREE PATH
IN FRACTAL MEDIA

do. Ko VgBO

dO 87r'(q'+ (—') ' (8)

We estimate now the mean &ee path for neutron prop-
agation in the fractal media. For this purpose we need
to know the order of magnitude of the cross section. We
consider the volume and surface fractals separately and
the limiting case of finite-size inhomogeneities.

a. Volume fractals For. definiteness we consider a
medium where &actals are pores which sizes r are dis-
tributed in the range Rp ( r ( ( and Rp &( (. In
this case the density-density correlation function has the
form '

where No is the atomic density between the pores and
the factor No ensures the correct physical dimension. As
a result for the single &actal cross section we have '

do 4= KOV~„BO

D„I'(D„—1) sin[(D„—1) tan i (q()]X
(4~)2q(q2 + ( 2)(D& 1)/2 (4)

where Kp2 = 4m~b~Np, b is the corresponding scattering
length, VD = Vs(Rp/() ", Vs —(, and I'(x) is the
gamma function. We define here the &actal volume V~
in such a way that it has the proper physical dimension
cin and the factor (Rp/()2 D" describes reduction of
the total mass of the matter compared to the dense case
in the region of the range of (. It should be noted that
Eq. (4) is the simplest expression which gives the proper
large-q dependence of the cross section q

" for D ( 3
and the Porod law q for D„= 3. Some other expres-
sions were discussed in Ref. 3. We restrict ourselves to
Eq. (4) because our results are not sensitive to the precise
form of the cross section at q & (

If D„=3 we get from Eq. (4)

d0

dO

3K04V3

8~2(q2 + ( 2)2( (5)

For q( » 1 this expression coincides by the order of mag-
nitude with the Born cross section for the scattering &om
the sphere of the radius ( calculated in the Born approx-
imation, which may be represented as

3K V,„(()/(8'(q ).
/'do. )
gdA), „

where V2 ——(2Rp.
From (4) we obtain for the total cross section

o D„= ID„Kp Rp VD„((/RP) " (k()

where k is the neutron wave number and

D„I'(D„—1) dx sin[(D —1) tan x]
8m. (x2 + 1)(D —i)/2

The mean &ee path E is determined in the usual way
as E = (o'n~) where np is the fractal density. If the
medium porosity is related only with &actals we have for
their concentration

LN
x,v

and for D„=3 and 2 we obtain, respectively,

1 4 AN/Np
Es 16mk2 (13)

4
ln(2k(). (14)

In the case of the spherical pores using the correspond-
ing expression for the total cross sectionis we get 1/g, z ——

2vr/ls, i.e., both quantities have the same order of mag-
nitude as they should have. The numerical factor 2'
is related to the particular definition of the correlation
function given by Eq. (3).

For D„= 2 the q dependence of the cross section (8) is
the same as in the case of the critical fluctuations if one
neglects the small Fisher parameter g

der/dO = Zb o, (q +( )j (15)

where Z 1, a is of the order of the interatomic spacing
and ( = o,(T —T,)

" where v is the critical range ex-
ponent. For ferromagnets above the Curie temperature

where AN/Np ——1 —c is the fraction of the sample oc-
cupied by pores. As a result the mean free path is given
by

, aN ( t'R, i'
Np k2 (()
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values of Z and a are listed, for example, in Ref. 16. The
corresponding mean free path has the form

hV (()V -, Sgi —
I

& ) (20)

2vrb2N Z
1n(2k(). (16)

4k Np ((5
A N (Bp) (17)

Expressions (14) and (16) coincide if 2RpNp ——Za
and A N/Np ——1. Physically it means that pores dis-
appear and all atoms of the system are involved in the
fluctuations.

Equations (9) and (10) are valid for D„)2 only when
the total cross section 0D is saturated at small scatter-
ing vectors q ( i, i.e. , when the scattering may be
considered as a real small-angle one. In this case a broad
region of the sample thickness L may exist where we have
the small-angle multiple scattering (SAMS). However, if
D„(2 the large q k give the main contribution to the
total cross section and the scattering intensity becomes
almost isotropic after few scattering events and as a re-
sult we have not the SAMS at all. The case D„= 2 is
a boundary case where all q between ( i and 2k con-
tribute to the cross section. The multiple scattering for
D = 2 has been studied theoretically in Ref. 8. The
double critical scattering in iron was observed using po-
larized neutrons in Ref. 10 and good agreement was found
with theory. Below we will restrict ourselves to D„) 2
only.

I et us estimate now a possible order of magnitude of
ED . For most solids we have Kp 10 2 A. , the coeK-
cient ID„given by Eq. (10) is of the order of 0.1, and we
get

Vb = CbVs(()N„((/r) (21)

here Nz ——bV/( is of the order of the total pore number
in the sample and Cb 1 is a nonuniversal constant.
As a result of Eqs. (18), (19), and (21) we get for the
scattering cross section at q )) (

de
dO

Kp Vs(() CbI'(5 —D, ) sin[(D, —1)m./2] 22
16vrqs(q()s

If D, + 3 the cross section vanishes. This result has
been discussed in Refs. 6 and 19. At D, = 2 Eqs. (6) and
(22) have the same order as they should have, because in
this case the &actal surface turns into a smooth one.

We did not get an interpolation expression for all q,
similar to Eq. (4). We can only estimate the total cross
section using Eq. (22) and ( as a low q cutoff. As a
result we obtain

4 AN= ID.K N k0
(23)

where

where bV is the part of the volume V occupied by pores,
the ratio bV/( is of the order of the total number of
pores in the volume V, S = ( is of the order of the pore
surface measured at a scale of the order of ( and the
factor ((/r) ' 2 describes the enhancement of the pore
surface if it is measured at a scale r ( (.

It is convenient to rewrite Eq. (20) in the following
form:

If we put k = 1.0 A. , ( = 10 A. , Rp ——10 A. , and
D„= 2.5 we obtain /D„= 3 x 10 cm(Np/3, N). The
similar estimation for D„=3 gives a much smaller value
for Es ——10 cm(Np/AN). We see that if the ratio
6 N/Np is not very small, the mean free path may be
much less than the sample thickness I in the real ex-
perimental conditions. We note also that ED„decreases
strongly with k and (

b. Surface fractals. We consider now a system of pores
with the size of the order of ( and the fractal surface
characterized by the dimension D, restricted by the con-
dition 2 & D, ( 3. In Refs. 18, 5, and 19 it was shown
that the small-angle scattering may be expressed as

Jo 1
47r(bNp) V c(1 —c) — dr r p(r) sin qr, (18)

dO 0

where V is the sample volume, 1 —c = AN/Np, and if
r (( ( one gets

1 ~(D. —1)
ID —CbI'(5 —D, ) sin

8 2
(24)

Comparing Eqs. (23) and (13) we see that the mean
free path for pores with &actal and smooth boundaries
have the same order of magnitude. Correspondingly the
estimation of ZD coincides with that given above for l3.

III. MULTIPLE SCATTERING

The general theory of small-angle multiple scattering
(the Moliere theory) is presented in Ref. 12. It was
shown in Ref. 8 that it is actually based on two assump-
tions: (1) the total cross section is saturated in the small-
angle region; (2) the mean &ee path is large compared to
the size of inhomogeneities (. In our case both conditions
hold if D„)2 and for all values of D, .

According to Refs. 12 and 8 for the intensity of the
multiple scattering we have

q(r) = 1— Vb(r)
4c(1 —c)V ' (19)

I(q) = — dna' (
—

)27K 0

where Vb(r) is the volume of the boundary layer of the
thickness r at the surface of the pores. For the surface
fractal Vb(r) can be expressed as5

( LF„'( ( Li
x exp

/

—
/

—exp
i

——
~ r

(25)
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where F„= (op —o„)/op

(26)

where ql
——(L/E) i /(2().

However, for E = 4 we obtain &om Eq. (27)

is the coefficient in the expansion of do/dA in Leg-
endre polynomials, and the approximate expression
P (cos 8) = Jp(@n) is used, which holds if 8 « l. Obvi-
ously op coincides with the total cross section. For L (( g

Eq. (25) gives the intensity of the single scattering which
is proportional to L.

From Eqs. (4) and (22) we see that in both cases do/dA
may be represented as Aq f~ (q(), where A is a con-
stant, E = D„or 6 —D„ f~ (x) = 1 if x )) 1 and
q f~ (q()iz~p & oo. As a result we obtain

F~ = dzz + [1 —Jp(8pnz)]f~ (z)
p

q~ 1 = [(L/E) ln(L//)] /(2(). (34)

It is the result for the finite-size inhomogeneities consid-
ered in Ref. 8. We see that now we have random walks
with steps which increase logarithmically with the sample
thickness L. Such a behavior is related to the fact that
according to Eq. (2) the mean square of the scattering
angle is ill defined also in the Porod case.

For the case 4 = 2 we have

F„= (8pn/2) ln
6pn

and the intensity is described by Eq. (32) if we replace
qRw by

OO

x dx x ' f~(x)
p

(27) F„=[ln(1/n6p)]/ ln(k()

where 6p ——1/(k().
For L )) I the main contribution to I(q) is in the region

where F' « l. In this case we see from Eq. (27) that
n8p « 1 and in the numerator we may replace f~(z) by
unity. As a result we get

k'q"
I(q) =

2~(q2+ q,")si2' (36)

and the scattering remains the small-angle one in rather
narrow region of L. Corresponding expressions are pre-
sented in Ref. 8. For A = 3 from Eq. (30) we get

F„= (v9p n/2) ~ '/ g~,

where g~ is given by

(A —2)I'(4/2)
I (2 —A/2)

(28)

(29)

where q& —— L/( g2gs(). As was shown in Ref. 9 this(3)

expression describes the multiple scattering from spheres
with radii R = gs( if the following conditions are fulfilled.
(1) The single scattering is a diffraction on impenetrable
sphere and is given by

From Eqs. (25) and (28) we obtain for L )) E
= O'R J,' (qR)/(qR)'. (37)

()=2 dx xJp(x)

(L i (z)
x exp

&@~ r &2q&r
(30)

E = 2RV/3AV » R, (38)

(2) The concentration of spheres is low and the mean free
path

where 6 = D and 6 = 6 —D, for the volume and sur-
face fractals, respectively. Equation (1) is an immediate
consequence of this expression.

It is convenient to rewrite this equation as

where AV/V is the relative volume of the sample occu-
pied by the spheres. The diffractional scattering is ac-
companied by refraction. In Ref. 9 it was shown that
Eq. (36) describes the multiple scattering at the condi-
tion

I(q)=
( )

dyy" Jp y" e ", (31)
L » I[OR(U/E)]' ln[kR(U/E)], (39)

where p = (A —2)
Using the well-known expressionsis j dq q Jp(qy) =

4h(y)/y and j dye(y) = 1/2 one can easily check that
the total scattering intensity is equal to unity as it should
be in the case of multiple scattering when all particles are
declined by the sample.

If we put 4 = 4 and g~ = 1 in Eq. (30) we get the
random-walks result

pk21'(2p) 2p(k()2 (g~8)
27r[q~ 1]2 7r i L )

(40)

where E is the neutron energy, U is given by Eq. (7), and
kR(U/E) » l.

Let us consider now the form of the intensity distribu-
tion as function of q. First of all for the forward scattering
intensity calculated from Eq. (31) we get

I(q) = k' ( q
Rw 2exp

~ Rw ~4~(qRw) 2
~ 2qRw r

(32)
where 2y. = 2/(D„—2) ) 2 and 2 ) 2p = 2/(4 —D, ) ) 1
for the volume and surface fractals, respectively. In
both cases I(0) decays with L faster than L i as in the
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FIG. 1. The central part of the normalized multi-
ple-scattering intensity as a function of q/qr, for the vol-
ume fractals with D = 2.5 (full line), surface fractals with
D, = 2.5 (dotted line), and random walks (dashed line).

random-walks case [see Eq. (32)] which corresponds to
two-dimensional difFusion. Such a behavior is a charac-
teristic feature of the superdiffusion.

In the small-q region where q ( ql Eq. (31) for I(q)(~)

may be expanded in a power series in q2 and for I(q) we
have the quasi-Guinier expression

I(q) = I(o) 1 —-q'R,'(L) (41)

where we for the efFective radius of the gyration obtain

31'(4~)

41'(2p) [q~( )]' (42)

Here the numerical coeKcient is minimal for p = 1/2,
i.e. , for the random walks and increases with p. This
increase is rather moderate for the surface fractals (1/2 (
p ( 1) and becomes very strong for the volume fractals.
For example, [ql R~(L)] = 0.75, 1.26, and 630 for p =
1/2 (RW), p = 2/3 (D, = 2.5), and p = 2 (D„= 2.5),
respectively. We see that in the range (q/q& ) & 1 the
intensity distribution contracts with increasing value of
p as it is shown in Fig. 1. For the volume fractals this
contraction is very strong and the quasi-Guinies region
almost disappears as it is seen in Fig. 1. One can show
that in this case the q2 expansion of I(q) is an asymptotic
one.

If q )) ql we can expand the exponent in Eq. (30)(~)
and obtain the same expression as for the single scatter-
ing. However, now it holds for q )& qL only. Moreover,(&)

the total intensity in the single-scattering case is propor-
tional to (L//) (( 1. For the multiple scattering it is
equal to unity because all particles are declined by the
sample and contributions from two regions: q ( q&

and q ) qL have the same order of magnitude. The(&)

single-scattering behavior of the intensity at q )) q& is

related to the rare scattering events and the correspond-
ing mean free path is larger than L. The low-q multiple
scattering before and after the rare large-q event declines
the particle on q q& and cannot change appreciably(~)

the intensity distribution for q )& ql

IV. CONCLUSIONS

Lo (k() (43)

It may be shown that this expression has the same order

The main result of our study is the following. The
random-walk diffusional description of the small-angle
multiple scattering fails in many physically significant
cases because the mean square of the scattering angle
62 for the single scattering event is an ill-defined quan-
tity. Even in the case of finite-size inhomogeneities the
step of the random walks logarithmically increases with
the sample thickness L.

We estimate the mean free path E for the neutron prop-
agation in the presence of the large-scale inhomogeneities
using the value for Ko ——4aNob typical for porous or two
component solids and show that 8 may be much less than
commonly used sample thickness L and in this case the
multiple scattering is important. In this case the inten-
sity distribution divides into two parts: the tail where

q &) qL and the central part where q q&, where(&) (&)

q& is given by Eq. (1). The tail has the same form as
for the single scattering and its intensity is proportional
to the sample thickness L. For q « q& the scattering
intensity has the quasi-Guinier form given by Eq. (41).
However, this approximation is hardly applicable for the
volume fractals where the effective radius of the gyration
is very large and the q expansion of the intensity I(q) is
an asymptotic one. In any case the effective radius of the
gyration Rg(L) 1/qL is less than the fractal size (.
Correspondingly for the reliability of the determination
of ( from the crossover from the large-q scattering to the
Guinier regime one should check if the width of the cen-
tral part of the intensity distribution is L independent.

Above we estimated the mean free path using the value

Ko ——4vr&o~b] for the porous solids. This estimation is
applicable, for example, for the coal porosity discussed
in Ref. 5. However, this estimation fails for a lot of other
systems where the variation of bNO originating from dis-
order is much less. As an example one can mention vol-
canic rocks, aggregated colloid particles, ' ' and sim-
ilar systems. In all these cases the mean free path is much
larger than estimated above. However, from Eqs. (12)—
(14) and (23) we see that / is proportional to the neutron
energy and the multiple scattering should be important
for the suKciently cold neutrons. We note also the multi-
ple scattering remains the small-angle one if the sample
thickness L is much less than the critical value Lo de-

termined by the condition q& k. From Eq. (1) we
obtain
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of magnitude as the transport mean free path determined
by
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