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Perturbation of tunneling processes by mechanical degrees of freedom in mesoscopic junctions
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We investigate the perturbation in the tunneling current caused by nonadiabatic mechanical motion in a

mesoscopic tunnel junction. A theory introduced by Caroli et al. is used to evaluate second-order self-energy
corrections for this nonequilibrium situation lacking translational invariance. Inelastic signatures of the me-

chanical degrees of freedom are found in the current-voltage I(V) characteristics. These give rise to sharp

features in the derivative spectrum, d IldV .

I. INTRODUCTION

Electron tunneling has provided valuable insight into the
physical properties of solid state systems. Measurement of
the current through stationary tunnel junctions has been used
to elucidate the density of states in superconductors and
many-body properties of metals and semiconductors.
Through much theoretical effort, a satisfactory theoretical
description of the tunneling process in condensed matter has
been attained. Recently, microfabrication techniques have
progressed to the point where it is now possible to make
extremely compliant vacuum tunneling electrodes which
may not remain mechanically stationary during the tunneling
process. In the following work we consider the effect that
such motion within an elastic tunneling barrier may have
upon electron tunneling characteristics. Since, to our knowl-

edge, previous studies of this question have been
phenomenological, ' we shall attempt to present a more
complete theoretical approach to this problem.

We investigate the characteristics of the tunneling current
through a square potential barrier where the barrier is fixed
on one side and is allowed to oscillate freely on the other.
The goal of this work is thus to predict the effect of a me-
chanically compliant electrode, which can recoil from a tun-

neling process, on the current-voltage characteristics and its
first and second derivatives. Mathematically this results in
the treatment of a localized phonon representing the movable
part of the barrier.

In order to treat this problem in a many-body approach
which can be extended to more realistic situations than the
simplified model considered here, we use a theory treating
translationally noninvariant systems under nonequilibrium
situations developed in a series of papers by Caroli, Comb-
escot, Nozieres, and Saint-James (hereafter referred to as
CCNS) based on the Keldysh nonequilibrium perturbation
formalism. The theory gives a rigorous derivation of an
energy-dependent transfer term from first principles, thereby
extending the first, more phenomenological approach of
Bardeen, and it allows for a treatment of the phonon pertur-
bation in the usual diagrammatic theory.

The principle introduced in Ref. 4 can be used to treat a
nonequilibrium situation such as occurs in metal insulator
metal (M I M) tunneling. It consists o-f -making one or more
partitions in the system, allowing for a separate treatment of

regions in equilibrium. The separate parts are then joined
through an appropriate transfer term. For an arbitrary one-
electron potential Caroli et al. showed that this method
yields an exact treatment. CCNS then derived in Ref. 5 the
well-known expression for the tunneling current I(V)
through a rigid square barrier for a quasiequilibrium situa-
tion. Even though the series of papers starts with a discrete
model, CCNS later make a transition to a continuous repre-
sentation which we use for the calculations in the present
paper. They then consider electron-phonon interaction effects
in two following papers, ' but the discussion of the effects
remained incomplete since a treatment of real phonons is
rather involved. The reason is that, for many-body potentials,
the evaluation has to be done more carefully, as renormaliza-
tions due to many-body effects will always depend on the
whole system rather than just pieces of it. However, in spe-
cial cases such as the one presented here, it can be shown
that a simple approximation will work very well.

II. OUTLINE OF THE CALCULATION

Our physical system consists of a mechanically compliant
cantilevered metal tip of mass m, , placed a small distance
2a from a stationary bulk metal counterelectrode (see Fig.
I). The movable tip assembly, which we shall refer to as the
"cantilever, " is modeled as a spring with Hooke's law force
constant k, Electrical contacts are made to the tip and the
counterelectrode. A voltage V is applied across these elec-
trodes and the resulting characteristic of the current J is mea-
sured as a function of the applied voltage. In our model
Hamiltonian of the system, the metal tip is considered to be
a single-mode harmonic oscillator with characteristic fre-

quency ~, . Assuming a quasiequilibrium situation of equal

FIG. 1. Schematic view of tunneling electrode on cantilever
with mass m, and spring constant k, , placed a distance 2a from an

infinitely massive counterelectrode. The device is biased with a
voltage V and the resulting current I is measured.
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(a) 1M, kll

FIG. 2. Full potential barrier used in the calculation. The tunnel

barrier has height Vo and equilibrium width 2a. The right hand side
of the barrier corresponds to the position of the cantilever tip along
the x axis.

Fermi energies (eF= e'F) and the simple case of equal work
functions for both sides, the resulting potential bamer can be
approximated by a square barrier with barrier height Vo. The
oscillation of the cantilever simply adds an additional degree
of freedom, resulting in a modulation of the barrier width on
one side (see Fig. 2). Hence our quantum mechanical Hamil-
tonian reads

2 2

H= + + k,x, + Vo[8(x, +a) —8(x, —x, —a)],
2me 2PE e

where the subscripts e and c refer to the tunneling electron
and the cantilever, respectively, while x, is the instantaneous
displacement of the cantilever from its equilibrium position,
and p, is the corresponding momentum. Also 0 is the usual
unit step function.

To treat the additional term in perturbation theory the po-
tential term is expanded to first order in x, , which yields
V„(x, ,x,.) = Vo[0(x, + a) —0(x,—a)] +x,Vo8'(x, —a). In
order to apply a many-body treatment to this problem we
follow the approach of Ref. 5 and split the system into two
halves by adding an infinite potential barrier in the middle of
the unperturbed barrier. We thus obtain two subparts similar
to the Appendix of Ref. 6 with the potential terms
V„(x, ,x, ) = VoO( —x, +a)+x,.UoB(x, —a) for x)0 and

V,(x, ,x,. ) = ~, for x~0 for the right hand side medium and

V&(x, ,x,)= V&0(x, +a) for x~O and V&(x, ,x,)=, for
x~O for the left one (see Fig. 3). As in Ref. 6 we shall
assume that these two resulting subparts are semi-infinite in
the direction perpendicular to the barrier, while at the same

V

Vo--

FIG. 3. Semi-infinite potential barrier used to split the Hamil-
tonian into two pieces. The potential goes to infinity at x=0, is
equal to Vo for 0~x~a, and is zero elsewhere.

(b)

1', kll i CO —103,kn n' ll
1Q), kll

FIG. 4. Lowest-order diagrams contributing to the self-energy:
(a) direct and (b) exchange. Electron paths are shown by straight
lines and cantilever "phonon" paths are shown by sinuous lines.

time having a finite cross sectional area v on which we
impose periodic boundary conditions. In second quantized
notation the Hamiltonian for the right side reads

k-
H„=g c -c -+ n~, (a "a+ —,')

2m e

+xoVo g c" c, @*(a)tt,(a)(at+a),

where the xo= v'I/2m, co„ the root mean square zero point
displacement of the cantilever, and we use A, =1. Also the
variable x labels the coordinate perpendicular to the barrier.
In this representation the wave functions rt q

are the
X

x-dependent components of wave functions y which diago-
nalize the system when the unperturbed barrier is included;
we will discuss their explicit form later. We will follow the
procedure used in Ref. 5 to obtain an expression for the
current across the barrier I(V) [see their Eqs. (41), (46),
(47)], and for dl/d V, d I/d V as well as corrections to these
quantities, following the procedure in Ref. 6. As indicated in
our model Hamiltonian, we assume that the barrier width
does not fIuctuate spatially —this leads to perfectly specular
transmission. The unperturbed Green's functions for both
parts of the system have been calculated in the Appendix of
Ref. 6 and will be used as the starting point for further cal-
culations.

Following Ref. 6, to calculate the current we first obtain a
self-energy correction for the unperturbed Green's functions
of our system, which are then used to determine the correc-
tions for the function y introduced in Ref. 5, Eqs. (17), (30).
(Also see below for definitions. ) The first-order terms in the
5-matrix expansion for the self-energy vanish, and so we
consider the second-order direct and exchange diagrams (see
Fig. 4). These terms are dominant due to the heavy mass of
the cantilever. ' A three-dimensional calculation for the
Green's function is used to provide a more realistic situation
than the one-dimensional model introduced by Caroli et aI.
Due to the translational symmetry in the directions parallel to
the barrier, we Fourier transform our Green's functions in
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these directions, and we obtain the expressions for I(V) by
integrating over the distribution of possible k~~ vectors. For
the dispersion we assume a single parabolic band and leave
the electronic rest mass unaltered for simplicity. We adopt
the notation used by CCNS, that is, the following: G, total
propagator of the coupled system including phonon correc-
tions; G, propagator of the total system without phonon
corrections; g, propagator of the right hand side infinite me-
dium including phonon corrections; g, propagator of the
right hand side infinite medium without phonon corrections;
g, propagator of the left hand side infinite medium including
phonon corrections; g, propagator of the left hand side in-

finite medium without phonon corrections; and
y(xo)—= —(1/2m)lim. . .8 8 g(x,x';kll, co) (with y de-

fined accordingly).
The quantity y is related to the Green's functions of the

semi-infinite media, which was introduced in Eq. (17) of
Ref. 5; we refer the reader there for a detailed treatment.

The corresponding expressions for g and g were de-
rived in the Appendix of Ref. 6. In our case the three-
dimensional treatment alters the co dependence slightly. The
resulting differential equation for the semi-infinite medium
on the right hand side, after Fourier transformation in the

direction, now reads

2
—

kll + V„(x)—(co+ p, ) g '(x, x';kll, cu) = —8(x —x'),
2m ~8x

where the superscript r denotes the retarded function and V„(x) has the shape shown in Fig. 3.
Explicitly, the unperturbed retarded Green s function g

' is given by

(3)

sinhKx—2m [(K+ iq) exp(K(x ' —a)) + (K—iq) exptK(a —x'))],KD

sinhKx '

g "(x,x';kl ', co) =
&

—2m [(K+ iq)exp(K(x —a))+ (K—iq)exptK(a —x))], x'&x&a, (4)

sinhKx'—2m 2Kexp(iq(x —a)),

where K= $2m[Vo —[co+~—(kll/2m)]] and q= /2m[co+ p, —(kll/2m)] denote the wave vectors inside and outside the
barrier, respectively, and the denominator D is given by D = (K+ iq) exp( —Ka) + (K—iq) exp(Ka)
= 2 [Kcosh(Ka) —iq sinh(Ka)]. For small barrier transparencies, which are considered here, exp(Ka) &~ 1 and the denominator
is then approximately D = (K—iq)expKa

III. SELF-ENERGY CORRECTIONS

A. Dyson equation for the self-energy

Since our system is not translationally invariant, we must resort to a Dyson equation in coordinate representation for the
direction perpendicular to the barrier. We make the approximation, which will be justified in the following, that only the
electronic subsystem on the right will receive any corrections from coupling to the mechanical degree of freedom. As the
calculations for the unperturbed Green s functions on both sides are analogous, we will confine ourselves to calculating g, the
propagator of the right subsystem. Ultimately, as shown in Ref. 5, it is necessary to obtain corrections to the Green s functions

g
+ and g occurring in the Keldysh formalism in order to calculate a correction to the current. They are defined in Keldysh

and also in Eq. (15) of Ref. 5 as

g (co)=2mip (~)f (m).

g' ( )=2 P'( )(f'( ) —ll

(5)

Here p (cu) and f (co) are the spectral density and the Fermi occupation function of the right subsystem, respectively.
However, in the quasiequilibrium situation considered here, these can be obtained from the renormalized retarded Green s
function g". The corresponding Dyson equation reads

g"(x,x'~kl ~co) g "(x,x''kll 'co)+ dx"dx"'g '(x,x"'kl 'co)~"(x",x"''kll ~co)g'(x"', x';kll ', cu) . (6)

Due to the localization of the electron-cantilever interaction the self-energy has the form

(x",x"',k„;~) = ~(x"—a) ~(x"'-a)Z "(a,a;k, ; ~)
and the integration simplifies to

(7)

g "(x,x' kl co) g "(x,x kll 'co)+g "(x,a;kll 'co)X "(a,a;kl 'co)g"(a,x'
'kll ~)
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Expressed in terms of the unperturbed Green's function this is

g "(x,a;klI'cp)X "(a,a;kll cp)g "(a,x'
kl ', cp)

g (X,X;k~i ', M) =g (X,X;k~~ ', co) + p„~1 —g '(a, a;k)l, co)~"(a,a;kll, co)
(9)

B. Self-energy in Migdal's approximation

In our system, the cantilever mass I,. is much larger than the electron mass I, so that Migdal's approximation' holds well.
The self-energy corrections will be small and the largest contribution to the self-energy will come from the second-order direct
and exchange diagrams (see Fig. 4). Higher-order diagrams will only contribute as gm, /m„which in our case is certainly
small. In view of the fact that we are calculating the lowest relevant orders of the corrections, we also neglect the second term
in the denominator of (9). In the Matsubara representation the direct and exchange diagrams are

(2) d2k
(a, a;k~~ , its„)'= —(xpVp) D (0) 2~ G (a, a;kI~, iso„')

l CO
n

(10)

21
X, ""(a,a;k~~ ', itp„) = —(xpVp) g D (ice,')G (a, a;k~~ ', it@„—imp„') .

I
l QJ

ln (10) X' does not depend on kI, vt ~ is the cross sectional area of the junction, and P=(ksT) ' . The single-mode phonon
propagator is defined as

2'
D (ice„)= + CO„

(12)

The fact that there is no integration over the parallel momentum in the exchange term results from the fact that the electron-
cantilever interaction is invariant in the transverse direction. The direct term from (10) is not of any further interest, since it just
renormalizes the equilibrium position of the cantilever, and we assume that this correction is already included in the definition
of the distance 2a. Due to the symmetry in the problem the wave function yk of the entire system including the rigid square
barrier factorizes as

X~(r) —4k, (x)4 (/ ) (13)

where p labels the coordinates in the parallel directions in real space and („(p) is just a two-dimensional plane wave. We can
ll

use this to perform the frequency summation in (11) using the representation for G [cf. Eq. (28) of Ref. 5],

4~ (a) 4k, (a)
G (a, a;k~~ it)0', = g

kx l &n k

One further conceptual difficulty in calculating an exchange interaction diagram is that an electron can, in principle, travel
from the position of the cantilever through the barrier to the fixed electrode, and back again. This is why we have to take the
propagators of the entire system as indicated in (10) and (11). There is an analogous correction to the left side propagator
g, since an electron could travel to the oscillator position on the right and back again. These processes would allow the full
semi-infinite propagators g and g to pick up a dependence on the chemical potential on the left hand side and right hand side,
respectively. For the small barrier transparencies considered here, contributions arising from these processes can be shown to
be negligible (see also Sec. 3 of Ref. 5). To a very good approximation we can therefore replace G by g in (10) and (11).We
also replace in (14), the k-sum representation for g, the full wave functions P by the wave functions @, which are the
analogous solutions for the semi-infinite problem. These wave functions are given by

4iq
sinh(Kx) e

D
4k, (x) = '

2(K coshICa+i q sinhKa)

D

0(x(a,

a(x,

where now IC= /2m Vp
—k„q= ~k, ~

and D =2(K coshICa iq sinhKa). The k-s—um representation for g is then

4k, sinh ($2mVp —k,a) 1
g (a,a;k~,.io)„)=

2mVp —k +2m Vpsinh ($2mVp —k a) ™n (16)
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In order to simplify the notation, we omit the dependence of our functions on k~~ and a for the moment, and we set

4k, sinh (/2m Vo —k,a)
f(k.) =

2m Vo —k, + 2m Vo sinh ( /2m Vo —k a )

The Matsubara summation in (11) is standard and yields

nii(CO, )+nF(ek) ns(Cu, )+ 1 —nF(8/, )X'"(ice„)=—(x V ) f(k ) . +
l GO„+ CO~ 8p l COn CO~ 8I

k
where e&= —p, and nF and nz are the Fermi and Bose distribution functions:

2m

1
nF(e) = p, and+1

1
nii(o)) =

P I

If (18) is considered at zero temperature, the Fermi distribution functions turn into 8 functions and the Bose contributions
vanish, so that

~( —
&k) //(&k)X""(ice„)=—(x V ) g f(k, ) . + .k+ ~g & ~g jj.-

(19)

As it turns out, the zero temperature approximation is not very accurate for realistic parameters of a model system. The effects
of residual temperature will be considered more thoroughly in Sec. IV 8 and the Appendix.

The result of (19) can be analytically continued (i cu„—+&@+i8) to yield the retarded function.
It should be remarked at this point that within the full Keldysh formalism for fully nonequilibrium situations, the Dyson

equation (9) in its correct form would read

g+=(I+g"&")g"(I+a & )+g"&'g (20)

where the superscripts r and a refer to the advanced and retarded functions, respectively [cf. Eq. (5a) in Ref. 6]. Also the
retarded self-energy would not just be a convolution of G" and D", but [cf. Eq. (6) in Ref. 6]

X"~(D"*G )+(D+*G"). (21)

However, in our quasiequilibrium case both equations return to their usual equilibrium form. The main point in which the
CCNS formalism enters our treatment is that we will renormalize the quantity y defined above to obtain a correction for the
current in the next section. It is well known that the tunneling current across the unperturbed barrier is a nonlinear function of
the applied bias V for large enough biases, although the expression can be linearized for small biases. The modulation of the
barrier width introduces a second, small energy scale, so that the resulting contribution to the differential conductivity
significantly depends on V even for small values of the bias.

Following an approach by Rickayzen" and Scalapino' the k sum is assumed to have its strongest contributions coming
from the immediate vicinity of the Fermi surface. Going over to an integral representation of the sum and changing the sign
of ei, in the first term of (19), we find

f oo 1 1
X„'"(co)= —(xoVo) N' (0)f($2mp, —kl) . . de, (22)

where N' (0) = $2 /2m'(gp, —(kl/2m)) is the one-dimensional density of states at the Fermi surface including the sum
over two spin directions.

At this point it would be natural to attempt to include the effects of finite mechanical damping in the cantilever motion.
However, it is difficult to include such effects from first principles and beyond the scope of this first approach prescribed
herein. Instead, a simple way to model the effects of damping is to change co, to the frequency for a damped classical harmonic
oscillator, satisfying the equation of motion

CO

x+ x+ ct)~x = 0 (23)

which has the solutions re= ice,/2Q~co, v I —(1/4Q ). This replacement just introduces a finite imaginary part into the
Green's function to achieve line broadening and finite peak heights related to the Q of a classical oscillator. For simplicity let
b= cu, v'1 —(1/4Q ) an—d c—= cu, /2Q. The self-energy can then be written

g„" (co) =(xoVo) Nfg (co), (24)
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where

( cu+b+a) —ic (tu —b —e) —ic, (~u —b) +c (b —tu~
cu = de 2+ 2 2 =-,'ln 2 2

—i m —arctan
Jp ( cu+b+e) +c (co-b- e) +c ' (tu+b) +c i c

(b+ col—arctan
c )

(25)

The real part of g (cu) in (25) has the usual logarithmic form for this kind of diagram and the imaginary part is a smoothed-out
version of the 0 functions occurring for zero damping.

IV. CORRECTIONS FOR THE CURRENT

A. Derivation of the corrections

The self-energy obtained in the last subsection can now be inserted into the simplified version of (9) to yield a correction
for the right hand side propagator g, which is needed to calculate the corrections to the current and its first and second
derivatives. We will use the same representation of the current as in Eq. (41) of Ref. 5 with the only changes due to the
three-dimensional nature of our model, so that the expression for the total specular current I across the barrier is proportional
to the cross sectional area of the system. Dropping the subscript, it reads

~ &

&" dtu t' d kl Imy(0)Imy(0)
(I(V))=8ev~ l F( ~ P'L) +F(~ P'R) l

lr(o)+ r(o) I'

where co= co&+ p,z=coL+ p, r . For T=O this can be recast into

" de kI Imy(0)Imy(0)

Ir(o)+ r(o) I'

In the limit p,L~ pR~ p, (27) goes to

(27)

t'v+«de l d k Imy(0)lmr(0)
I(V) =8evt ~

2m J (2m. ) Ir(0)+ r(0)I
(28)

(see the discussion in Ref. 5 for the derivation). In the above expressions the imaginary parts of y still contain the kl
dependence, which is not indicated for simplicity. According to its definition above, y on the right hand side will receive a
correction through the Dyson equation for g, yielding y= y + y', whereas for the left hand side there is no correction, so that
y= y . Following CCNS it is assumed that for small bias y = y holds well. In order to get the first-order correction to the
integrand in (28) it is expanded to first order in y', yielding

ImyP(Imy +Imy') (ImyP) Imy Imy' 4(Imy ) (Rey Rey'+Imy Imy')
Ir'+(r'+ r')I' I2y'I' I2r'I' 2r'I' (29)

The expression for y is already given in Ref. 5 and can be written

i qcoshKa —KsinhKa —(q + K )coshKa sinhKa + i qK K.Kcosh&a —iq sinh&a & cosh &a+ q sinh Ea (30)

For arguments Ka-4 or larger, which seems reasonable for real tunneling processes, (30) goes asymptotically to the WKB-
like result

4i qK0 ~+ 2Ka
2m Vp

This shows how the exponential dependence of the tunneling current on the barrier width enters this calculation.
The correction y' is then obtained from the definition of y by differentiating the correction term in the Dyson equation

1 8IK
y' = — lim, p8, 8, ig (x,a)X(a, a) g (a,x') = —

2 X(a,a),2m (32)

where again the dependence of g on k~~ is not indicated explicitly. For reasons that will become apparent as we proceed, it is
convenient to calculate the dimensionless ratios Imy'/Imy and Rey'/Rey . Written in the following compact way we obtain

Imy' Rey' 8 2
5 ( k

p p
= xpVp(2m) 2 Vp tu+ pImy Rey 2m(

(Xb~ (Xbl

)
™D2

2m( Imy Rey (33)
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Using the expressions introduced for y and D, (33) then yields

Imp' Rey' „K —
q b 2 2 b

o =C ReX +1m', " 2[2qICImX" —(K —
q )ReX"] (34)

Imp Re@ 2qE 2m Vo

where C=(8/m)mxog(/L —k~~/2m)[Vo —(co+ p, —kl/2m)]. Equation (34) clearly shows that the second part of the square
bracket is negligible for the small barrier transparencies considered here.

We can now conveniently write

Imp'=Imp y,
where we define y= Imy'/Imy . Inserting (35) into (29) now shows that the third term in (29) arising from the expansion of
the denominator will be exponentially smaller than the first two, due to the exponential dependence of Imy . Thus (29) can be
written

Imyo( Imyo+ Imy') (Imy )
Ir'+(r'+ r')I' 12r'I'

So far ail our results depend on kl, and as CCNS mention, the unperturbed expression in the integrand of (28) is a strongly
peaked function around kll 0, which mainly comes from its exponential dependence on Ka. More precisely, differentiating
with respect to V, (28) yields

(
dI t' d k /

kiril

(
)2h' eV+ p, —

)

(
2m Vo —' eV+ p, —

2m/
(36)

where h is a function that varies only slowly over the range of the integration compared to the exponential. Due to the strong
exponential behavior of the final term, the largest contribution to this integration will come from the vicinity of the lower
integration limit after transforming to polar coordinates. The square root in the exponential in (36) can be expanded in

z =
kll around kll= 0. The integrand can then be cast into2

dI "-dz ' z l 2az
h eV+ p, — exp( —4a/2m[Vo —(eV+ p, )]jexp'

dV go 4m
~

2m 2m[Vo —(eV+ p, )]

/2m[V —(e V+ p, )]
h(e V+ p, )exp( —4a /2m[ Vo —(e V+ p)]j,8 m.a

(37)

where we have neglected the contribution coming from the

upper limit.

B. Discussion of I(V), dlidV, and d IidV

The current-voltage characteristic I(V) can now be ob-
tained by integrating (36). For two reasons this procedure is
not very rewarding. First, the integral is difficult to perform
as the exchange term is no longer a slowly varying function
over the range of integration, and thus our previous approxi-
mation of replacing f;+ f(x')dx' by f(x) Bx is not accu-
rate. Second, the interesting corrections to I( V), which come
from the exchange diagram& are already very small in dI!dV
(as will be shown later), so that the integration leading to
I(V) will make them essentially undetectable. We will thus
concentrate on the expressions for the first and second de-
rivatives of I(V). The first derivative dI/d V, i.e., the differ-
ential conductivity, is simply given by ( 37) and accordingly
d I/O V can be obtained by a further differentiation. We thus
have

dI e'v~2& (Imyo)

dV 2m a $2m[Vo —(eV+/
I2 oI2 (1+y),
l2+

d'J e2v~2~ d (Imy )
dV 2' a dV

2=
2 2 dV

g2 [Vo ( V+p
I2 I2

(1+ 7)l2+
(38)

As an approximation to (Imy ) /I2y
I

we have, consistent
with our approximation in (36), taken over the WKB-
expression (for kl= 0) derived in Eq. (47) of Ref. 5 for fur-
ther calculations,

(Imr')' («+/ )I:Vo—(«+/ )]
2yo

=4
V2

Xexpf —4a/2m[Vo —(eV+ p, )]j . (39)

We have used the expressions derived above to calculate
the magnitude of these effects on the I-V characteristics of a
model system, consisting of a single-crystal Si beam, rigidly
clamped at both ends. The beam is chosen to have a length of
500 A and a cross section of 100 A. X 100 A, giving it a
fundamental resonance frequency of co,/2~= 30 0Hz and a
mass of 1.2X 10 kg. The effective spring constant of the
beam will be 420 N/m. The parameters for the calculation
are listed in Table I.
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TABLE I. Parameters chosen for the model system. I th fi Vn e rst row p is the height of the barrier,
the Fermi energy, and a the half barrier width. In the d

p
n e secon row cu, is the resonance frequency, m, the

mass, k, the force constant, and Q the quality factor of the cantilever.

Barrier
Cantilever

Vp=5 eV

co, =1.2X 10 eV
p, =2 eV

m, =1.2X10 k

a=5 A

k, =420 N/m Q =103

150
Q =10

100

50

E

0
-50

It should be noted that these results are calculated at
T= 0, and that a rather modest quality factor of 10 for the
oscillator has been chosen. Mechanical oscillators at much
lower ro, , but with Q's of order 10 or higher have been

ry roug yreported. ' Our choice of small Q was made to very rou hl

compensate for the finite temperature broadening effects in
any actual experiment. As described in the Appendix, a Q of
10 corresponds roughly to a measurement on this syste tma

mK, but with a mechanical Q possibly much higher than

Figures 5 and 6 show the first and second derivatives of
the current density j (in A/m ). The unperturbed terms for
dI/dV and d I/dU are not symmetric about the origin,
since in our model we have assumed that the Fermi energy is
fixed on one side of the barrier, while it is varied about this
value by the bias on the other side. It can be seen that the
relative magnitude of the exchange contribution in dI/d V to
the unperturbed value is about 10 if temperature effects
are neglected entirely. The form of the exchange part is simi-
lar to that observed for localized phonons. Comparing these
graphs, it is apparent that it would be difficult to see the
contribution of the exchange resonance after a final integra-
tion to get I(V) The most v.isible feature is the conection to
d I/dV: Thhe exchange correction here reaches a size com-
parable to the unperturbed value, and the resonant form
clearly distinguishes it from the smooth background.

Since the graphs only give a qualitative impression of the

The
peak strengths, we now investigate them more thorou hl .

e peaks in dI/dU clearly result only from contributions of
the real part of the exchange term; cf. Eq. (25). The term has

poles at su= ~b= ~su, gl —(1/4Q ), which, in the bare
term, leads to a peak height of ReX "(~ b) = ~ -'

2

[ln16+ lnQ ], independent of ru, . The origin of the peaks in
d I/dU is slightly more delicate. Here, the largest contribu-
tions come from the terms including d/dcu [ReX (co)] and
also d/des [ImX "(co)]. The first term has poles at

co= ~ b +c + 2c'jb +c
1 1

Q 2Q

where the choices of the signs are made independently. The
peak heights scale as ~ Q/co, for the outer (inner) poles,
respectively, The second term has its poles exactly at
cu = ~ b, with heights that scale as ~ 2Q/co, , and width [full
width at half maximum (E'WHM)] of c0, /Q, and thus the

peaks in the second derivative do depend on co, . To see how

Q quantitatively affects the peak heights, we have compiled
Table II of absolute heights of the maxima of the peaks in the
exchange corrections to dI/dV and d I/dV, where apart
from Q all other parameters for the system remain un-

changed.

the
Eventually, as the intrinsic Q of the oscillator is increa dincrease,

t e broadening at zero temperature will be determined by
electronic damping of the oscillator, given by higher-order
terms in the self-energy. However, for the values of Q in the
table, we believe these effects are unimportant.

Q =10
------- Q = 1 0

)
CV

E

C3

)
o

-100 -10
119.0 119.5 120.0 120.5 121.0

-150

-200 -100
I

100 200

-200 -100

Bias (pev)

100 200

Bias (peV)

FIG. 5. Correction to the first derivative dJ/dV of the current
density: the solid and dashed lines are for cantilever quality factors
Q= 10 and 10, respectively.

FIG. 6. Second derivative d J!dV of the current density con-
taining the corrections considered in the text; the solid and dashed
hnes are for Q= 10 and 10, respectively. Inset: second derivative

, with vertical scale sufficient to show full extent of
peaks. (Axes have same units as main plot. )
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TABLE II. Calculated maxima of the peaks in the first and second derivatives of the tunneling current
density over a range of values for the cantilever quality factor Q.

dj/dV [fl ' m ]
d j/dV [G(AV) ' m ]

10
150
0.23

1O4

188
2.1

1O'

227
21

10
265
210

V. CONCLUSION

In conclusion we have investigated the first and most rel-
evant self-energy corrections to the first and second deriva-
tives of the I(V) characteristic in M I Mt-un-neling due to
the interaction with a single localized mechanical mode of a
movable tunnel junction. This represents the first step in in-
vestigating the influence of, and back action on, oscillatory
mechanical degrees of freedom in a mesoscopic tunneling

system. We find that the presence of this mechanical mode
gives a pronounced signature in dI/d V, and a much stronger
one in d I/dV, in the regions where the bias across the
junction equals the energy of the eigenmode of the oscillator.
This strong nonlinear enhancement of the differential con-
ductivity and its derivative across the junction in this region
can be viewed as arising from the opening of a new phonon-
assisted channel for inelastic tunneling.

As the derivation of these results has been made using the

general many-body formalism of CCNS, the approach may
be readily extended. Possible applications might include con-
sidering stronger bias to generate a fully nonequilibrium situ-
ation, incorporating the band structure in the metals, and
elucidating the role of other many-body interactions.
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APPENDIX

In this appendix we derive the range of validity of the zero temperature calculation and establish qualitatively the changes
to our results as finite temperature effects start to compete with and finally dominate the intrinsic losses of the mechanical
oscillator. The first zero temperature approximation which entered our calculation from before was in (18) for the Matsubara
self-energy:

n~(co, ) + nF(e/) ns(co, ) + 1 —nF(e„)
& "(iso ) = (xoVO) f(k ) +

l Co/+ (Jog Bk l cop[ Cog 8k
(Al)

If one still assumes that the largest contributions to the k sum come from the vicinity of the Fermi surface, one can
approximate the sum similar to (22) as

X„'"(co)= —(xoVD) N' (0 f($2mp, —
kii)

1 1 &- nF(e) 1 —nF(e)
X na(to) de . + . + de . + . . (A2)

J to+ to~ 8+ I. ~ co —to~ —8+ t ~ " M+ Co~.
—8+ t ~ Co to~ 8+ i

The two integrals can be considered separately and the first one gives

P oo 1 1 2(co —e)
d8 + . =p d8 2 &

—2l W,to+ toe e+ E 8 to toe 8 + l 8 J —ao (Co —e) —Co
(A3)

where p denotes the principle value. The principle value integral is seen to be zero, since the integral is antisymmetric. The
imaginary part turns out to be constant with respect to co. The second integral can be recast into

nF(e) 1 —nF(e) t de 2co I' 6'(e+ co+ co,)+ 8(e —to+ co, )

J co+ co, — +i@8 to —to, — +i' J e '+1 co —(co, +e)dg . + . = p ~, 2 2
—I7T d8 + 1

—Pa

(A4)
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If that is compared to formula (25), one sees that the differ-
ence for finite T is that the integrals now get a smooth cutoff
at s =0 as opposed to the 0-function cutoff from before. On
introducing a finite quality factor Q, (A4) goes over to

de (co+ b+ e) —i c (co —b e—) —ic
e ~'+ I ( co+b+e) +c (to —b —e) +c (A5)

in analogy to (25). We can thus choose either (A4) or (A5) as
a basis of reasoning, depending on the regime considered. As
it turns out, for the conceivable range of oscillator quality
factors Q, the linewidths induced by Q will be very small
compared to the temperature broadening, even for tempera-
tures as small as —1 mK. Thus, we assume for now that
Q~~ and use formula (A4). The difference in the behavior
for the real part of (A4) above from its T=O analog can be
seen through partial integration:

1 2 to
p

J e ~'+1 co —(co, +e)

P r de Co co~ 8
ln4J p to+to, +e

cosh2 —e
2

(A6)

where the integrated term has vanished at the boundaries. In
the limit p~+~

~8(e) .
4 p

cosh2 —e
2

(A7)

(AS)

which for pro, &) 1 is seen to have a smoothed out step be-
havior, being essentially constant for

~
co~ )co, + BF and close

to zero for
~
to~ ~ co,—ciF, where BF is the width (FWHM) of

the Fermi distribution

SF=3.5k&T=3 X 10 T eV/K . (A9)

If (A8) is compared with the corresponding expression for
Imf (co) in (25) at zero temperature but finite Q, the only
difference is that in the present case 8'F rather than Q deter-

This way one can see how the T=O result for the real part of
(25) is recovered. The corresponding integration of the
imaginary part gives

1
and

co~ Q C T

eV T=6x10 '
K GO

and the total width will be approximately the sum of these
two contributions.

mines the deviation from a true step behavior, which is even-
tually attained as T +0—and Q —&~. From this it is possible
to determine phenomenologically what effect temperature
will have for the most "observable" of the peaks, i.e., the
ones in d IldV . The peaks in that function are, as we
found, determined by dX„'"(to)/dto. It can be seen directly
from (A8) that the derivative of the imaginary part, which
gives the strongest contributions to these features, exhibits a
pair of Lorentzian peaks at the resonance frequency of

At nonzero temperature these have a width deter-
mined by the Fermi distribution, as shown in (A9). One can
also see the change in the behavior of the derivative of the
real part of X from (A6) without having to perform the inte-
gral. Differentiating with respect to co gives

P t' de 2(co, +e)
(A10)

4g p co —(co, +e)2 '

cosh —8
2

This can be viewed as being a sum of two convolutions of
opposite sign in cu between the derivative of the Fermi func-
tion 1 —nF and the two partial fractions of the second factor.
The result of the convolution of these two peaked functions
is to a good approximation again a peaked function, where
the width of the resulting feature is the sum of the widths of
the convoluted components. Since for the moment we as-
sume that the width of our initial peaks (due to the quality
factor Q) is practically negligible compared to the thermal
width of the Fermi function, the effective width of the peaks
will also be given by the thermal width. If, on the other hand,
in an intermediate regime (low Q, low T) the two effects
start to compete, one would have to use (A5) for a correct
treatment. However, as mentioned above, the effect will just
be that the widths will add to give the result.

The second T=O approximation was introduced in (27)
for the current. In analogy to the reasoning above, one can
argue that if the Fermi factors are kept the smoothed out
cutoff will lead to similar effects, which will enhance the
total broadening by an additional factor of about 2. In sum-

mary, we can conclude that the contributions of the quality
factor Q and the temperature T to the total linewidth will be
about
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