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A scaling theory is applied in order to calculate the temperature dependence of the staggered magnetic
susceptibility associated with the antiferromagnetism observed in high-temperature superconductors. In a loga-
rithmic approximation, only a summation of the leading square logarithmic terms are taken into account,
assuming the parquet approximation. We show that scaling theory can be applied to the square logarithmic
two-dimensional problem. The scaling method is an improvement compared to the alternative random-phase
approximation method. Our scaling result explains the temperature and doping dependence of the nuclear-spin-
lattice relaxation time observed in high-T, systems to satisfaction. However, the results of this paper indicate
that the logarithmic parquet approximation may not be sufficient to calculate quantitatively the magnetic

susceptibility. Ways to improve the theory are discussed.

L. INTRODUCTION

The scaling theory has so far been applied to high-T,
systems only to examine the transition temperatures required
for the formation of ordered states.? This paper develops
this idea further and goes on to calculate temperature depen-
dencies of the correlation functions in the normal state in
general. This approach may lead to a better picture of the
unusual magnetic properties observed in high-T, systems, in
particular La,_,Sr,CuO,_s (LSCO). The temperature de-
pendence of the staggered magnetic susceptibility in LSCO
will be calculated and compared to experimental results.

The scaling theory developed in this paper reproduces the
standard random-phase-approximation (RPA) expression
only when the summation of ladder diagrams is taken into
account. In that sense, the scaling method is an improvement
compared to the RPA method. The strength of the scaling
approach is that it takes the summation of both the electron-
electron and the electron-hole diagrams into account.

The starting point is a half-filled band case. The model
may also picture high-T, systems which are more heavily
doped than LSCO, e.g., systems like T1,Ba,CuQOg, s (TBCO)
and YBa,Cu;0,_s (YBCO). The temperature-independent
behavior of the staggered magnetic susceptibility at low tem-
peratures and high doping values can be explained qualita-
tively from the chemical potential, which is taken to be a
low-energy cutoff parameter. The chemical potential gives
the Fermi energy shift from the half-filling due to doping.

The validity of the scaling approach is justified when the
results are compared to experimental results. The results of
our approach give Curie-Weiss behavior of the staggered
magnetic susceptibility. With reasonable values for the pa-
rameters ¢ and U/t, reasonable values for Weiss temperatures
and Curie constants are obtained (7 is the intersite transfer
integral and U is the Coulomb repulsion on the Cu site).

II. THE 2D HUBBARD MODEL

The physical model focuses on repulsive interactions be-
tween electrons close to the van Hove singularities. It is de-
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scribed on the basis of the two-dimensional (2D) Hubbard
model

U
H=“t2 (azaaj,a+a;aai’o.)+ 52 ”i”i_ﬂz n;,
L], o i i
(1)

where a},a(a ;o) is the creation (destruction) operator of an
electron on the Cu site i with spin projection o=7 or
o=]. The operator n; is defined as n,=n; ;+n;, where
n; , is the number operator ni)a———a;f,‘,ai,u. The second term
in (1) contains the potential term Un;/2. We consider that
this term and the site-diagonal term gyn; are included in the
chemical potential 4 and u is assumed to be independent of
U by choosing &, as a proper function of U so as to fix the
number of electrons. Thus, the Hamiltonian does not distin-
guish between the spin of the scattering particles. When con-
sidering the half-filled band case (x=0), the dispersion re-
lation

€,= —2t(cosk,+ cosk,) )

gives a perfectly nested, square Fermi surface. The saddle
points, exactly at its corners, give rise to the van Hove
singularity points with the density of states N(e€)
=(127*t)In(7*/|€). u will change when the doping rate x
in LSCO changes. Later in the paper the consequences of a
nonzero, but nevertheless small value of u will be discussed.

A correct treatment should take the full structure of Cu
and O atoms present in the layer into account. The situation
with Cu d,2_,» orbitals forming a lattice where the O p,
orbitals connect to the nearest-neighbor Cu sites is well de-
scribed with the d-p Hamiltonian. The d-p model, as treated
by Kohno and Yamada,® gives rise to the energy bands

E;=(e;+ €,)/2

+ \/( €4~ ep)2/4+ 2t§_p(2 —cosk,—cosk,) — u.
(3)
If the upper d band (€,> €,) is the half-filled this dispersion
relation can essentially be written in the form (2) and the
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results described in this paper can be used when the d-p
model is considered as well. This point can be understood as
follows: At the half-filled case the Fermi surface is given by
cosk,+cosk,=0 in (3). That is, E,f:,(F=0, where k,=*1r
—k, or k,=*m+k,. As k deviates from k, by a small
value, E; behaves as a linear function of cosk,+cosk, .

A upper energy cutoff E is introduced which restricts the
momentum of the scattering particles. This region is divided
into four branches, each one associated with one of the four
singularity points in the corners of the Fermi surface. The
momentum differences of [277,0] and [0,27r] reduce the four
points to a set of two equivalent points A and B. Thus, the
2D problem is reduced to a 1D-like problem with two cutoff
branches, branch A and branch B.

In addition to the ‘“‘symmetry” of the equivalent points,
a 90° rotational symmetry in the layer is considered.
This reduces the number of different types of scattering
process between the branches to a number of four. The scat-
tering processes (A,A)—(A,A), (A,B)—(B,A), (A,A)
—(B,B), and (A,B)—(A,B) are associated with the cou-
plings G,, G, Gj3, and G4, respectively.

The unperturbed susceptibilities of the electron-hole
bubble diagram x(?(g,w) and the electron-electron bubble
diagram T1‘9(g,w) will be calculated (g is the momentum
transfer whereas w is the frequency transfer). Thus, after
introducing a cutoff E, = %t:

L—f(exr)—fl€—r4yq) 1 ot

0) _ 9 2 __
%, w)= % —otente_yigy, 8772’1n E.S’
4)
X O(goy=3 LT AG) 1,0 )

o Tt €€y 87t E.

The approximation marks above follow from the parquet
approximation [UlAmt<1, (12m)In*(w/E)>1, and
(U/87*t)In*(w/E,)~1] which implies that only square loga-
rithmic terms should be taken into account. The main contri-
bution to II1‘¥(g,w) appears from the situation with inver-
sion symmetry ¢=[0,0], ie., when w—0 and
€' = €' +[00] in the denominator of (4). Similarly, the
nesting of the Fermi surface g=[=* ,* 7], produces the
main contribution to x‘”(gq,) in Eq. (5). All other terms
can be neglected.

From the second-order spin-density wave (SDW) re-
sponse diagram it can easily be seen that the staggered mag-
netic susceptibility x([ = 7, = 7],w) = xy(w/E_) can be writ-
ten

() ol e eon(2)
NE =T X(EC‘ +(g3+tg4)X (E_ +--0, (6)

c

where the dimensionless couplings g; are defined by
g;=G;/U and the dimensionless response function X is de-
fined by

X(w/E)=U, (=7, = 7],w)=—UI?([0,0],w)
=(U/87?t)In*(w/E,).

Finally, we define a function y(w/E,_) as
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A( w)_ U x[X(w/E.)]
=l=3

w
_— =14+ —_— 4 ...
X 2 " oX(wlE.) 1 2(g3+g4)X(E)

‘ (7)

With good approximation, @ can be replaced by
max(w,27,u). In other words, the integration of energy is
stopped by the largest of these terms. In the case where the
chemical potential u>(w,27T), this is not completely true.
w will break the perfect nesting condition and reduce the
square logarithmic terms of the electron-hole diagrams to
single logarithms ~Inu In7. However, the electron-hole dia-
grams are the most important diagrams to consider, as far as
the staggered magnetic susceptibility is concerned. There-
fore, in the case of this paper, where only the leading square
logarithmic terms will be taken into account, we assume the
function max(w,2T,u) to be a reasonable approximation
which can give a qualitative explanation of the experiments.
In reality, the susceptibility will smoothly become constant
as the temperature is reduced below the chemical potential.
Thus, a function max[w,(27)?+ u?] can be introduced to
simulate this situation.

c

III. THE SCALING THEORY

It is necessary to go back to the simple formulation made
by Anderson* to reveal the physics behind a scaling approach
with leading square logarithmic terms. The cutoff can be
reduced from E; to E,=FE,—AE. The cutoff works like a
temperature scale and if the temperature is reduced corre-
spondingly the required change in the couplings which keeps
the physics unchanged can be found.

Thus, in the single logarithmic case with constant density
of states, it is only the scattering processes with
intermediate-state particles within the small region AE
which will modify the Hamiltonian. These states are given
by InE,/D—InE,/D(~AE/E) where D is a natural cutoff.

On the contrary, in the square logarithmic case it is the
terms

X(E,/D)—X(E,/D)~In?E, /D —1n*E, /D[~ p(E)AE/E],

which is responsible for the change of the couplings.

In the multiplicative renormalization the term InE,/E,
modifies the Hamiltonian. This is correct in the 1D case.
However, in the 2D case, as long as the natural cutoff cor-
rectly is taken into account, we can use the formalism of the
multiplicative renormalization using the simple substitution

=
Iny=X E.) (8)
where y is used for renormalization rather than w/E.. All
the square logarithmic terms [In*(«/E,), In*(w/E,), . . . etc.]
are transformed to single logarithmic ones.

Using reasonable physical arguments, the scaling theory
should not be restricted to the case of single logarithmic
terms with a constant density of states. Mathematically, in
the original formulation by Bogoliubov and Shirkov’® loga-
rithmic terms were not a prerequisite. The validity of apply-
ing the multiplicative renormalization-group theory can only
be justified or falsified by perturbational calculation. This is
left for future work.
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Following the procedure of multiplicative renormali-
zation,®’ using substitution (8), it is straxghtforward to derive
the well-known scaling equations

0g1/0X=—2g,(81—84),
©)
9g3/19X=—2g3(g>+t81—284),

9g4/0X=(g4)*+(g3)".
(10)

08,/9X=—(g2)*—(g3)%

Using the same procedure for x°, we obtain the response
equation

a U ox(X

< n( U )) =2[g5(0 +g50N(=2Tspw). (1)
Similar treatment can be carried out for all the responses
SDW, charge-density wave, etc. Thus, the transition tempera-
ture and the broken symmetry can easily be examined from
the second-order response diagrams and the scaling equa-
tions. In this paper we go further than exploring transition
temperatures. We intend to find temperature dependencies in
general.

The scaling equations were found by Schulz! who mainly
emphasized the Poor man’s scaling approach and by
Dzyaloshinskii* who applied the Sudakov method to sum up
all the parquet diagrams. It is believed that the response dif-
ferential equation (11) also can be verified by a skeleton
graph technique.

An interesting feature of this set of equations is that they
are able to reproduce the standard RPA result. First, the scal-
ing equations can be modified to sum up all the ladder dia-
grams. If only the second-order diagrams with crossed lines
(i.e., second-order ladder diagrams or ladder diagrams with
two steps) of the vertex are taken into account, while all the
other electron-electron and electron-hole diagrams are ne-
glected, the scaling equations concerning the staggered mag-
netic susceptibility are reduced to

RPA/aX 2gRPA RPA (12)

98y 10X =(g5) 7+ (85" (13)

Thus, by solving these trivial equations the correct sum of
ladder diagrams is represented by

IEhv=gx"(X) +gf(X) =

ox (14)

Finally using the response differential equation and perform-
ing straightforward integration, the correct RPA result is
given

2X/U X(O)RPA
1-2X 11— Uy R

XX (X) = (15)

In Fig. 1 the RPA result yR*A(X) is compared to the im-
proved scaling result y(X).
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FIG. 1. The scaling method gives an improved result for the
staggered magnetic susceptibility compared to the RPA-like sum-
mation of only ladder diagrams. X =( U/872t)In®(2T/72%).

IV. COMPARISON OF THEORETICAL
AND EXPERIMENTAL RESULTS

Kohno and Yamada® demonstrated that

1
Frex((m ) (16)

for the case of strong antiferromagnetic fluctuations.
T;' is the nuclear-spin relaxation rate of ®Cu. In
La, ,Sr,CuQO,_; (LSCO) Tfl has been thoroughly exam-
ined by Kitaoka et al.® using materials with a Sr content of
x=0.075, x=0.1, x=0.13, x=0.15, and x=0.20. The
experimental results are shown in Fig. 2.

According to Fig. 2 and Eq. (16), the staggered magnetic
susceptibility will follow a Curie-Weiss law:

x([m,m].T)= (17)

T+06

within a temperature range of 75-300 K.

This experiment further showed that the Weiss tempera-
ture O is proportional to the Sr content x, with the value of
®~100 K for x=0.20. Kitaoka ez al.® linearly extrapolated

LazxSrCuOs

63cu NQR

X=020
=015 |
=013
=010
=0075

TiT (mseck)

FIG. 2. The relaxation rate 77 ' measured in LSCO. The data
points are quoted from Kitaoka et al. (Ref. 8).
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FIG. 3. The relaxation rate 7} ! measured in LSCO, YBCO, and
TBCO. The data points are quoted from Kitaoka et al. (Ref. 8).

the Weiss temperatures as a function of doping and deduced
that for the critical value where ® =0, the Sr content would
be x=0.05.

Thus, larger x values correspond to lower staggered mag-
netic susceptibility as shown in the experiment for LSCO.
Figure 3 reveals that the staggered magnetic susceptibility is
lower in YBCO and TBCO than in LSCO. This is consistent
with the fact that both YBCO and TBCO are heavily doped
systems.

In Fig. 3 the effects of the cutoff factor u, described in
Sec. II, is illustrated. w is expected to increase when the
doping increases [Eq. (21)]. For the overdoped materials
YBCO and TBCO, the cutoff factor seems to be large
(approximately 200 K), resulting in the (7,T)=const law.
Above this temperature, the temperature dependence of the
staggered magnetic susceptibility can be difficult to find due
to the high Weiss temperatures that occur in systems with
such high doping. On the contrary, LSCO is lightly doped,
hence the cutoff factor w is small. The staggered magnetic
susceptibility is not constant for temperatures higher than
75 K.

V. COMPARISON OF SCALING CALCULATIONS
TO EXPERIMENTAL RESULTS

First, ¢ needs to be estimated to give the temperature scale
of our result. A realistic value for ¢ is expected to be in the
region of 10°—~10* K. In this paper this parameter is chosen
so that 2/(7w%t)~1/5t~10"% K~ '. Hence, the logarithmic
term is approximately

T
In?> —~In?

Tt 10000 K* (18)

A. The Curie-Weiss behavior

The inverse of the staggered magnetic susceptibility as
predicted by the scaling theory is plotted in Fig. 4, as a
variable of the dimensionless temperature T=2T/m%t
~T/10000 K and for different choices of U/t(U/t=2,
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FIG. 4. The inverse of the staggered magnetic susceptibility is
plotted as a function of the dimensionless temperature
T=2T/(47%t) for different choices of U/t.

Uit=1, U/t=0.5, U/t=0.25, and U/t=0.01). Initially, this
paper focused on weak correlations. However, a more real-
istic value is U/t~ 1~2. Therefore, the curve where U/t=2
is examined, despite the fact that the weak-coupling condi-
tion U/(4mt)<<1 is doubtful in this case. The curves with
unrealistic low values of U/t(U/t=0.25 and U/t=0.01) are
also plotted, because they give a good illustration of the ana-
lytical behavior of the curves when U/t changes.

Figure 4 shows that the magnetic susceptibility is close to
the expected Curie-Weiss dependence shown in Fig. 2, and
that all the curves are parallel using different choices of U/t.
This is similar to the experimental curves. At low tempera-
tures the staggered magnetic susceptibility diverges for a
large value of U/t. This fact means that the antiferromag-
netic instability occurs at this temperature. If this critical
temperature is lower than the chemical potential w, the tem-
perature T should be replaced by w within our scaling
theory. This point will be discussed in Sec. V B.

Good linear fits to the curves of the inverse of the suscep-
tibility shown in Fig. 4 are achieved when

. 4%t
X =77

2T
263(—7;27) + 1}—D>< U, D=095 (19)

These fits are found by linearlizing around the point where
the curvature is zero, as illustrated in Fig. 5. The figure
shows that the linearity breaks down at low temperatures
close to the instability point. At high temperatures (outside
the temperature range present in Fig. 5) the inverse of the
staggered magnetic susceptibility gradually grows larger than
the linear fits.

These linear fits show that with the quite realistic tem-
perature scale choice in (17) the Weiss temperature will vary
between ® =100 K and ® =0 K for U/t~1 and U/t~1.5.
In other words, we can obtain reasonable values for the
Weiss temperatures when reasonable values of U/t are used.

The cases where low values of x are used (Fig. 2) corre-
spond to the curves with large values of U/t in Fig. 4. This
tendency is exactly what is expected. The lightly doped sys-
tem has strong correlations and the heavily doped system has
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FIG. 5. Linear fits to the inverse of the staggered magnetic sus-
ceptibility. Linear fits where x~'~(47%t/27)[2e3(2T/ %)
+1]—=0.95U has been used.

weak correlations due to screening effects. [Thus, YBCO and
TBCO are weak correlation systems whereas the undoped
LSCO (La,CuQ,) system has strong correlations.] If the
scaling curves are correct, the doping and the correlation will
be linearly related:
(x—a)x(b—=Ult), a,b=const. (20)

It should be noted that in this linear area the RPA expres-
sion from Eq. (15) gives similar fits when D is set to unity,
which means that the linear line is taken within a small in-
terval on the X axis of Fig. 1. The small difference between
the two curves can indicate that the electron-electron and
electron-hole diagrams apart from the ladder diagrams will
cancel each other out to such a great extent that the main
contributions come from the ladder diagrams. If this is cor-
rect, it can justify the modified RPA method by self-
consistent renormalization done by Moriya, Takahashi, and
Ueda.’

It can also indicate that X is so small that the main con-
tribution to the susceptibility comes from only lower order
diagrams. These points are of great importance and should be
examined closer.

B.u#0

The order magnitude of the chemical potential x can
roughly be estimated as function of the doping value x:

1 (0 72t
X~ —5 ]nm

M M

de= ’7th( lnﬂzt +1). (21)

Using the critical doping value x=0.05 which leads to
zero Weiss temperature, Eq. (21) gives u©=~0.02 eV, i.e., the
susceptibility becomes constant when 7= 100 K. This rough
estimate is a little bit too high according to Fig. 3. It is more
realistic to assume that the staggered magnetic susceptibility
smoothly becomes constant when, e.g., T<<75 K. (This is
also quite a high value.) This situation is shown in Fig. 6.

The instability of the curve with U/t=2 does not disap-
pear since the instability occurs at a temperature higher than
75 K (in our rough example). This curve can explain why
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FIG. 6. The inverse of the staggered magnetic susceptibility is
plotted for low temperatures. The different plots show the inverse of
the magnetic susceptibility on different temperature scales. The bro-
ken lines show how the cutoff parameter p can suppress the sus-
ceptibility, e.g., when T<75 K.

neutron-scattering experiments'® observe an instability in the
staggered magnetic susceptibility in the close to undoped
systems of LSCO. In these systems the doping is so low that
the chemical potential x cannot suppress the instability.

The cutoff factor w is very roughly estimated, but it is
clear that it will quickly increase when the doping increases.
For the highly doped TBCO and YBCO, u can easily be-
come so large that it can explain the (7;7)=const law ob-
served in experiments. For even higher temperatures TBCO
and YBCO are expected to show relatively low values for the
staggered magnetic susceptibilities and possess high Weiss
temperatures.

The unperturbed staggered susceptibility x(® has been
calculated numerically by Hotta'' on the basis of the realistic
d-p model. Figure 3(c) in Ref. 11 shows that

A x] Y/oT~(04271—-1)/0.1~13.8,

while in the case of this paper d[ x]~!/9T~11.9 according
to the estimate (19). Thus, the Curie constant from the scal-
ing calculations has also a reasonable value.

VI. CONCLUSION
A. Results

This paper shows that the multiplicative renormalization
theory can be applied to the 2D problem where double loga-
rithmic terms occur and how this theory can be brought fur-
ther in order to find the temperature dependence of the mag-
netic susceptibility in LSCO.

The purpose was to study to what extent the existence of
van Hove singularities can explain the physical behaviors in
HTSC systems. The results from the scaling method seem to
be in good correspondence with experiments, despite the fact
that it strongly focuses on electron-electron correlation close
to the van Hove singularities.

The scaling results can explain the expected Curie-Weiss
temperature behavior of the staggered magnetic susceptibil-
ity in LSCO, with realistic Weiss temperatures in the range
from O to 100 K, realistic values of U/t=1~1.4 and
1/5t.=~10"* K~ !. U/t is correctly decreasing when the dop-
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ing is increased due to the increasing screening effect. The
estimated Curie constant can be justified from numerical cal-
culations.

It is hard to believe that the simple model of this paper
alone can explain the complex high-temperature supercon-
ductor (HTSC) systems. However, the results of this paper
strongly suggest that the van Hove singularities play an im-
portant role in HTSC systems, especially in LSCO.

The cutoff factor u was also introduced. (This paper as-
sumed that this cutoff factor stems from the chemical poten-
tial. This gives a qualitatively good explanation of experi-
mental results but is not a main point in this paper.) Since
this cutoff factor u is large in the heavily doped materials
YBCO and TBCO, the (T,T)=const behavior can be ob-
served. On the contrary, the Curie-Weiss behavior in the
lightly doped LSCO appears due to the low value of the
cutoff factor w (chemical potential). The instability in the
undoped and lightly doped LSCO systems occurs for the
same reason.

However, it was only in the low-temperature region and
for high correlation values that the scaling approach was an
obvious improvement compared to the naive RPA expres-
sion. The advantage of the scaling approach which is to take
higher-order electron-electron and electron-hole contribu-
tions into account was not fully used in this problem, since
the main contribution turned out to be the ladder diagrams.

B. Further developments

The estimates and discussions in this paper have been
quite rough. It is clear that the results need further investiga-
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tion. It is of particular interest to explore the validity of the
square-logarithmic parquet approximation and the similarity
between the scaling results and the RPA result. It can also be
useful to examine in more detail the effects of a nonzero
chemical potential at low temperatures.

Better results can be obtained by going beyond the par-
quet approximation. For this purpose, a second-order scaling
approach may be attempted even if it seems to be difficult.
However, as the parquet approximation fails, it is probable
that also the nonlogarithmic terms must be taken into ac-
count.

Apart from the scaling approach, the only known and re-
liable approach is high-order perturbational calculations with
the d-p model. So far, numerical calculations only up to third
order have been done by some authors.!?

By perturbational calculations which take all diagram
contributions into account, the foundation of the multiplica-
tive renormalization theory can also be studied in detail. So
far, the scaling approach in the 2D problem can be justified
only by comparison with experimental results or with results
from other approaches.
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