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Quantum tunneling of Aux lines in a high-T, superconductor
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The quantum Aux creep model of Ivlev et al. has been extended to include the dissipative and inertial
mass contributions to the bounce action. The crossover temperature, the activation energy„and the
quantum tunneling rate are evaluated numerically. This has been carried out by a perturbation expan-
sion retaining only the leading-order term deemed to be valid in the vicinity of and below the crossover
temperature. It is found that the crossover temperature and the activation energy are relatively un-

changed but the quantum tunneling rate is drastically reduced when compared with the estimates of
Ivlev et al. Furthermore, the quantum tunneling rate is temperature dependent in the neighborhood of
the crossover temperature.

I. INTRODUCTIGN

The phenomena of quantum tunneling of Aux lines in
the mixed state of superconductors at very low tempera-
tures has attracted a great deal of attention recently. The
first experimental observations were made by Mitin' in
his study of the relaxation of the Aux-line gradients in the
PbMoS system below 1 K and the data were interpreted
as signaling the occurrence of quantum tunneling of vor-
tices between pinning centers. Low-temperature magnet-
ic relaxation studies of the vortex state have been carried
out in many superconducting systems, including the
high-T, superconductors, LaSrCuO, high-quality single
crystals of YBCO, organic superconductors and heavy-
fermion systems. Typical results from these experiments
are summarized in Ref. 6.

According to these experiments, the magnetic relaxa-
tion rate S = (8 lnllf)/(8 lnt) exhibits two distinct types of
behavior as a function of temperature. Above a charac-
teristic temperature To the decay rate is of the Arrhenius
type. This behavior is interpreted as arising from the
classical "jump over the hump" motion of Aux lines and
is characterized by an activation energy. Below To the
crossover temperature, the decay rate is essentially in-
dependent of temperature, and is interpreted as arising
from the quantum tunneling of vortices.

There has also been a considerable amount of theoreti-
cal activity in this area. Blatter, Geshkenbein, and Vi-
nokur have calculated the tunneling rates for single vor-
tices and vortex bundles in bulk isotropic superconduc-
tors within the framework of weak collective pinning
theory. It was later extended to the case of anisotropy
and layered superconductors by Blatter and Geshken-
bein. The theoretical analysis and the numerical esti-
mates given in Refs. 7 and 8 are based on dimensional
analysis. Therefore, only the limiting values as T~0 of
the theoretical tunneling rate are compared with the ex-
perimental data Ref. 6. No detailed calculations of the
tunneling rate at nonzero temperatures could be made.

The quantum creep of vortices in layered superconduc-
tors was studied by Ivlev, Ovchinnikov, and Thompson,
who determined the crossover temperature and the ac-

tivation energy as a function of the transport current, the
normal resistivity, and the upper critical field. No de-
tailed numerical results for quantum tunneling were
presented by them either. Ma et al. ' do claim a more
exact treatment of the activation energy, quantum tun-
neling, and fiux-creep rates on the basis of a quartic pin-
ning potential model. However, they have not included
the Lorentz potential in their model. Therefore, their
calculation does not address the issue of the current and
field dependence of the various physical quantities. It has
been emphasized by Coffey and Clem' " that inertial
mass may be important in the dynamics of vortices in
high-T, superconductors. While Blatter et al. ' and Ma
et al. ' do include the inertial mass term, Ivlev, and
Ovchinnikov, and Thompson do not include it in their
treatment. Moreover, all the works referred to (Refs.
7—10) consider the quantum decay rate only in the limit
of T~O. While this approach may be adequate for sys-
tems with crossover temperature, To, in the mK range, it
is not for systems with relatively large values of To. For
example, Ivlev, Ovchinnikov, and Thompson, estimate
To to be 4 K but Ma et al. obtain To 40 K. Al
though the primary mode of decay below To is due to
tunneling, the decay rate is not independent of tempera-
ture. Furthermore, when To is suKciently high, finite
temperature effects due to fm.uctuations may also become
important. Such effects have not been addressed. More-
over, the method of Ref. 9 which includes only the first
harmonic in the bounce is not adequate for treating the
temperature dependence of the quantum tunneling rate,
which is determined by the spectral characteristics of the
coupling to the environment.

It is the purpose of this paper to carryout the analysis
of the decay rate near and below the crossover tempera-
ture To and to examine its dependence on temperature,
current, and field variables. The general method based
on functional integrals for treating the inAuence of dissi-
pative processes on the decay of quantum systems from
metastable states via quantum tunneling was described by
Caldeira and Leggett. " In this paper we will consider
the case of straight Aux lines in a layered high-T, super-
conductor. An outline of the theoretical framework will
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be given in Sec. II. The present model represents an im-
provement of the model of Ref. 9 by including (i) the con-
tributions of the inertial mass term and the viscous damp-
ing term in calculating the action, (ii) all the higher-order
harmonics in the expression for the bounce, and (iii) by
extending beyond the harmonic approximation in the
pinning potential. The resulting equations are quite com-
plex to obtain analytic solutions through the temperature
range 0—To. A perturbation analysis near the crossover
temperature yields expressions for the crossover tempera-
ture, activation energy, and the tunneling rate and its
dependence on current and temperature. It will be seen
that the crossover temperature and the activation energy
are not greatly influenced by these modi6cations, the
values are essentially the same as those given by Ivlev,
Ovchinnikov, and Thompson. But the quantum tunnel-
ing rate due to the bounce contribution is substantially
reduced and it is temperature dependent in the neighbor-
hood of To, T (To. These limitations and possible ex-
tensions will be discussed in the final section.

II. THEORETICAL FRAMEWORK

In this paper we will follow mainly the notation and
the theoretical frame work of Ivlev, Ovchinnikov, and
Thompson but include the effect of the inertial mass
term and the damping term. We will also include the
higher-order harmonics in the bounce and we go beyond
the harmonic approximation in the pinning potential.
For the sake of clarity we explicitly retain A' and use

P= 1/ks T in the equations.

A. The effective action

Consider a straight Aux line of mass M per unit length,
moving in a potential V(u) and undergoing elastic defor-
mation characterized by the displacement u. The dissipa-
tive effects are included by coupling to a heat-bath envi-
ronment represented by a set of harmonic oscillators. "
The magnetic field is applied in the y direction. The vor-
tex displacement u (y, t) has only a z component. For the
semiclassical treatment of the motion of the Aux line, we
consider the effective Euclidean action (r= —it) given by

A = f dy f dr E,&
+ V(u)+ED—oo O Bg

D

2
BQ

2 O'T

Here E,&(B /Buy) = (8/2)(Bu /By) is the elastic term
given in terms of the line tension c of the Aux-line lattice,

2o

c, = ln
8m' k3„

V( u ) is the pinning potential consisting of a periodic part
and the Lorentz potential:

phenomenological coupling to the heat-bath environment
and can be written as

Bu q Bu &P Bu
ED — = — — dr, ln sin (r r—, )

Br 2m B~ o 'Br, RP

B. The crossover temperature

%'e consider the limit of a large current which is only
slightly less than the critical depinning current, i.e.,
j,—j ((j, then the potential in Eq. (2) can be expanded
around the inAection point and omitting the trivial shift
constants it can be written as

V( )=
27TC

"2 . . i1/2
Jc

2Je
—1/6

d

3

(4)

+ f dry cot,
&P Bu

f1 0 B'T)

n.(r —r))
Pip

According to Ivlev, Ovchinnikov, and Thompson, at
high temperatures the classical solution u (y, r) does not
depend on ~. The action Ao is determined by the static
function uo(y) obeying the equation

8 Qo + V'(u )=0,O

and the activation energy Uo is given by Ao=UofiP.
There is a crossover temperature, To, above which there
is a thermally activated regime. Below To, a new semi-

classical trajectory called the bounce develops. This is
periodic in imaginary time. The crossover temperature is
determined from the bounce in the following way. The
displacement just below To can be written as a Fourier
expansion around the static solution uo of Eq. (6):

u (y, r)=uo(y)+ g g„(y) cos(co„r) .
n=1

(7)

Here co„=2m.n/AP are the Matsubara frequencies. Sub-

stituting from Eq. (7) into the equation of motion (5), one
obtains the following equation for g„(y):

Obviously the potential is zero at u =0 and at
u ={3d/vr)[{j, j)/2j, ]—'~ . The distance u will be
used for scaling purposes.

The quantum-mechanical tunneling probability is
determined by the action in Eq. (1). In the semiclassical
approximation it is given by IV-exp( —Aolfi), where

Ao is the value of the action on a classical trajectory for
which the equation of motion is

—M —E z + V'(u)BQ BQ
Br By

0'oje d 2~u
V(u) = — cos

2&c d
u (2)

B2$
+ V"(uo)1t „=—(geo„+Men„)$„.

Bp

ED, the so-called Caldeira-Leggett action, describes the If one introduces new variables
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u=
um Qm

mass and the viscous damping. The action is then given
by

48
d

5m

1/2 .
, g/4

«NaJc Je J
KC 2Jc

(16)

where

EdC 2jc70=
~4'OJc Jc J

' 1/2

The activation energy Uo is given by the coefficient of imp

in Eq. (16). This result is identical to that obtained in
Ref. 9.

III. QUANTUM TUNNKI. ING

Eq. (6) becomes

+2Uo 3UO =0
2 (A/2

with the solution

ua=sech g .

Equation (8) turns into

+2(1—3 sech g)P =E Pn 8 11

(10)

(12)

where

dC 2Jc
1/2

(geo„+Men„) . (13)

Now Eq. (12) has three discrete eigenvalues —
—,', 0, and —'„

with the associated (unnormalized) eigenfunctions,
sech g, sech g tanhg, and (5 tanh g —1)sech/, respective-
ly. The crossover temperature is determined by the nega-
tive eigenvalue of Eq. (12). Therefore the crossover tem-
perature is determined by using Eq. (13) after substituting
for coi =2'/A'Pa. .

dc 2Jc

NaIc A

1/2
2aM

&p, (xp, )' (14)

Equation (15) gives the crossover temperature as a func-
tion of the parameters M, q, and j.

C. The activation energy

In the thermally activated region, i.e., above To, the
activation energy can be obtained by evaluating the ac-
tion defined in Eq. (1) for the static solution as
Ao= Uairip. When the static solution of Eq. (6) is used,
the contribution to the action Ao arises only from the
elastic and pinning terms in Eq. (1) and there is no contri-
bution from the dynamic terms involving the inertial

One can solve for the positive root for To:

1

Pa 4aM
1/2 1/2

'00aj 2vrM J J
4~M dc ~2 2j

(15)

Below To, the predominant mechanism by which the
metastable state decays is quantum-mechanical tunneling.
The rate at which this takes place is determined by the
action for the bounce trajectory. Ivlev, Ovchinnikov, and
Thompson have determined the Euclidean action appli-
cable to this case as

1/2 - . -5/4
48 «Na1 J J
5m ac 2j,

(17)

The new equation of motion in terms of dimensionless
quantities becomes

+2(1—3 sech g)P EP-
Qg2

n n n

oo 3 n

=3&4.+ 0 +2
m —1 m =1

where E„ is still given by Eq. (13).
While an analytical solution of Eq. (19) is not possible,

numerical solution by successive iteration' ' can be ob-
tained over a wide range of temperature and mass and
damping parameter values. Moreover, very near the
crossover temperature, a perturbation analysis in terms
of a parameter A, = [(Ta —T)/Ta]'~ is possible in view of
the temperature dependence of the terms in E„,Eq. (13).
Et can be shown that P„are of the order k" and that the
leading-order contribution arises from P, -sech g. Sub-
stituting for u, with the leading-order approximation
from Eq. (7), we have evaluated the action from Eq. (1).
The revised contribution from the elastic and pinning
terms to the action of the bounce is given by

and hence according to them, the quantum tunneling rate
-exp[ —A)/vari] is essentially independent of tempera-
ture. However, it should be noted that this result holds
good for the saddle-point trajectory corresponding to the
static solution; it includes the contributions from the elas-
tic and pinning terms only and is true only in the limit of
T—+ To. For temperatures in the range T (To the
bounce trajectory will be different from the saddle-point
trajectory of the static solution and the contributions of
the inertial mass term and the viscous damping term will
also have to be included in the bounce action. In addi-
tion one would have to go beyond the harmonic approxi-
mation in the pinning potential as employed in Eq. (12):

u'(u) =u'(ua)+u "(uo)(u —uo)+ —,'u"'(uo)(u —uo)
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q
438

'P 35 1TC 2Jc
(20)

20
The contribution from the inertial mass term is

q 48Md
m

cdc

Poj, rr

1/2 ~ . 3/4
Jc J 1

2j, AP
(21)

EdC
(22)

and the contribution from the viscous damping term is
- &/2 . . 3/'4

24gd Jc
5m 2Jc

The total action for the bounce trajectory is given by
A q= A ~+ A ~ + Ag. Finally, the quantum tunneling rate
is given by the standard WKB formula:

0
0 ~ 0 0 04 0.08

I —( A ~/2vrh) ' exp( —A ~/A') .

IV. RESULTS AND DISCUSSION

(23) (Jc-J)/Jc

FIG. 1. Variation of the crossover temperature with current:
(a) solid line, present work; (b) dashed line, Ivlev, Ovchinnikov,
and Thompson (Ref. 9}.

We have derived expressions for the bounce contribu-
tion to the action arising from the elastic and pinning
terms, Eq. (20), from the inertial mass term Eq. (21), and
from the damping term Eq. (22) by retaining only the
leading-order term in the bounce. The last two are new
results and Eq. (20) differs by a numerical factor from the
result of Ivlev, Ovchinnikov, and Thompson. We have
also calculated num|:rically the crossover temperature To
from Eq. (15), the activation energy from Eq. (16), and
the exponent Aqlfi as a function of temperature. The
values of the input parameters are listed in Table I and
are the same as the ones used by Ivlev, Ovchinnikov, and
Thompson in their estimates.

Figure 1 shows the variations of To with the fractional
current difference (FCD), (j, —j)/j, . Also shown are the
values calculated by using the expression given by Ivlev,
and Ovchinnikov, and Thompson. As can be seen the
two curves are practically identical; To is about 4 K for a
value of 0.0035 for FCD and increases to 21 K for a value
of about 0.1 for FCD.

Figure 2 shows the variation of the activation energy as
a function of FCD. This result is also identical with that
obtained by Ivlev, Ovchinnikov, and Thompson. The
activation energy increases from 0.2 meV at 0.0035 for
FCD to about 13 meV for a value of 0.1 for FCD.

Figure 3 shows the variation of action for the bounce
trajectory with temperature (solid line). Also shown is
the contribution from only the elastic and pinning poten-
tial terms (thin dashed line) for comparison with the Ivlev
expression (thick dashed line). The Ivlev result ignores
the mass and inertial terms. It also ignores the contribu-

tion to the elastic and pinning terms from the dynamic
term of the bounce in Eq. (7). Finally, Fig. 4 shows the
variation of the function exp( —A ~/fi) with temperature.
Again the thick dashed line corresponds to the Ivlev ap-
proximation.

It is obvious that the crossover temperature and the ac-
tivation energy are not significantly influenced by the
mass and the damping terms. Above the crossover tem-
perature the decay rate is mainly determined by the
saddle-point trajectory of the static solution. There are
corrections to the activation energy above To, but these
are beyond the scope of the present work.

12

O
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0

D

TABLE I. Input parameters.

d: 1 nm
Hcz. 200 T
j, : 1.0 X 10' A/m
M'. 2.73 X 10 Kg/m

4. 12X 10 ns/m"
1,, /A, b =g,b/g, =5.
g, b =100 nm

g, =1.0 nm

'J. R. Clem and M. W. CofFey, Phys. Rev. B 42, 6209 (1990).

0.0 0.04 0.08
(gc-J)uc

FIG. 2. Variation of the activation energy with current.
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FIG. 3. Variation of the action for the bounce trajectory with
temperature: (a) present work; (b) Ivlev modified by bounce ac-
tion; (c) Ivlev, Ovchinnikov, and Thompson (Ref. 9).

FIG. 4. Variation of exp( —3 ~/A) with temperature: (a)
present work; (b) Ivlev, Ovchinnikov and Thompson (Ref. 9).

An important effect of including the contribution from
the bounce trajectory is that the action is rendered tem-
perature dependent and hence the quantum tunneling
rate becomes temperature dependent below the crossover
temperature. The effect of including the damping and
inertial mass terms is to further reduce the quantum tun-
neling rate. One can give a hand-waving explanation of
the explicit temperature variation of the different terms.
The action integral is an integral over d~, the upper limit
being the "bounce length" A'P. The integrand of the
potential-energy term does not depend on ~, so it is sim-
ply multiplied by the factor tip as a result of the integra-
tion. The damping term, as it involves the first derivative
with respect to r, contains a factor co, =2~/A'P; this fac-
tor cancels the fiP from integration. The net result is that
the damping term has no explicit dependence on temper-
ature. The kinetic-energy term, on the other hand, in-
volves the square of the first derivative and hence the fac-
tor, cot=(2m. /Ap) . Integration yields a factor trip, with
the net result the factor AP in the denominator. These
are the results obtained in Eqs. (20)—(22). We have
verified that our equations do reproduce the well-known
limiting values of activation energy in the limit T—+ To in
all the special cases such as M =0.

The approach used here with a single harmonic for the
bounce, however, is adequate for temperatures below To
and very near To. It is unsuitable for exploring the T~0

limit because the first-order perturbation expansion in
Eq. (7) with a single harmonic is valid only near To.
Therefore, one should not infer that Eq. (20) leads to a
divergent behavior as T~0. An Arrhenius-like behavior
has also been obtained for temperatures immediately
below To for a massive damped particle tunneling in a
cubic potential. A correction to the Arrhenius behavior
is obtained when the perturbation expansion is carried to
the fourth order. Even higher-order expansions would be
required to reach the T =0 limit. In any case, the quan-
turn tunneling rate would be lower than the one given by
Ivlev, Ovchinnikov, and Thompson. But, then the sim-
plicity of the perturbation theory is lost. Quantum decay
for the T =0 case has been studied analytically for
several limiting cases and the dimensional estimates are
well known. ' ' However, for describing the finite-
temperature effects over the entire temperature range,
one would also have to include fluctuation modes in the
bounce and finite order perturbation may not be possible.
An alternative recourse is numerical analysis. These is-
sues will be addressed in a future publication.
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