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A flux liquid can condense into a smectic crystal in a pure-layered superconductor with the magnetic field
oriented nearly parallel to the layers. Similar order can arise in low-temperature “He films with a highly
anisotropic periodic substrate potential. If the smectic order is commensurate with the layering, this periodic
array is stable to quenched random pointlike disorder. By tilting and adjusting the magnitude of the applied
field, both incommensurate and tilted smectic and crystalline phases are found for vortex arrays. Related
variations are possible by changing the chemical potential in the helium system. We discuss transport near the
second-order smectic freezing transition, and show that permeation modes in superconductors lead to a small
nonzero resistivity and a large but finite tilt modulus in the smectic crystal. In helium films, the theory predicts
a nonzero superfluid density and propagating third sound modes, showing that the quantum smectic is always

simultaneously crystalline and superfluid.

L. INTRODUCTION

The discovery of high-temperature superconductors, with
their broad fluctuation regime, has emphasized the inad-
equacy of the conventional mean-field description of critical
behavior.! Early attempts to apply field-theoretic methods to
the Ginzburg-Landau (GL) free energy, however, are of lim-
ited applicability in low dimensions.”

Instead, superconducting fluctuations in low dimensions
are now understood in terms of vortices, which emerge as the
low-energy degrees of freedom of the Ginzburg-Landau
theory. The phases of the superconductor within this picture
are analogous to states of conventional matter, except that
they are composed of flux lines instead of molecules. In fact,
because the vortices are extended objects, the system most
closely resembles a collection of quantum bosons.* As the
thickness of the superconductor approaches infinity, the ef-
fective “temperature” of this bosonic system goes to zero,
and interesting strongly correlated phases can emerge.

One difference between the flux-line array and true as-
semblies of bosons is that in the former, the effects of the
embedding medium are more often dramatic. Indeed, without
careful preparation, most high-temperature superconducting
samples are dominated by internal defects which tend to dis-
order the vortex array. Only at reasonably high temperatures,
when the fluxons are best described as a liquid, can the ef-
fects of these random pinning centers be neglected.’ At
lower temperatures, disorder may induce subtle types of
glassy order,®® or simply force the system to remain a lig-
uid with very sluggish dynamics.'®

The layered structure of the copper-oxide materials itself
provides a nonrandom source of pinning."" At low tempera-
tures, the c-axis coherence length £.,~4 A =s~12 A,
where s is the lattice constant in this direction. Vortex lines
oriented in the ab plane are attracted to the regions of low
condensate electron density between the CuO, layers. Such a
periodic potential for true two-dimensional bosons could be

0163-1829/95/52(17)/12951(18)/$06.00 52

induced by an anisotropically corrugated substrate, possibly
leading to the observation of the effects described here in
“He films.

Previous work on intrinsically pinned vortices has fo-
cused on the low-temperature fluctuationless regime, in
which the vortices form a pinned elastic solid. Near T,,
however, when thermal fluctuations are important, entirely
different phases can exist. These thermally fluctuating states
are particularly interesting experimentally because hysteretic
effects are weak and equilibrium transport measurements are
more easily performed than at low temperatures. Our re-
search is motivated by the recent experimental work of
Kwok et al.'? who observed a continuous resistive transition
in YBa,Cu305 for fields very closely aligned (#<<1°) to the
ab plane. A preliminary version of our results appeared in
Ref. 13.

To explain the experiments, the interplay between inter-
vortex interactions and thermal fluctuations must be taken
into account in an essential way. The experiments of Ref.
12 seem to rule out conventional freezing, which is first or-
der in all known three-dimensional cases. The additional ob-
servation of a strong first-order freezing transition for
6=1° suggests that point disorder is relatively unimportant
at these elevated temperatures (strong point disorder would
destroy a first-order freezing transition). In addition, an at-
tempted fit of the data to a dynamical scaling form yielded
exponents inconsistent with vortex or Bose glass values.!'?
Instead, we postulate freezing into an intermediate ‘“‘smectic”’
phase between the high-temperature flux liquid and a low-
temperature crystal and/or glass. Such smectic freezing, as
discussed by de Gennes for the nematic-smectic A
transition,'* can occur via a continuous transition in three
dimensions. The vortex smectic state is richer than its liquid
crystal counterpart, however, for two reasons. First, the ex-
istence of a periodic embedding medium (i.e., the crystal
lattice) in the former leads to commensurability effects not
present in the liquid crystal.! In addition, the connectedness
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FIG. 1. Schematic structure functions in the (a) liquid, (b) smec-
tic, and (c) solid phases. For simplicity, we have illustrated the case
for a square lattice.

of flux lines leads to constraints with no analog for pointlike
molecules. As we show below, the onset of smectic order
should be accompanied by a steep drop in the resistivity and
a rapid increase in the tilt modulus for fields which attempt
to tip vortices out of the CuO, planes — see Fig. 10.

The smectic phase may also be distinguished experimen-
tally using neutron scattering, which measures the Fourier
transform of the magnetic-field two-point correlation func-
tion (see Fig. 1). We assume a magnetic field along the y axis
and CuO, layers perpendicular to z. The vortex liquid struc-
ture function shows the usual diffuse liquid rings, as well as
S-function Bragg peaks at g,=2mn/s (for integral n), rep-
resenting the “‘imposed” vortex density oscillations from the
CuO, layers. On passing to the smectic state, additional
peaks develop at wave vectors g,=2mn/a, interlacing be-
tween those already present in the liquid. The new peaks
represent the broken symmetry associated with preferential
occupation of a periodic subset of the layers occupied by the
vortices in the liquid. At lower temperatures in the vortex
solid, further peaks form for g,# 0, producing the full recip-
rocal lattice of a two-dimensional crystal.

Our analysis leads to the phase diagrams shown in Fig. 2.
Upon lowering the temperature for H.=0 and a commensu-
rate value of H, (here the subscript of H indicates a crystal-
lographic axis), the vortex liquid (L) freezes first at 7', into
the pinned smectic (S) state, followed by a second freezing
transition at lower temperatures into the true vortex crystal
(X). When H_#0, tilted smectic (TS) and crystal (TX)
phases appear. The TS-L and TX-L transitions are XY like,
while the TS-§ and TX-X phase boundaries are
commensurate-incommensurate  transitions  (CIT’s)."> At
larger tilts, the TX-TS and TS-L phase boundaries merge
into a single first-order melting line. As H, is changed, in-
commensurate smectic (IS) and crystal (IX) phases appear,
again separated by CIT’s from the pinned phases, and an XY
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FIG. 2. Phase diagrams in the (a) H,-T, and (b) H,-T planes for
the disorder-free vortex system. The fuzzy lines indicate first-order
transitions. In (b) two possible topologies are shown connecting
different commensurate states.

transition between the IS and L states. If the low-H, com-
mensurate smectic (S) phase corresponds to, say, five
CuO, plane periodicities per vortex layer, the high-H, S
phase will represent a state with four CuO, plane periodici-
ties per sheet. We show that the commensurate smectic order
along the ¢ axis is stable to weak point disorder, in striking
contrast to the triangular flux lattice which appears for fields
aligned with the ¢ axis.'® This stability should increase the
range of smectic behavior relative to the (unstable) crystal-
line phases when strong point disorder is present.

The high-temperature flux liquid (for fields in the ab
plane) is of some interest in its own right. Consider first one
vortex line wandering along the y axis, as shown schemati-
cally in Fig. 3. This line is subject only to thermal fluctua-
tions and a periodic pinning potential along the z axis, pro-
vided by the CuO, planes.'” If thermal fluctuations are

CuO, planes
R S — L §§
-

y

FIG. 3. Wandering of a single flux line (solid curve), leading to
an extended probability distribution P(z) given by a k=0 Bloch
wave function. Other vortex trajectories (represented by the dashed
curve) will generate similar probability distributions, unless inter-
actions lead to crystalline or smectic order.



52 QUANTUM SMECTIC AND SUPERSOLID ORDER IN HELIUM ..

ignored, the vortex acts like a rigid rod, and will be localized
in one of the potential minima.'® This localization assump-
tion, however, is always incorrect in the presence of thermal
fluctuations, provided the sample is sufficiently large in the y
direction. As L,— o, the statistical mechanics of this single
wandering line random walking in directions perpendicular
to y leads inevitably to equal probabilities that the vortex is
in any of the many possible minima along Z.

On a more formal level, this probability distribution P(z)
is given by the square of the ground-state wave function of
the Schrodinger equation in a periodic potential — see Sec.
III below. The jumps shown in Fig. 3 across CuO, planes
are represented by quantum-mechanical tunneling in imagi-
nary time. According to Bloch’s theorem, this tunneling
leads to P(z) =]y —o(z)|?, where the Bloch states in general
have the form ¢ (z) =exp(ikz)u(z), with u(z) a function with
the periodicity of the pinning potential. The resulting prob-
ability distribution is shown schematically on the right side
of Fig. 3.

Now suppose an additional line is added to the system. As
suggested by the trajectory of the dashed curve in Fig. 3, it
too will wander from plane to plane. Although the two flux
lines interact repulsively, they can wander and still avoid
each other by using the x coordinate or by never occupying
the same minimum at the same value of the ‘“‘imaginary
time” coordinate y. Thus both flux lines generate a delocal-
ized probability distribution and occupy the same k=0
Bloch state. At high temperatures or when the lines are di-
lute, we expect for similar reasons macroscopic occupation
of the k=0 Bloch state in the equivalent boson many-body
quantum-mechanics problem, similar to Bose-Einstein con-
densation. In this sense, the flux liquid is indeed a “super-
fluid.”” The presence of numerous “‘kinks” in the vortex tra-
jectories insures a large tilt response for fields along z and a
large resistivity for currents along Xx. The various symmetry-
breaking crystalline or smectic states which appear at low
temperatures or higher densities arise because of the localiz-
ing tendency of the interactions. The density of kinks is
greatly reduced in these phases.

The remainder of the paper is organized as follows. In
Sec. 11, several models are introduced which will be used to
analyze the layered superconductor. Sections III and IV dis-
cuss the effect of intrinsic pinning on the liquid and crystal
phases, respectively, and show how smectic ordering is en-
couraged on approaching the intermediate regime from these
two limits. A Landau theory for the liquid-smectic transition
is introduced in Sec. V, and the critical behavior is deter-
mined within this model. The nature of the commensurate
smectic phase itself is explored in Sec. VI, through a com-
putation of the response functions. In Sec. VII, it is shown to
have ‘“‘supersolid” order, similar to the supersolid crystal
phase recently proposed at high magnetic fields along the ¢
axis.'” The additional phases which arise for large incom-
mensurate fields are described in Sec. VIII. Section IX de-
tails the modifications of the phase diagram when weak point
disorder is present, and, in particular, demonstrates the sta-
bility of the smectic state. Concluding remarks and the im-
plications of these results for helium films on periodically
ruled substrates are presented in Sec. X.
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II. MODELS

At a fundamental level (within condensed matter physics),
layered superconductors may be modeled as a positively
charged ionic background and a collection of conduction
electrons, which can pair via the exchange of phonons, exci-
tons, magnons, etc. Since such a microscopic theory of high-
temperature superconductors is lacking, we must resort to
more phenomenological methods. There are, nevertheless, a
variety of differing levels of description available, several of
which will be used in the remainder of this paper.

A. Static models

The most basic of our models is the familiar Ginzburg-
Landau theory, which is an expansion of the free energy of
the superconductor in powers of the order-parameter field
\PGL’

FoL=Fsct Fgms
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"
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where D ,=3d,,—27A /¢y, ¢o=hc/2e is the flux quantum.
Here H is the applied external magnetic field. To establish
notation, we choose x, y, and z, respectively, along the a, b,
and ¢ axes of the underlying cuprate crystal. The diagonal
components of the effective mass tensor are then
m,=m,=m and m,=M. For convenience in what follows,
we also define the anisotropy ratio y=+m/M=X\,,/\.
=& /€<l

Equation (1) provides a powerful means of understanding
superconducting behavior, including the effects of anisot-
ropy. In layered materials, however, the theory must be
modified to allow for coupling of the superconducting order
to the crystalline lattice. One such description, in which the
superconductor is regarded as a stack of Josephson-coupled
layers, is the Lawrence-Doniach model.?’ For our purposes,
however, it is sufficient to consider a “soft” model for the
lattice effects, in which the coupling « is allowed to be a
periodic function of z with period s equal to the periodicity
of the copper-oxide planes.

Because the high-temperature superconductors are
strongly type 11, it is appropriate to use London theory over a
large range of the phase diagram. In this limit, variations of
the magnitude of the order parameter are confined to a nar-
row region within the core of each vortex. Because the re-
sulting London equations are linear, a complete solution can
be obtained for the free energy of an arbitrary vortex
configuration.?! For our purposes, it is sufficient to consider
an approximate form in which the tilt moduli are local and
the interactions between vortices occur at equal y,22

| dxi)|* & |dzi(y)|?
FLondonzzi de%idi;}_{ +67 Zdyy) _VP[Zi(y)]
1
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where V[r, =2y Kq(\x +22/7z/)\ab) [Ky(r) is a modi-
fied Bessel function, €,=(¢o/47\,,)%], and the stiffness
constants obtained from anisotropic Ginzburg-Landau (GL)
theory are € =€,y and € =¢€,/y (see, e.g., Ref. 23).
Vp[z] is a periodic potential (Vp[z+s]=Vp[z]) taking into
account the effects of the layering.

Either Eq. (1) or Eq. (2) may be used at finite tempera-
ture, by calculating the partition function

Z="Tre F/*sT, 3)

where the trace is a functional integral over W g; or the set of
vortex trajectories {r;(z)}, for the Ginzburg-Landau and
London limits, respectively.

In the London case, this trace may be formally performed
by recognizing Eq. (3) as mathematically identical to the
Feynmann path integral for the first quantized imaginary
time Green’s function of interacting bosons. Within this bo-
son analogy,* the Green’s function may also be calculated
using a coherent-state path-integral representation. The ‘“‘ac
tion” for these bosons is

- s T, T
Sposon= | 4Ty Tay_Eaz-E?”ax-# ¥

—f d*rVp(z)n(r)

+fd2rld2rldy2V(rL =r))n(r,,y)n(rl,y),

“)
where ¢ is the complex coherent-state boson field, and
n(r)— wT(r) Y(r). It is convenient to rescale x— (€, /
eH) 2x and z—(€)/€ €,)"27 to obtain the isotropic Laplacian
V2 '—072+o"2 Equation (4) becomes

Sboson: f d3l'

1 ~
+3 [ @riariay P —eDn(e, yney),

)

with €=+/€|€, and the rescaled potentials Vp(2)=Vp(zy?)
and V(ri) V(x/'y 2V 2). The action is used via

T2
¢T(Tay~ FzVi-

u) «//—mz)n(r)}

Z= J [y dyle kT (©)

to calculate the grand canonical partition function Z at
chemical potential u per unit length of vortex line. Equations
(6) and (5) may also be obtained directly from a limiting
case of Eq. (1) via a duality mapping.?*

B. Dynamical models

Calculation of dynamical response functions such as the
resistivity requires a model for the time dependence of the
superconductor. We will do this within the London frame-
work, treating the vortex lines as the dynamical degrees of
freedom. In the overdamped limit, the appropriate equation
of motion is then
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. oF London
Ir (y)= ar,(y) +f, @)
where I' is a damping constant, and f; is the force on the ith
flux line, including both external forces and random thermal
noise.

Equation (7) is useful in describing the properties of
small numbers of vortices. To understand the bulk behavior
of dense phases, however, we need an extensive theory. Such
a model for the liquid phase was constructed on physical and
symmetry grounds in Ref. 25 in the hydrodynamic limit.
Because we intend to go beyond simple linearized hydrody-
namics, we require some knowledge of the nonlinear form of
the bulk equations of motion.

We proceed by first defining the hydrodynamic fields

n<r>=§ olr,—r(»], (8)
u(}’)

H(r)= E ar —r (M]———, ©9)

f(r)=2 olr, —r(»)If;. (10)

Conservation of magnetic flux is embodied in the constraint
dyn+V, - 7=0. (11)

Equation (2) may be rewritten as a function of m and 7,
formally

FLondon[{rJ_i(y)}]=F[n(r)v7(r)}- (12)

Specific forms for F[n,7] will be used as needed.

Equation (7) completely specifies the dynamics of n and
7. Differentiating Egs. (8) and (9) then leads immediately to
hydrodynamic equations of motion. Details are given in Ap-
pendix A. One finds

omn+V,-j,=0, (13)

at7a+ aﬂjﬂa:aij,aw (]4)

where the density and tangent currents are

SF SF
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where
s d
(=2 or, - n,(y)] TR a7

Because the constitutive relation for the tangent current
includes 787, Eqs. (13)—(17) do not form a closed set. Vor-
tex hydrodynamics, however, leads us to expect that n and
7 provide a complete long-wavelength description of the sys-
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tem. We therefore adopt the truncation scheme 78— (A7)
(i.e., 777 is preaveraged at equilibrium). Averaging via Eq.
(2) gives

s SPo
) (18)

TBY—kgTn| ——+ —
€ I €,

To complete the dynamical description, we must specify I"

and f. Matching to the liquid hydrodynamics of Ref. 25 re-

lates I' to the Bardeen-Stephen friction coefficient vy gg

=ngl’, and gives the driving force

f= ?J/\fﬂr 7. (19)

Here J is the applied transport current density and #(r) is a
random thermal noise.

III. INTRINSIC PINNING IN THE VORTEX LIQUID

To better understand the interplay of thermal fluctuations
and layering of the superconductor, it is useful to first con-
sider the behavior at high temperatures in the liquid state. As
discussed by Marchetti,”® the physics of a single vortex line
in the liquid is well described by a hydrodynamic coupling to
the motion of other vortices. In the dense limit, this medium
is approximately uniform, and does not significantly affect
the wandering of an isolated vortex. To estimate the effects
of intrinsic pinning, it is thus appropriate to consider a single
vortex line, oriented along the a-b plane.

For T=80 K, &.~§&.o(1—T/T.) " ?=s. In this limit, the
copper-oxide planes act as a smooth periodic potential on the
vortex. The magnitude of this potential per unit length is?’

§ 52
U,~5x% 102507(?”) e 138 /s, (20)

For a single vortex, Eq. (2) reduces to

F—de il
v 0 y 2

The periodic potential Vp[z]=U,f,[z/s], where f,(u)
= f,(u~+1) is a smooth periodic function with magnitude of
order unity.

The x displacement decouples in Eq. (21), and may be
integrated out to yield

([x(»)—x(0)1*)~D,y, (22)

with D, =kgT/€|. The z-dependent part of Eq. (21) is iden-
tical to the Euclidean action of a quantum particle of mass
€, in a one-dimensional periodic potential Vp(z), with y
playing the role of imaginary time. The single flux-line par-
tition function,

2 2

dx
dy

dz

dy

€,

2

‘Vp(z)]. @21

2= [ [azyterir, @3)

with fixed endpoints, maps to the Euclidean Green’s function
for the particle, with kzT replacing #.

In the quantum-mechanical analogy, the particle tunnels
between adjacent minima of the pinning potential, leading,
as discussed in the Introduction, completely delocalized
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Bloch wave functions even for extremely strong pinning. The
“time” required for this tunneling maps to the distance
Ly;n in the y direction between kinks in which the vortex
jumps across one CuO, layer. The WKB approximation
gives

€
Lyink~s U_l‘f Ve UpslkaT, (24)
P

Equation (24) may also be obtained from simple scaling
considerations. The energy of an optimal kink is found by
minimizing

€ [s)\?
f1~—2— ; w+Upw (25)
over the width (in the y direction) w, giving
w*~\J€ /U,s and f{~ V€& _U,s. Such a kink occurs with a
probability proportional to exp(—f¥/kzT) in a length w. The
condition Ly, /wexp(—fT/kgT)~O(1) then gives Eq. (24).

When the sample is larger than L,;, along the field axis,
the flux line will wander as a function of y, with

([z(»)—2(0)]*)~D.y, (26)

where the ‘““diffusion constant” Dzwsz/Lkink.

For V€, U,s=<kgT, the pinning is extremely weak, and
the WKB approximation is no longer valid. Instead, the dif-
fusion constant D,~kpzT/€, , as obtained from Eq.
(21) with U,=0. At much lower temperatures, when
&.<<s, the energy in Eq. (20) must be replaced by the cost of
creating a ‘“‘pancake” vortex?® between the CuO, planes. In
this regime, L -~ €, (s/ ) €08/%8T

For T~90 K, as in the experiments of Kwok er al.'?
& /s~2.3, and Eq. (20) gives V€, U,s/kgT<<1, indicative
of weakly pinned vortices in the liquid state. The transverse
wandering in this anisotropic liquid is described by a boson
wave function with support over an elliptical region of area
kgTL,/\ €€, with aspect ratio Ax/Az= y!=~5 for
YBa,Cu30,. For L,~1 mm, a typical sample dimension
along y, the dimensions of this ellipse are of order microns.
Since typical vortex spacings at the fields used in Ref. 12 are
of order 400 A, these flux lines are highly entangled.

To understand the bulk properties of the vortex liquid, it is
useful to employ the hydrodynamic description of Sec. II B.
In the liquid, the appropriate form of the free energy is?>*

1 a?
Sf(_2%3'{6“(“”5"(q)|2+C44,||(q)|Tx(q)l2

F,=—
L™ on

+C44,L(Q)|TZ(Q)|2}“j d*rVp[z]én(r), 27

where dn=n—n,, with ny=B,/¢, the mean density. Here
the compression modulus c¢y; and tilt moduli ¢4 and cyy
are regular functions of q with finite values at q=0.

On physical grounds, we expect intrinsic pinning to enter
Eq. (27) both through an increase in c44, , Which decreases
fluctuations perpendicular to the layers, and through the Vp
term which tends to localize the vortices near the minima in
the periodic potential.
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The former effect only acts to increase the anisotropy of
the liquid. The latter term, however, explicitly breaks trans-
lational symmetry along the z axis, inducing a modulation of
the vortex density,

2
o
C1 1( 9z-9x=

j dze ™15 on(r)) = gy Vrla:l
y

(28)
This modulation corrects the static structure function,
S(q)=(n(q)on(—q))/(27)*6*(q=0), according to

4
no

where Sq(q) is the static structure function for Vp=0. Since
Vp[z] is a periodic function, the correction term shows peaks
at the discrete reciprocal-lattice vectors for which ¢, is an
integral multiple of 2 7/sZ.

The situation is somewhat analogous to applying a weak
uniform field to a paramagnet, inducing a proportionate mag-
netization. Unlike the magnetic case, however, the layering
perturbation leaves a residual translational symmetry under
shifts z— z +s. It is the breaking of this discrete group which
we will identify with the freezing of the vortex liquid.

IV. THE CRYSTAL PHASE

Considerable work already exists on intrinsic pinning in
vortex crystals.“ We review the essential ideas here, and
discuss its implications for thermal fluctuations at low tem-
peratures.

A. Zero-temperature properties

To study the effect of layering upon the vortex state, we
first consider the limit of a weak periodic modulation of the
order parameter along the z axis. In this case, the resulting
(zero-temperature) configuration is only slightly perturbed
from the ideal lattice predicted by Ginzburg-Landau (or Lon-
don) theory. The free energy in this case may be written in
terms of the phonon coordinates u(r), as

3
d'q K,gi;

F 2m’ 2 qaqpui(Qu;(—q)+Fp, (30)

elastic —

where i and j=x,y, a and 8=x,y,z, and the contribution to
the free energy of the layering potential is

FIP:_f dy 2 VP[Zn+uz(xn ’y’zn)l (31)

XnZn

In general the elasticity theory is quite complex due to the
anisotropy and wave-vector dependence on the scale of \.
Rather than work with a specific form of the elastic moduli,
we will obtain general expressions in terms of an unspecified
set of K;(qQ)=K,pij9.95-

To obtain the correct continuum limit of Eq. (31), we
consider the possible commensurate states of the layers and
vortex array. The triangular equilibrium lattice in this orien-
tation is described by the two lattice vectors a;=Cy~ '2,
a,=Cy '/2(2+39y?%), with C?= 2¢0/\/§By . Commen-
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surability effects occur when the minimum z displacement
between vortices, C/(2y)=(n/m)s, where n and m are in-
tegers, chosen relatively prime for definiteness. This gives
the commensurate fields

m b9

— 3. 32
n 2\/5 ¥2s? (32)
For simplicity we consider here only the integral states with

m=1. In this case, Vp[z,+u]=Vp[u], and we can straight-
forwardly take the continuum limit

(m,n) _
B), =

FIP:—f d3l’Vp[uZ(l')]. (33)

Such an expression may be derived explicitly from the
Abrikosov solution for fields near H,,,!! in which case the
pinning potential is

jeS

21rc

Vplul=~ cos(2mu,/s), (34)

where

. 4 c(H,—H) £.9
T BT ks —exp(—8£/s%).  (35)

Here x=M\,,/&,;, is the usual Ginzburg-Landau parameter,
and B,4~1.16.

From Egs. (30) and (33), it is clear that for these com-
mensurate fields, the ground state is unchanged, i.e., u=0.
Away from these fields, however, the fate of the lattice is less
obvious. Ivlev er al.'! have shown that, for a small deviation
from a commensurate field, it is energetically favorable for
the vortex lattice to shear in order to remain commensurate
with the copper-oxide plane spacing. Because such a distor-
tion requires some additional free energy, it will generally be
favorable, in addition, for the internal magnetic induction B
to deviate from the applied field H to allow a better fit to the
crystal. This Meissner-like effect will be discussed in more
detail in Sec. VIIIL.

For strong layering, such as that described by the
Lawrence-Doniach model, the pinning effects are much more
pronounced. When £.<<s, the magnetic field remains essen-
tially confined between the CuO, layers, and the vortex array
is thus automatically commensurate at all applied fields. Al-
though such strong confinement of vortices can lead to inter-
esting nonequilibrium states,’ we will confine our discus-
sion to equilibrium.

B. Thermal fluctuations about the commensurate state

Thermal fluctuations of the vortex lattice are described by
the partition function

"%elastic: j [du ( l') ]GXP( —F elastic /kBT) . (36)

In three dimensions, phonon fluctuations are small, and
expanding the pinning potential around its minimum for
small u, gives the quadratic free energy
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d3q Kij(q)
Q2w 2

2
s

A
ui(@u;(— @)+ 5lu (q)

Felastic~
(37)
where A=—V,[z=0].

The displacement field fluctuations can be calculated from
Eq. (37) by equipartition, yielding the general result

(u3) [ d’q K. (q)+A

kpT ~ Jpz(27)° K (Q[K (@) +A]-[K, ()]
(38)

(uz) _ f d’q K(@)

kBT BZ(27T)3 Kxx(q)[Kzz(q)+A]—[sz(q)]z ’
(39)

where BZ indicates an integral over the Brillouin zone.

The effect of the periodic potential is thus to uniformly
decrease the fluctuations of u, at all wave vectors. For
A=B?%/\?, this decrease is substantial over the entire Bril-
louin zone, and

d*q 1
2 ~ —_—
<ux>~kBTfBZ(27r)3 Kxx(q) ’ (40)

d*q 1
2 ~ —
<uz> kBTJBZ(ZW)3 A

In stronger fields, for A<B?2/\?, only the contributions from
qg= \/K/B are strongly suppressed. For 1 —B/H_,<<1, Egs.
(34) and (35) can be combined to give the ratio

&

N

(41)

AN?/B*~

3
(chlB—l)( )e-8<fc’s>2. (42)

8,
At lower fields and temperatures, one expects the mean-field
estimate above to break down and AN?/B? to increase, pos-
sibly settling down to a constant value at low temperatures.

For magnetic fields oriented along the ¢ axis, the Linde-
mann criterion has been used to estimate the melting point of
the vortex lattice* by requiring that (|w|?)=cia?, for
i=x,z, with a “Lindemann number” c¢;~0.2—0.4. As is
clear from Egs. (38) and (39), once layering is included, the
increased stiffness for u, makes the two ratios (u2)/a> and
(uf)/af unequal. Indeed, the second ratio is strongly sup-
pressed relative to the first. Extending the Lindemann crite-
rion to this situation suggests that the strains in u, might be
alleviated by a partial melting of the lattice without affecting
the broken symmetry leading to the u, displacements. Such a
scenario corresponds to the unbinding of dislocations with
Burger’s vectors along the x axis. The phase in which these
dislocations are unbound is the smectic.

C. Strongly layered limit

To further elucidate the nature of the smectic phase, it is
helpful to discuss the limit of very strong layering. In this
case, the vortex lines are almost completely confined within
the spaces between neighboring CuO, layers. For moderate
fields, occupied layers will be separated by several unoccu-
pied ones, and the interactions between vortices in different
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FIG. 4. Hopping of a vortex line between neighboring vortex
layers.

layers may be considered weak. Because of the strong layer-
ing, the out-of-plane component of the displacement field
u, is suppressed, so that the free energy of the system may be
written to a first approximation as

S5 4L 2 2 2
Flayers—z Py Z(qux+quz)|un(qL)| ’ (43)
w 2J (2m)

where q, =(q,.,q,) and u,(q,)=u,(q, ,ns). For a qualita-
tive discussion of smectic ordering, it is sufficient to take
K, and K, independent of q.

Equation (43) neglects both interlayer interactions and
hopping. The former are included perturbatively via the free
energy

2m
F=—2 | dxdyvpcos—(ue1=u,),  (44)

where vy is an interlayer interaction energy and a is the
lattice spacing in the x direction. The periodic form of the
interaction is required by the symmetry under lattice transla-
tions u—u +a within each layer.

Once hopping of flux lines between neighboring occupied
layers is included, u, is no longer single valued within a
given layer. In fact, a configuration in which a single line
hops from layer n to layer n+ 1 corresponds to a dislocation
in layer n paired with an antidislocation in layer n+ 1, since

§ Vus-ds =a(SeSenen) 45)

for a contour surrounding the hopping point (see Fig. 4).
Such dislocation-antidislocation pairs, which we will refer to
as large kinks, can be created in neighboring layers with a
dislocation fugacity y,=exp(—Ey /kzT), where the core en-
ergy

Eyn~\e U

pms, (46)

as estimated from Eq. (25) with s—ms. Note that the dis-
location and antidislocation must have the same x and y
coordinates, since misalignment is accompanied by an en-
ergy cost proportional to the extra length of vortex between
the occupied layers.

The full theory described by Egs. (43) and (45) plus dis-
locations can be studied using a perturbative
renormalization-group (RG) expansion in vy and y,, using
techniques developed for the XY model in a symmetry—
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breaking field.*! For y,=vy =0, the Gaussian free energy
of Eq. (43) describes a fixed line of independently fluctuat-
ing vortex layers parameterized by the dimensionless ratio
VKK, /kgT. To characterize the order along this fixed line,
we define a translational order parameter (characterizing cor-
relations along the x axis) within the nth layer by summing
over vortex lines according to

pu(x,y,n)Eg exp[2mix{(y)/a], (47)
where x}c")( y) is the coordinate of the kth vortex line in layer
n at a length y along the field direction. The correlation
function Cr(x,y,n)=(p)(x,y,n)p(0,0,0)) is then evalu-
ated by inserting x{"(y) =ka+u,(ka,y) and converting the
sum to an integral via =;— [dx/a. One finds

K — mkgTIKa®
) 60> (48)

CTA(x’y’")”(ﬁth—yz
X y

i.e., quasi-long-range order within the planes.

This fixed line is always unstable either to interlayer cou-
plings, to dislocations, or to both perturbations. The linear (in
y and vy) RG flows which determine the stability are

dvIL 2’7TkBT

72( " Ka? W (49
dyd K[lz

711__(2—577—/%7 Ya- (50)

where K=K, K,, and [=In(b/a) is the logarithm of the
coarse-graining length scale b.

When kzT<<Ka?/4m, dislocations are irrelevant at the
fixed line, so that y decreases under renormalization. In this
regime, however, vy increases with /, so that interactions
between the layers are important for the large distance phys-
ics. To study this regime, one may therefore expand the co-
sine of Eq. (44) inu,,;—u,, obtaining a discrete version of
the usual three-dimensional elastic theory. In this limit,

Cy,(x,y,n)~const (51)

for large |x|, |y|, or |n|.

At high temperatures, when kpT>>Ka?/, vy, scales to
zero, while the fugacity y, is relevant. Unbound dislocations
on long length scales therefore invalidate the elastic theory
of Eq. (43). Following standard arguments, the translational
correlation function in such an unbound vortex plasma be-
comes exponentially small, i.e.,

Crj(x,y,n)~exp(—7lér), (52)

where 7=+/(K,./K)x>+(K,/K)y*+ xs’n® with x a con-
stant, and & is a finite translational correlation length.

For temperatures in the intermediate range KaZ?/4m
<kgT<Ka?/m, both y, and vy, are relevant operators. The
eventual nature of the ordering at long distances presumably
takes one of the two above forms, though the critical bound-
ary at which the system loses long-range translational order
in the x direction is not accessible by this method.

It remains to discuss translational order along the layering
axis. Such order is characterized by the parameter
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pl(x,y,msg expRmiz{"(y)la,), (53)

where a, is the distance between occupied vortex layers (and
therefore an integral multiple of the CuO, plane spacing, i.e.,
a,=ms). Because we have, by construction, confined the
vortices to these layers, however, z{” =na, for every k, and
the exponential in Eq. (53) is always unity. Both phases de-
scribed above, regardless of the relevance of vy and y,
therefore retain long-range order along the z axis.

Within the strongly layered model, there are still excita-
tions which can destroy this transverse ordering. These are
configurations in which a flux line hops out of an occupied
layer into one of the (m — 1) unoccupied intermediate planes
between it and the next occupied layer. Such an excursion
costs an energy proportional to the length of the vortex seg-
ment in the unoccupied layer, so that only short intermediate
segments occur at low temperatures. These out-of-plane hops
reduce the amplitude (p, ), but do not drive it to zero. At
very high temperatures, entropy may counterbalance this en-
ergy and drive the free energy cost for such intervening vor-
tices negative. Once this occurs, translational order will be
lost along the z axis as well, and the system will be a true
liquid. Nevertheless, at intermediate temperatures above the
unbinding transition for dislocations in the u field but below
the temperature at which infinite vortices enter the interme-
diate copper oxide planes, we expect the system to sustain
“one-dimensional” long-range order along the z axis, i.e., a
smectic state.

V. CRITICAL BEHAVIOR

Having established the possibility of a smectic phase ap-
proaching both from the crystalline and liquid limits, we now
focus on the critical behavior near the putative liquid-smectic
transition, using a Landau order parameter theory. A closely
related Landau theory which describes a low-temperature
smectic-crystal transition is discussed in Appendix B. The
natural order parameter to describe the smectic ordering is
p, defined in Eq. (53). To simplify notation, we define a new
field ®=p, , so that, in the continuum notation (i.e., outside
the strongly layered limit),

n(r)~noRe{l+®(r)e "7}, (54)

where n, is the background density, and g=2m/a, is the
wave vector of the smectic layering. The complex transla-
tional order parameter ®(r) is assumed to vary slowly in
space. The superconductor is invariant under translations and
inversions in x and y, and has a discrete translational sym-
metry under z—z-+s, where s is the CuO, double-layer
spacing. From Eq. (54), these periodic translations corre-
spond to the phase shifts ®— ®e~/9°, We continue to as-
sume, as in the previous section, that a,=ms, with m an
arbitrary integer. The most general free energy consistent
with these symmetries is

K r v
— 3 _— s 2 | 2 ) 4
F fd r[ H(V=iA) D[+ S| >+ J] @

—§(¢m+q>*m)+.--], (55)
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where the coordinates have been rescaled to obtain an iso-
tropic gradient term. The ‘“‘vector potential” A represents
changes in the applied field SH= §H,y+ H .z, with A ,=0,
A,=qH /H,, and A,=qdéH,/H,;. The form of this cou-
pling follows from the transformation properties of ®. 1432

Equation (55) assumes a local form of the free energy.
Additional nonlocal interactions arise due to interactions
with long-wavelength fluctuations in the density and tangent
fields. The most relevant (near the critical point) of these
couplings is

F¢45n=—7f d’rén|®|?, (56)

where the correlations of én are determined from Egs.
(27) and (11).

When SH=A=vy=0, Eq. (55) is the free energy of an
XY model with an m-fold symmetry-breaking term. A
second-order freezing transition occurs within Landau theory
when v>0 and roT— T, changes sign from positive (in the
liquid) to negative (in the smectic). The renormalization-
group (RG) scaling dimension \,, of the symmetry-breaking
term is known experimentally in three dimensions to be
A,~3—0.515m—0.152m(m—1).>> For m>m_~3.41, the
field g is irrelevant (\,,<0), and the transition is in the XY
universality class.>* The magnetic fields used by Kwok
et al.'? correspond to m=9—11,%° well into this regime.
The static critical behavior is characterized by the correlation
length exponent v~0.671*+0.005 and algebraic decay of
order-parameter correlations at 7',

1
(‘b(r)cb*(()))"'m‘, (57)

with 7~0.040*0.003.%

To study the effects of coupling to long-wavelength fluc-
tuations when y# 0, we first satisfy Eq. (11) by defining an
auxiliary ‘“‘displacementlike”field w via

5n=—VJ_~W,

T=0,W. (58)

After this change of variables, Eq. (27) becomes

1
Fw:7f r{cy|Ve-wP+caylo,wil> + sl dw |},
0
(59)

where we have taken the g=0 limits of the elastic moduli to
study the critical behavior, and dropped the Vip term which
only couples to w at finite ¢,. Equation (56) then becomes

F¢,w='yf d*rV, -w|®|%. (60)

Equation (60) is an anisotropic form of a coupling stud-
ied previously in the context of the compressible Ising
model, in which w describes the phonon modes of a com-
pressible lattice on which the spins reside.’” As shown in
Appendix C, the techniques developed for that problem give
the renormalization-group eigenvalue A ,= a/2v for this cou-
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FIG. 5. Fluctuating density wave in the smectic state. Displace-
ments of the layers from their mean positions are described by the
field u.

pling at the critical point. Since =2 —3 v~ —0.01 is nega-
tive, the long-wavelength density fluctuations are irrelevant
for the critical behavior.

VI. SMECTIC PHASE
A. Static behavior

Deep in the ordered phase (r<<0), amplitude fluctuations
of ® are frozen out. Writing ® = /| rl/ve?™*/%, Eq. (55) be-
comes, up to an additive constant,

K
F nectic= f d3r[§(Vu—(/a)2—§00527ru/s ,  (61)

where a=ms, k=47*|r|K/a®v, §=g(|r|/v)™?, and the re-
duced vector potential is .4=A/q. The displacement field u
describes the deviations of the smectic layers from their uni-
form state (see Fig. 5). The sine-Gordon term is an effective
periodic potential acting on these layers. As is well known
from the study of the roughening transition,®® such a pertur-
bation is always relevant in three dimensions. The smectic
state is thus pinned at long distances (i.e., the displacements
u of each smectic layer are localized in a single minima of
the cosine).

To further characterize the smectic phase, we consider the
transverse magnetic susceptibility, which defines the macro-
scopic tilt modulus,

 m e 62)
C44,L_&Hc oo (

The field H, attempts to tilt the smectic layers. However,
~#xH_ is an irrelevant operator in the smectic phase (as can
be easily seen by replacing the periodic potential by a
“mass” term ou2). This implies that the smectic layers do
not tilt under weak applied fields, i.e., a(ayu)/é*HJHc:o
=0. Naively, this implies an infinite tilt modulus.

A more careful treatment shows that ¢4, actually re-
mains finite in the smectic phase. To compute c44, from first
principles, we use the thermodynamic relation

B.=—4m— (63)
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where f is the full free energy of the system, including a
smooth part f,, not involving @ and not included in Eq. (55),
ie.,

f=fo—kgTlnZygy . (64)

To evaluate Eq. (63), we need to consider in detail the de-
pendence of the free energy and the coefficients in Eq.
(55) on H,.. This dependence arises in two ways, because an
applied H, can be decomposed into a rotation and a scaling
of the full field H. If the system were fully rotational invari-
ant, the rotational part would enter F purely through the
“gauge-invariant” coupling to .Z of Eq. (55). However, an-
isotropy breaks this invariance, leaving instead only an in-
version symmetry under z— —z. The inversion symmetry
allows for a quadratic dependence of r and of f, on
H,.*° The scaling part also contributes quadratic depen-
dence, which may be combined with the previous effect.
Taking both into account, and matching the tilt modulus to
the tilt modulus of the liquid phase (i.e., with @ =0) leads to

Bo= (% 0,0) + () o | B H 65
L-'—Hb m( y ) (‘744,1_0 r"|®*)H,, (65)
where c44 ¢ is the tilt modulus obtained from anisotropic
GL theory (without accounting for the discreteness of the
layers) and r"= o"zr/ﬁHﬂHC:O.

Equation (65) has a simple physical interpretation. The
first term is the contribution to B, from tilting of the layers
(described by a phase shift of ®@). This term is zero for small
fields H_ due to the cosine pinning potential. Even when the
layers retain a fixed orientation perpendicular to the ¢ axis,
however, the transverse field can penetrate via the second
term. Such motion arises microscopically from a nonzero
equilibrium concentration of vortices with large kinks ex-
tending between neighboring smectic layers, as suggested in
Sec. IV C. Equation (65) predicts a nondivergent singularity
Cans (T) =gy (T)~|T—T|'~* at the critical point, where
«a is the specific-heat exponent.

At low temperatures in the smectic phase, we can estimate
the tilt modulus in terms of properties of kinks. In zero field,
the concentrations of large kinks carrying magnetic field in
the +2z and — Z directions are equal, leading to zero net field
along the ¢ direction. For H_#0, the energy of a kink de-
pends upon its orientation due to the — B _H /4 term in the
GL free energy, yielding

E.~Eyw*xms¢oH 4. (66)

The difference in the concentrations of up and down kinks
takes the activated form

§ Olic
—Ey kT | ¢
e smh( TrkyT ), (67)

n,—n_~
Powi

where wy~ €, /U,ms, estimated from Eq. (25) with

s—ms. Since B,=(n, —n_)msg¢,, Eq. (62) yields

Ve, 1T ksT

Ey lkgT
Bpgms ] ¢ ’ (68)

C44,L~(

i.e., a large but finite tilt modulus.
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FIG. 6. Sliding of a kink (thick curved line) along the field
direction, viewed along the x axis for the case m=2. Dashed lines
indicate the copper-oxide layers. As the kink moves along the y
axis, net vorticity is transported in the z direction. Such motion
produces a finite resistivity in the smectic phase.

B. Dynamical behavior

Very similar phenomena occur in the dynamics of the
smectic phase. To study them, we need the equation of mo-
tion for ®@. On the basis of symmetry and the lack of obvious
conservation laws, a natural conjecture is that of overdamped
“model A” (Ref. 40) dynamics. Indeed, a careful treatment
using the general formalism of Sec. Il B gives (see Appen-
dix D)

crit

YBS&Z(I) = —4q2 5D *

+ind -7, (69)

where w=gq@ong/c and 7(kK)=inyqn,(qz+k). Equation
(69) is remarkably similar to the model E dynamics*° for the
complex ‘‘superfluid” order parameter ®, where now J,
plays the role of the ‘electric field” in the Josephson
coupling.*! The actual electric field is &v=Jv..Po/c, lead-
ing via Eq. (15) to (see Appendix D)

nodo " a2 B
= G Im( O ,0) + (1| /2)(

ch pxx,n‘]x >
(70)

where p,, , is the normal-state resistivity in the x direction,
whose appearance in the last term follows from the relation
(nopo/c)? yas=(B/H:)Prxn -

Equation (70) is interpreted in close analogy with Eq.
(65). In the absence of pinning due to the periodic potential
in Eq. (61), an applied force induces a uniform translation of
the layers, and thus a net transport of vortices. In the ordered
phase, where ®=/|rl/ve?™/a the first term in Eq.
(70) becomes proportional to the velocity J,u. The second
term contributes even when the layers are constant. It results
microscopically from the motion of equilibrium vortex
kinks, which can slide unimpeded along the y axis and
thereby transport vorticity along the z axis (see Fig. 6). Such
flow at “‘constant structure” is analogous to the permeation
mode in smectic liquid crystals.'*

The presence of this defective motion implies a small but
nonzero resistivity at the L-S transition. Near 7, Eq.
(70) predicts a singular decrease of the form
P(T) = p (T ~|T,—T|' ™%, similar to the behavior of the
tilt modulus. At lower temperatures (but still within the S
phase) transport occurs via two channels. The permeation
mode gives an exponentially small linear resistivity
Prx~exp(—Ey/kgT) [above T,, single-layer kinks give
P~ exp(—Ey/kgT), with Ex~E /m].

Nonlinear transport occurs in parallel to the above linear
processes, via thermally activated liberation of vortex drop-
lets, inside which u (or u, in the crystal phase) is shifted by
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FIG. 7. A two-dimensional cut through a droplet configuration
of the smectic layers, drawn for the case m=2. The full three-
dimensional droplet has a spherical droplet. Inside the droplet (out-
lined in gray), the layers are shifted by one CuO, double layer
spacing, u—u+s.

s (see Fig. 7). Such a droplet costs a surface energy, due to
the creation of a domain-wall between smectic regions
shifted by s. The domain-wall surface tension o is esti-
mated from

o A R 71
o0~ 5| ] taw, (71)
where w is the width of the domain wall. The first term
represents the elastic cost of the shift in #, while the second
is the pinning energy. Minimizing Eq. (71) gives
w~+k/gs and oy~ kgs. This surface energy must be bal-
anced against the Lorentz force in the interior, so that the
energy of a droplet of linear size L is

E g 0oL~ 22513 (72)
droplet 0y c .

Equation (72) gives a critical droplet size L.~ k7yc/(JB)
and an energy barrier Eg~ (clIB)*( KY) 32¢ . Thermal activa-
tion therefore gives

& e~ e, (73)

where JC~(c/B)(K§)3/4(s/kBT)”2. Similar nonlinear -V
relations have been obtained previously for vortex and/or
Bose glasses,®’” but our result is more closely related to sur-
face mobility below the roughening transition on crystal
surfaces.®® Unlike these proposed glass phases, the smectic
should always exhibit a nonzero linear resistivity as J—0.

VII. SUPERSOLID ORDER AND THE SMECTIC
TO CRYSTAL TRANSITION

A. Supersolid nature of the smectic phase

In Secs. VI A and VI B, we have seen that the response
functions in the smectic phase retain many of the features of
the vortex liquid. Both the tilt modulus and conductivity re-
main finite, despite the pinning of the smectic density wave
by the CuO, layers. As discussed earlier, both phenomena
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are explained by the existence of an equilibrium concentra-
tion of large vortex kinks extending between successive oc-
cupied vortex layers. These kinks facilitate both transverse
magnetic penetration and dissipation for currents along the x
axis.

This behavior is strikingly similar to the picture of “‘su-
persolid” vortex arrays recently proposed in Ref. 19, for
fields parallel to the ¢ axis. In the supersolid, a finite con-
centration of interstitials or vortices are present in the vortex
lattice, and both the tilt modulus and conductivity in the
presence of weak pinning are finite. Such a supersolid phase
is distinct from the Abrikosov solid in that long-range crys-
talline order coexists with a finite expectation value of the
boson order parameter ¢, i.e.,

((r)p*(0))— const (74)

as r— . The supersolid must occur at sufficiently high mag-
netic fields, but its existence elsewhere in the phase diagram
seems unlikely.'

Using this characterization of broken U(1) symmetry
(under ¢— e'?), the vortex smectic is always in a super-
solid phase. As in Ref. 19, this can be seen by considering
the correlation function of ¢’s. Note that (r) destroys a
vortex line at position r are *(r) creates a line in the
coherent-state path-integral formalism. Because there is al-
ways a finite probability of finding a kink connecting the
points 0 and r, Eq. (74) is indeed satisfied. With this under-
standing, the second terms in Egs. (70) and (65) have an
additional complementary interpretation. They correspond to
the contributions from the “superfluid fraction” of a two-
fluid system with “‘superfluid” (kink) and ‘“normal” (smec-
tic) parts.

In addition, the concept of symmetry breaking implies
that a continuous transition from the flux liquid state (with
()#0) to a smectic (translationally ordered in one direc-
tion) phase must necessarily retain supersolid order. For the
smectic phase to appear with ()=0 would require simulta-
neous breaking of the discrete translation group and restora-
tion of the U(1) symmetry. Such a double critical point can
only occur by tuning two parameters (one in addition to the
temperature) or through a first-order transition. The physical
arguments of Secs. IV C, VI A, and VI B, of course, imply
the stronger condition that the smectic phase must be super-
solid at all temperatures.

B. Consequences for further transitions at low temperatures

At lower temperatures, provided point disorder remains
negligible, the vortices will order along the x axis as well.*?
What is the nature of this two dimensionally ordered phase?

The different possibilities may be classified by the order
in which the symmetries are broken. At the lowest tempera-
tures, we expect the system to prefer a true solid phase, with
broken translational order in both directions (in particular
( p) #0, where p is the amplitude for periodic density varia-
tions along the x axis. Recall that p, =® is the amplitude for
density waves along z) and a restored U(1) symmetry (i.e.,
no interstitials).*> To connect this state with the smectic
phase in which (p|)=0 and (¢)#0 requires two changes of
symmetry.
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FIG. 8. Three routes of symmetry breaking at low temperatures
connecting the smectic phase to the vortex solid. Choice (a) is ruled
out on physical grounds. Note that (p, )=(P)#0 in all cases.

Three monotonic choices of symmetry breaking are
shown in Fig. 8. In the scenario (a), upon lowering the tem-
perature from the smectic phase first the U(1) symmetry is
restored, and the translational symmetry along the x axis is
broken at a lower temperature. As remarked in the previous
section, however, the intermediate nonsupersolid smectic
phase that appears in this sequence is impossible, so this
sequence cannot occur.

Two physical choices remain. The smectic may go di-
rectly to the normal solid in a first-order transition which
breaks the translational symmetry and restores the U(1) in-
variance simultaneously, as shown in Fig. 8(b). The last pos-
sibility, illustrated in Fig. 8(c), is that of an intermediate
supersolid phase between the smectic and the interstitial-free
solid. In this case both the low-temperature phase transitions
may be second order. The supersolid-solid critical behavior
is described in Ref. 19.

The smectic-supersolid transition is once again a freezing
transition at a single wave vector, and is potentially describ-
able by a Landau theory like Eq. (55). Because the modulat-
ing effect of the underlying crystal lattice is much weaker in
the x direction, we expect g=~0 is a good approximation in
this case, which leads to pure XY behavior.

VIII. INCOMMENSURATE PHASES

As is well known from the study of the sine-Gordon
model,’ a large incommensurability can be compensated for
by energetically favorable ‘“‘solitons,” or walls across which
u—u+s (see Fig. 9). Solitons begin to proliferate when their
field energy per unit area o 1g~ — K.%s exceeds their cost at
zero field, og~/kgs [estimated from Eq. (61)].

Physically, these solitons correspond to extra and/or miss-
ing flux-line layers and walls of aligned “jogs’’ for SH along
the b and c¢ axes, respectively (see Fig. 9). In the former
case, this leads to an incommensurate smectic (IS) phase,
whose periodicity is no longer a simple multiple of s. For
S8H||z, the solitons induce an additional periodicity along the
y axis. This tilted smectic (TS) phase has long-range trans-

FIG. 9. Kinked configurations (neglecting fluctuations and
drawn viewed along the x axis) of the smectic layers for magnetic-
field perturbations (a) along the b axis, and (b) along the ¢ axis.

lational order in two directions.** The analogous tilted crys-
tal (TX) phase is qualitatively similar, but has long-range
order in three directions.

For larger H,., as the angle between the field and the
CuO, layers becomes large, intrinsic pinning and anisotropy
no longer favor the smectic state. As shown in Fig. 2, we
therefore expect the L-TS and TS-TX phase boundaries to
merge in this regime. The direct L-TX transition is necessar-
ily first order.

In conventional CIT’s, entropic contributions generate ad-
ditional interactions between domain walls which actually
dominate over the bare energetic repulsions when the inter-
soliton spacing /' — . To estimate their magnitude here, we
use the well-known logarithmic roughness of a 2d
interface,®

((h(x) = 1(0))*)~1n|x

where /4 is the height of the interface and the coordinate x
parametrizes its position in the base plane. For solitons
spaced by /, collisions between neighbors generally occur
only once h=/, so that the size of roughly independently
fluctuating regions x~exp(£2). The entropy loss due to this
constraint scales with the number of collisions (L/x)?, so
that the areal free-energy cost per wall is

, (75)

2
fcoH: - TASCOHN Te 4 . (76)

Since the energetic interactions in the smectic scale exponen-
tially [like exp(—/"/w)] at long distances, the collision free
energy is actually negligible as /— oo, unlike the situation
for lines in 1+ 1 dimensions.!> The free-energy density in
the incommensurate phases is thus

|O-! é —llw

S soliton™ — 7 + 7 € s 77)



where 0= 04+ 0o<0 is the total areal free energy of the
soliton; A and w set the energy and length scales of the
soliton interactions. At low temperatures we expect w~N\
and A~e¢y/a,, while near T, Eq. (61) gives w~«k/gs
[c.f. Eq. (71)] and A~ g/ . Minimizing Eq. (77) gives a soli-
ton separation /'~ wln(A/|o]) near the CIT.

In the TS phase, net vortex motion along the ¢ axis occurs
by sliding soliton walls along the b direction. The resulting
electric field is proportional to J and the soliton density, lead-
ing to an additional contribution to the resistivity which van-
ishes at the CIT like p°H"~ plion/In(A/| o).

A single soliton wall in the IS phase, because it is parallel
to the CuO, layers, experiences a periodic potential along z.
From studies of the roughening transition,?® it is known that
such a periodically pinned wall may be in either a rough or
smooth phase. If the walls are individually smooth, thermal
fluctuations are negligible, and the assembly of solitons is
well described by an effectively one-dimensional elastic
chain in a periodic potential.!> Because they are pinned
separately into minima of the potential, they do not contrib-
ute to p,,. If they are rough, they wander logarithmically
and eventually interact with their neighbors. The appropriate
coarse-grained description beyond this interacting length
scale is an elastic stack of domain walls. The configuration
of such a stack is described by a second displacement field
ugy, With a free energy of the same form as Eq. (61) (but
with different values of « and g). The statistical mechanics
for the ug, field is thus equivalent to that of the original u
variable. The preceding analysis must then be repeated
within the new effective free energy.

Because of the aforementioned complexity of the one-
dimensional problem, we have not attempted to determine
the true long-distance behavior of the soliton array in the IS
phase. Because the permeation mode in the commensurate
smectic already provides a finite tilt modulus and nonzero
resistivity, however, we expect that these more subtle effects
will have only weak experimental implications.

As the temperature is increased within the IS or TS
phases, the system melts into the liquid. To study such tran-
sitions, we perform the dilation & — ®exp({A-r). Only the g
term is not invariant under such a gaugelike transformation.
It becomes oscillatory and therefore does not contribute to
the critical behavior at long wavelengths. The IS-L and TS-L
phase transitions are thus XY like.

The shape of the CIT phase boundary is of particular ex-
perimental interest. In the mean-field regime, this is obtained
from the condition =0 as SH~|r|Y, with Yy
=(m—2)/4. By the usual Ginzburg criterion, mean-field
theory breaks down for |r|<(kzTv/K*?)2. To determine the
shape of the phase boundary in this critical regime, we fol-
low the RG flows out of the critical region and repeat the
preceding analysis with the renormalized couplings deter-
mined by matching when |r| is order one. Then
SHi~EMiSH and ggp~ EMng, with €~|r|~". Rotational in-
variance at the rescaled fixed point (g =0) implies that the
field exponent is exactly Ay=1 (see Appendix E). Using
these renormalized quantities, we find

Y o= (N +2) v2~4.9-72, (78)

for the fields used in Ref. 12.
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The IS-L and TS-L phase boundaries are nonsingular and
are determined locally by the smooth SH dependence of r. In
particular, for small H,, the TS-L phase critical temperature
is

r
7 _ 2
T(H,)=T, P H, (79)

where r’ E&r/aT|T=TS JSH=0-

IX. INFLUENCE OF DISORDER

Lastly, we consider the effects of weak point disorder,
which couples to the density of vortices according to

F,= J d*rV, (r)n(r), (80)

where V,(r) is a random potential, which, for point impuri-
ties, is short-range correlated in space and narrowly (e.g.,
Gaussian) distributed at each point. Using Eq. (54), F, can
be rewritten, up to less relevant terms, as

Fd=J d*rV (r)Re{dD(r)e'??}, 81

in the smectic phase and in the liquid sufficiently near T';. To
bring Eq. (81) into a more standard form, we define a com-

plex random field V,=V ,¢'%%, in terms of which
— 3 1 (7% (7 *

Because of the oscillatory e?9? factor, V,; and \7;“ are essen-
tially uncorrelated at long wavelengths. Equation (82) is the
simplest “random-field” XY perturbation of Eq. (55), and
the resulting model is known in statistical mechanics as a
random-field XY model with an m-fold symmetry-breaking
term.

Before discussing the critical behavior of such a theory, it
is natural to consider the effect upon the ordered state. In the
smectic phase, using ® = /|rl/vexp(2miu/a), Eq. (82) be-

comes
1 ] -~ . ~ .
Fd: f d’;l'z |v|(vz<e2mu/a+ Vd6727nu/a). (83)

If the disorder is weak relative to the periodic potential (i.e.,
|\7d|< g), it is naively justified to replace the cosine in Eq.
(61) by the “mass” term (27/s)2gu?/2. Such a mass term
gives a large penalty for excursions of the layers with
u=s, so the randomness in F, appears irrelevant.

By ignoring the periodicity of the cosine, the above ap-
proach does not consider the possibility of disorder-induced
solitons. To study the stability of the smectic to such topo-
logical defects, consider a region of size L in which the
displacement field u is shifted by s, so as not to incur any
bulk energy cost from the intrinsic pinning. Within this re-
gion, F, contributes an energy of random sign of order
[V4L%? in d dimensions. On the boundary of the region,
however, the cosine does contribute, costing an energy
~gL% ' For d>2, the boundary energy grows more rapidly
with L, and the net energy is always positive, provided
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§>|V,|s' 792 Thus we see that the smectic phase remains
stable to weak disorder, even once solitons are taken into
account.

Note that this result is in strong contrast to the Larkin-
Ovchinikov argument that the Abrikosov lattice is unstable to
arbitrarily weak pinning.]6 Physically, the instability is pre-
vented, at least for weak disorder, by the periodic pinning
potential which increases the stiffness of the smectic dis-
placement field. The result can be understood, however, on
more general symmetry grounds. For nonzero g, the system
does not have a true continuous translational symmetry in the
z direction, but only the discrete symmetry under translations
by s. Because the symmetry is discrete, there is no Goldstone
mode in the ordered (smectic phase), i.e., phonons are mas-
sive. It is now well known that for random-field models with
discrete symmetries (e.g., the random-field Ising model, to
which our model corresponds when m=2), the ordered
phase survives above two dimensions.* Indeed, the argu-
ment given above for stability against droplet solitons is a
restatement of the Imry-Ma argument first used for the
random-field Ising model.*®

In the incommensurate (IS and TS) phases, where the pe-
riodic pinning g is effectively zero, the Imry-Ma argument
no longer applies. In these phases, the original Larkin-
Ovchinikov picture holds, and the distortions in |« (r)|? must
grow on long length scales, destroying the long-range trans-
lational order of the layers. The nature of the resulting phase
is unclear: it may be a “‘smectic glass,” analogous to the
proposed vortex-glass phase for more isotropic systems, or it
may simply be a strongly correlated liquid, with slow relax-
ation times. The same considerations hold for the more or-
dered phases at low temperatures, since the translational or-
der along the x axis lacks the intrinsic pinning required to
prevent the Larkin-Ovchinikov instability.

Turning to the critical behavior of the L-S transition, the
analysis becomes more subtle. The random-field perturbation
in Eq. (82) is a relevant perturbation at the XY fixed point
[and indeed at any O(n) fixed point], so the critical behavior
is certainly altered. Naively, a 6 — € expansion may be made
for the critical behavior of the O(n) random-field model,
which has a zero-temperature critical point.47 Within such a
perturbative expansion near six dimensions, the symmetry-
breaking term appears irrelevant. There are two potential
problems with this approach. Firstly, if the symmetry-
breaking term indeed remains irrelevant at the new critical
point, it would be an example of a three-dimensional
random-field XY critical point. The random-field XY model,
however, because it has a continuous symmetry, does not
even have a stable ordered phase in three dimensions. Al-
though there may not be an obvious contradiction involved
in this scenario, the physical meaning is certainly unclear.
One possible resolution is that the symmetry-breaking term
becomes relevant at some higher dimension (greater than 4).
The second problem is the status of the 6 — € expansion it-
self, which has been proven to break down, at least via non-
perturbative corrections (but possibly more strongly) for the
case of the random-field Ising model.*® The consistency of
the 6 — € expansion, even perturbatively, has not yet been
determined. Regardless of the success or failure of this theo-
retical approach, experimental work on random-field Ising
systems has demonstrated the subtle types of behavior pos-
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sible for such zero-temperature critical points. Fortunately, as
discussed in Secs. VI A—VII, the supersolid nature of the
smectic (with the relatively fast permeation mode) implies
that slow dynamics for the smectic ordering will not have a
strong impact on transport and magnetization experiments.

Finally, consider the L-IS and L-TS transitions in the
presence of disorder. Disorder strongly effects the behavior
at such CIT’s, because it modifies the wandering of a single
domain wall.*>>° Fortunately, the effects of random field dis-
order on a single interface are known exactly.’'”*> In con-
trast to Eq. (75), the height fluctuations of the interface grow
like

([n(x)—h(0)]*)~|x|?¢, (84)

where {=(5—d)/3=2/3 in three dimensions. Also unlike
the pure interface, the free-energy fluctuations within a re-
gion grow with length scale, so that the cost per collision
scales like |x|?, where #=d—3+2{=4/3. The areal colli-
sion free energy per wall is thus

Feon~ 117205~ 17. (85)

This dominates over exponential energetic interactions for
large /. The full soliton free energy is thus

|U| Ay

—+ =, (86)

Ssoliton™ —

where A, measures the strength of the disorder-induced col-

lision interactions. Minimization of Eq. (86) gives
~1/|al.

X. CONCLUSIONS AND APPLICATIONS
TO HELIUM FILMS

We have studied the behavior of vortex arrays subjected
to a one-dimensional periodic potential transverse to the
magnetic field. Such a potential, which is induced by the
layered structure of the high-temperature copper-oxide su-
perconductors for fields oriented in the a-b plane, favors an
intermediate smectic phase between the vortex lattice and
flux liquid. The commensurate smectic state is supersolid,
and has in consequence a nonzero finite resistivity and tilt
modulus, despite being pinned by the periodic potential. In-
cluding incommensurability effects leads to the rich phase
diagrams of Fig. 2. The experimental signature of the smec-
tic is the appearance of Bragg peaks in the structure function
along a single ordering axis interleaving the trivial peaks
induced by the layering. We also expect a greatly reduced
resistivity for currents transverse to both the layering and
magnetic-field axes, and a cusped phase boundary describing
the response to small fields perpendicular to the layering
direction. The qualitative behavior of the tilt modulus and
resistivity near the liquid-to-smectic transition in a field
aligned perfectly with the ab plane is shown in Fig. 10.

Using the boson mapping,*** these results can be ex-
tended to real two-dimensional quantum-mechanical bosons
at zero temperature. The analogous quantum smectic phase
might be studied in helium on a periodically ruled substrate.
Such a substrate might be approximated by crystalline facets
exposing a periodic array of rectangular unit cells with large
aspect ratio. There are, however, a number of difficulties
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FIG. 10. Tilt modulus and resistivity at T for a perfectly aligned
commensurate field. Not to scale: the resistivity could appear to
drop to zero and the tilt modulus could appear to diverge to infinity
in all but the most precise experiments. The open circles denote
|T—T,|'~* singularities, where « is the specific-heat exponent.

inherent in this extension. In particular, the interaction be-
tween helium atoms is not purely repulsive; it is reasonably
well described by a Lennard-Jones potential with a minimum
at an interatomic spacing of a few Angstroms. To obtain a
substrate with a-small enough period to affect the physics on
these length scales is an experimental challenge. Were these
interactions purely repulsive, one could probably overcome
this difficulty by working with a dilute system. With an at-
tractive tail to the potential, however, a low-density helium
film would likely phase separate into helium rich and helium
poor regions, making intermediate densities inaccessible.
Appropriate experimental conditions may nevertheless be
achievable for small values of m (the number of periods of
the potential per period of the smectic density wave). The
depth of the minimum in the effective pair potential, more-
over, could be reduced somewhat by a careful choice of sub-
strate.

The case m =2 has been explored numerically in a Bose-
Hubbard model in Ref. 53. These authors indeed find a smec-
tic phase, which they denote a “striped solid,” with order in
reciprocal space at q=(,0). Their results for the structure
function and superfluid density appear to be in good agree-
ment with the predictions of Sec. VI (see in particular their
Fig. 11. The superfluid density of the boson system maps
onto the inverse tilt modulus ¢, of the flux lines’). Unfor-
tunately, a detailed comparison of the critical behavior with
the theory is beyond the resolution of the available data.

At a more general level, the liquid-smectic transition
treated here appears to be the only known case of continuous
quantum freezing in 2+ 1 dimensions. The smectic phase,
moreover, is perhaps the simplest example of a quantum
phase intermediate between solid and liquid. The techniques
developed here may be useful in understanding other quan-
tum phases of mixed liquid and/or solid character. One par-
ticularly intriguing example is the ‘“Hall solid” proposed in
Ref. 54. Through the Chern-Simons mapping,™ it can be
related to a supersolid phase of composite bosons (electrons
plus flux tubes).® This phase, an analogous “Hall smectic”
and ‘““Hall hexatic,” and the modifications of the current
theory to account for the long-range Coulomb and Chern-
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Simons interactions are discussed in Ref. 56.
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APPENDIX A: DERIVATION
OF HYDRODYNAMIC EQUATIONS

The continuity equation [Eq. (13)] follows from differen-
tiation of Eqgs. (8). For example,

n=—2 [8 (x—x)8(z—z)%;+ 8(x—x,) &' (z—2,)7,]

:_VLZ (ry—r )t ==V, -j,, (A1)

where

JUEE ry—r )ry,. (A2)
Equation (14) is derived analogously, giving the tangent cur-
rent tensor

(A3)

Equations (A2) and (A3) are completely general, and do
not depend upon the detailed dynamics of the vortex system.
This additional physics is included in the constitutive equa-
tions [Egs. (15) and (16)]. To derive them, we need the
equation of motion, Eq. (7). Inserting this into Eq.
(A2) gives

6F
2 Sy —ry )5 (A4)

,(y)

The functional derivative with respect to r,; can be trans-
formed via the chain rule

OF
5F=f r (r) on(r)+ —— 57_( D -87(r) |, (A5)
where the variations én and &7 are
Sn(r)= =V, -2 8(r, =5, ), (y),
dr(r)= = 902, O(r, = rm 5x“(y>
+2 o(r) — Ilz)darll- (A6)
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Substituting Eqs. (A5) and (A6) into Eq. (A4) then gives
Eq. (15). The constitutive equation for j g, is derived analo-
gously, by premultiplying Eq. (7) with ax{’/ dy and carrying
out the same steps as before.

APPENDIX B: LANDAU THEORY OF THE SMECTIC
TO CRYSTAL TRANSITION

We assume that H is in the ab plane and commensurate
smectic order is already well established, and ask how a
two-dimensional vortex modulation then arises at a lower
temperature. The modulated vortex density now takes the
form

n(1) =noRe{1+®(r)e ™+ gy (r)e ™1™+ y(r)e 1627},
(B1)

where ®(r) is the (large) smectic order parameter, and G,
and G, are reciprocal-lattice vectors lying in the (x-z) plane
with G;,= — G,,#0 satisfying

g7+ G+ G,=0. (B2)

The six vectors = gz, + Gy, and = G, form a distorted hexa-
gon of minimal reciprocal-lattice vectors. All other
reciprocal-lattice vectors in the crystalline phase are linear
combinations of this set, which reflects an anisotropic vortex
lattice in real space. The corresponding set of reciprocal-
lattice vectors for a square lattice is illustrated in Fig. 1.
The complex amplitudes ¢(r) and ,(r) are small near
the transition, and the Landau free energy difference 8F be-
tween the smectic and crystalline phases takes the form

5= [ @ Sy P+ Kiv i+ ave, v+ S(un 2
1'2| ¥l 2| Wol*+ &V - Vi, 2(!‘//1|

+ o)+ ( Py + PHYTYI) + - - | (B3)

We have equated the coefficients of gradients in all three
directions for simplicity. Within mean-field theory, crystal-
line order can arise via a continuous phase transition when-
ever r<0. The neglected higher-order terms fix the magni-
tudes of ¢, and ¢,, |¥|=|4,|=u, below the mean-field
transition temperature. To study the true transition (which
occurs for r=r.<0 due to thermal fluctuations), we set

1= e, = et

Upon neglecting a constant, the free energy becomes

(B4)

d*q
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K K
5F=f d3r[—2—|V01|2+ 5|V02|2

+gVh,-VO,+wcos(6,—6,)|, (B5)

where K=Ky}, g =g w5, w=2w|®|y2, and we have assumed
the phase of the smectic order parameter ® is locked to zero
by the periodic pinning potential. Equation (B5) represents
two coupled XY models with phases locked by the cosine.
This term forces 6~ 6,= 0, and the phase transition falls in
the universality class of a three-dimensional XY model with
effective free energy

5FXY~(K+g)f d’r|V o2, (B6)

APPENDIX C: EFFECT OF LONG-WAVELENGTH
FLUCTUATIONS AT THE S-L CRITICAL POINT

To determine X\ ,, we assume the usual scaling form of the
free energy at the critical point,

fr,y) =& g(y&), (C1)
where g is an unknown scaling function. Using &~r~" and
2—a=dv, Eq. (99) gives
52
_iz — §2}\,y—dg(0)~r2—-a*2)\yv. (Cz)
dy y=0

The same quantity can be calculated directly, however, by
differentiating the partition function to obtain

Pf
ay?

~ [ @x(v, WV, WO EE®).
0
(C3)

y=

where the ‘“‘energy” operator E(x)E]dD(x)lz. The angular
brackets indicate expectation values in the decoupled theo-
ries. The energy-energy correlations take the scaling form

(E(X)E(0))~r*1~®n(|x]/§), (C4)

where h(x) is another unknown scaling function. The long-
wavelength fluctuations, determined from Eq. (59), are

2 2
Caa1 95t Caa)q;

(V- W(x)V, -w(0))=n2k,T

v}
(27)° cii(caargs+canyqas) + C44,LC44~1|q§

X, (C5)
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Inserting Egs. (C4) and (C5) into Eq. (C3) and changing
variables x— ¢x gives the scaling

(92
oA o
ay y=0
Comparison with Eq. (C2) then gives the desired result
A, =al2v.

APPENDIX D: EQUATIONS OF CRITICAL DYNAMICS

To derive the critical equations of motion, we assume that
important fluctuations occur only near q=0 and q=gz. In-
cluding the q=0 modes in Eq. (54) gives

n(r)=ng[ 1 +Rede 9]+ én. (D1)

It is sufficient to keep only the small q parts of the tangent
field.” The finite g, modulation of the density induces a
modulation of the vortex current,

Jo=Jv.ut Rej, ;e 7', (D2)

where j, , and j, ; are the (slowly varying) uniform and
smectic (i.e., periodic) components of the vortex current. In-
serting Eq. (D1) into Eq. (15) and isolating the parts propor-
tional to e ~'9% gives

oF

i = —al 1+ 2 v, —ign 2L _, oV
Ju,s= E( f lqz)ﬁ 0 ®Vi 550

oF .
+n0¢o7 - +n0(1)f+ nof{hemale'qz,

Y o7 (D3)

where the last term is included because the white noise
f hermar has Fourier components at all wave vectors. Simi-
larly, from the uniform component, one finds

Tj, .= én)| 'V oF \Y oF
Jow==(not6m)\ Vo ey =y 5o = TaVu
.. OF
—2Re q)(VJ_‘FiqZ)% +(n0+ 5n)f (D4)
Using Egs. (D2), the divergence of the current is
V_L 'jv = VJ_ 'jv,u+ Re(VJ_ - iqi)jv,xe_i‘ﬂ, (DS)

which leads to the two continuity equations
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d,6n+V,-j, ,=0, (D6)
nod,®+(V, —iq2)-j, ;=0. (D7)

Equations (D3)—(D7) completely specify the dynamics of
the density fluctuations Sn and ®. Inserting Eq. (D3) into
Eq. (D7), and neglecting irrelevant couplings gives the
“model E”-like model of Eq. (69).

Equation (D4) can, in principle, be used to study the ef-
fects of the smectic ordering on the long-wavelength modes.
The most physical application, however, is to determine the
contribution of the smectic degrees of freedom to the electric
field. The average bulk (ie., q=0) field is
(&)=Cv.u.c)Po/c. In the spirit of the Landau expansion,
q=0 component of Eq. (D4) can be reasonably approxi-
mated by dropping terms with gradients of @ (the leading
contributions from the first term involving én and 7 vanished
automatically at q=0 even without this approximation),
yielding

iqdo

c

SF q)&F
5D * 50|

Recognizing the variation of the free energy on the right-
hand side of Eq. (D8), the substitution [c.f. Eq. (69)]

T{&)y~ngdof,lc+ [d)* (D8)

SF 7Bs
W == 4—1—4}75‘(1)_‘-

leads immediately to Eq. (70).

iud,
4q2

o, (D9)

APPENDIX E: EIGENVALUE OF A

The eigenvalue A\ y is determined completely by rotational
invariance. To see this, consider Eq. (55) at the fixed point,
ie., with g=0. By making the transformation
® — Pexp(iA-r), the term involving A may be completely
removed from F. The free energy is thus independent of A.
After integrating out short-wavelength modes, no depen-
dence on A can appear, so precisely the same transformation
must eliminate the field dependence in the renormalized free
energy. This operation is ®— Pexp(iA-r§), using the re-
scaled r, so the renormalized vector potential must be

Ag=EA, (E1)

which implies Ay=1.
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