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Peltier effect in normal-metal-superconductor microcontacts
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We have calculated the heat current in the normal-metal —insulator —superconductor contacts with arbitrary

transparency of the insulator barrier. In the tunneling limit (small transparencies), the heat IIow out of the

normal metal reaches its maximum at temperature T=0.35. At higher values of transparency, the interplay
between single-particle tunneling and Andreev reflection determines optimum transparency which maximizes
the density of heat flow out of the normal metal. In clean contacts, the optimum transparency is about 0.1 at
T=0.36 and decreases with temperature roughly as {T/A)3' In dis. ordered contacts, disorder enhances An-

dreev reflection and shifts the optimum point towards smaller transparencies. The optimal ratio of the barrier
resistance to the resistance of the normal electrode is Rz/R7 =0.01 at T= 0.35 and decreases with temperature
similarly to clean contacts. For disordered contacts we also plot current-voltage characteristics for arbitrary
values of the ratio R~/R~.

I. INTRODUCTION

The flow of electric current in the normal-metal—
insulator —superconductor (NIS) contacts is accompanied by
the heat transfer from the normal metal into the supercon-
ductor. This principle can be applied to the refrigeration of
electrons in the normal metal. (Implicitly, the same principle
is used in the enhancement of superconductivity in the
SIS'lS structures —see Refs. 2 and 3 and references therein. )
The mechanism of the heat transfer in the NIS contacts is the
same as that of the well-known Pe]tier effect in metal—
semiconductor contacts —see, e.g., Ref. 4. Due to the energy
gap in the superconductor, electrons with higher energies
(above the gap) are removed from the normal metal more
effectively than those with lower energies. This makes the
electron energy distribution sharper, thus decreasing the ef-
fective temperature of electron gas in the normal metal.

In the limit of very small transparencies D of the insulator
barrier, when the mechanism of electron transport across the
barrier is single-particle tunneling, the magnitude of heat
Aow out of the normal metal increases with transparency.
However, at larger transparencies, coherent two-electron tun-

neling ("Andreev reliection") starts to dominate electron
transport and suppress the heat fiow. This occurs because in
the Andreev reAection electrons with all energies, including
those inside the energy gap, are removed from the normal
metal. Below we study the crossover between the two re-
gimes and find the optimum transparency which maximizes
the heat Aow through a unit area of the NS interface, The
calculations are carried out in the two cases of contacts with
clean and disordered electrodes. It is shown that, in accor-
dance with the general understanding that disorder enhances
Andreev reAection, in disordered contacts the optimum
transparency is shifted towards smaller transparencies with
increasing disorder.

II. CLEAN CONTACTS

The model of NIS contact we consider is a constriction
between normal metal and superconductor with characteris-

R(1 —2 Rea (e)+la(e)l )8 e)= 1-2R Rea'(~)+R'la(~) l'

Here D,R are transmission and reAection probabilities of the
insulator barrier, D+R=1, which are assumed to be inde-
pendent of energy on the energy scale given by 5, and

a{@) is the amplitude of Andreev reflection from the ideal
NS interface with D=1:

1 e—sgn(e)(e' —b, ')'/2,

(g2 2)1/2 lel~A .
(2)

Using the reflection probabilities (1), we can write the
balance equation for energy distribution of electrons moving
to and from the NS interface. Energy distribution of elec-
trons f+ {a) that move from the bulk of the normal metal to

tic dimensions d that are much smaller than the coherence
length ( and inelastic scattering length in the electrodes. Be-
cause of the condition d(& (, we can neglect variation of the
superconducting order parameter 5 in the vicinity of the con-
striction and solve the problem, assuming that 5 is constant
in space up to the NS boundary and is equal to its equilib-
rium value inside the superconductor.

The properties of such a constriction depend strongly on
the relation between d and elastic scattering length 8 near
the junction. In the clean limit {d(&F), electron motion in
the constriction is naturally decomposed into several un-

coupled transverse modes (provided that the NS interface is
smooth and conserves transverse momentum). In this case
one can follow Blonder, Tinkham, and Klapwijk, and solve
the Bogolyubov —de Gennes equations independently for
each transverse mode. The basic result of such a solution (for
details see, e.g. , Ref. 9) is contained in the probabilities of
normal {8) and Andreev {/I) reliection from the NS inter-
face as functions of the quasiparticle energy e:

D'la(e) l'
A(e) =

1 —2R Rea (e)+R la(e)l
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the NS interface is the equilibrium Fermi distribution shifted

by e V, f"(»)=f(» e—V). Electrons moving from the inter-
face into the normal metal are produced in three processes:
quasiparticles incident from the superconductor are transmit-
ted into the normal metal with the probability (1—A B—);
electrons are reflected from the interface with probability 8;
and holes are Andreev reflected as electrons with probability
A. (The latter process can be described in more direct terms
as tunneling of Cooper pairs out of the superconductor. )
Thus, the energy distribution f (») of electrons moving into
the normal metal is

Q. Q

(D

—0.1—

— o.

—0.2—
o.

f (») =A(»)( I f'( »—)]J+B—(»)f'(»)
+ [ I —A(») —B(»)]f(») . (3)

—0.3
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From the thermodynamic relation dU=dQ+ p, dN ap-
plied to electron gas in the normal metal the heat current j
flowing from the normal metal into the superconductor in
one (spin-degenerate) transverse mode can be calculated as

1
'

d»(» «)Lf'—(») f (»)]-
mfi J

It is straightforward to check that when deviations of elec-
tron energy distribution from equilibrium in each electrode
are small, Eq. (4) is equivalent to another frequently used
expression for the heat current, j=Th, where T is the tem-
perature of the electrode and h is the entropy flow.

The last step in the calculation is a summation over trans-
verse modes. We do this summation assuming that the elec-
tron motion in the junction is quasiclassical, and that the NS
interface is smooth and conserves momentum along it. Then
the transmission probability D of the interface depends only
on the energy e~ of electron motion across the interface, and
can be taken to be D(»~) =Doexp((»~ —p)/»„}.In this ex-
pression, Dp is the transparency at Fermi energy, and e„is an
energy scale associated with electron motion under the bar-
rier, which is assumed to be much larger than the supercon-
ducting energy gap. Under these assumptions summation
over transverse modes (i.e., over angles of incidence on the
interface) gives for the total heat current J

N (&odD P

J' «(» «)ff '(») f—(»»)]J, (—5)
mfi Jp D

FIG. 1. Heat current J in the clean NIS contact versus bias
voltage V for several transparencies Do of the insulator barrier cal-
culated from Eq. ( 5). From top to bottom, Do= 0 (tunneling limit),
0.03, 0.1, and 0.2. The inset shows the heat current in the tunneling
limit calculated for the optimum bias voltage as a function of tem-

perature; at low temperatures J~(T/6) '

for each transparency there is an optimal bias voltage which
maximizes the heat current J. The inset in Fig. 1 shows J at
the optimal bias voltage in the tunneling limit calculated
from Eq. (6). The heat current J in this limit is maximum at
T=0.36 and decreases both at small and large temperatures.
One can check that at T&&A the heat current decreases as
(ZV a) 3/2.

In Fig. 2 we plot the heat current per one transverse mode
at the optimum bias voltage as a function of barrier transpar-
ency Dp. At small transparencies the heat current increases
linearly with transparency, indicating that we are in the tun-
neling limit where electron transport is dominated by single-
particle tunneling. However, at larger transparencies the heat
current starts to decrease with transparency due to the in-
creasing contribution to transport from two-particle tunnel-
ing. At the transition point between the two regimes the heat
Aow out of the norma1 metal is maximized. A crude estimate
of the transparency which corresponds to this transition at
low temperatures can be obtained if we compare the amount
of heat per transverse mode generated by the two-particle
tunneling in the normal electrode, =(Doh) /fi, with the
heat flow out of this electrode in the tunneling regime. As

where N=Sme„/m6 is the effective number of transverse
modes, m is the electron mass, and 5 is the junction area.

Taking the limit D~O in Eqs. (1) and (3), one can see
that for Do~0, Eq. (5) for the heat current reduces to the
form given by the tunnel Hamiltonian approach:

0..002 I I I I I I I I I I I I I I I I I I I I I I

r+ ~»~(» —e V)J= 2 ~

d»O~(» 5)— , [f(» eV) f(»)]J, — —
e Rpg »2 /It 2

a 0001-

3

where Rz is the normal-state tunneling resistance of the bar-
rier, Rr =Ne Do/7rfi, and 0'(x) is the theta function.

Figure 1 shows the heat current as a function of the bias
voltage V across the contact for different transparencies Dp
calculated numerically from Eqs. (1), (3), and (5). The
curves illustrate how increasing transparency of the barrier
suppresses heat transfer out of the normal metal. We see that

0 000
Q. Q 0. 1 0.2

Do

FIG. 2. The maximum heat current density in the clean NIS
contact as a function of transparency Do of the insulator barrier for
several temperatures. For discussion see text.
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was noted above, the latter can be estimated as
(T35)"DO/fr (see also inset in Fig. 1). From these esti-
mates we see that at T(&A the optimal transparency scales as
(T/5) ' . This conclusion is in qualitative agreement with
Fig. 2. RiII

'

RY

III. DISORDERED CONTACTS

( GR GK)
G= A g )

GI 0

where the advanced G", retarded G, and Keldysh compo-
nent G are 2X2 matrices in the electron-hole (Nambu)
space. The retarded and advanced functions carry informa-
tion about the excitation spectrum of the system, while the
Keldysh function describes the distribution of quasiparticles.

For small constrictions, d(&(, we can neglect all but the
gradient term in the equation for the Green's function in the
vicinity of the constriction, so that the equation is reduced to
the diffusion equation'

V'(W GVG) =0,
with the diffusion coefficient M=-, vFY, where vF is the
Fermi velocity. The diffusion equation in the electrodes
should be complemented by the boundary condition at the
NS interface

cnGVG= [G,'Gs] .

In this section we consider the same model of a short NIS
constriction, but assume that the constriction dimensions d
are much larger than the elastic mean free path 8 in the
electrodes. A convenient way to describe such a disordered
constriction is provided by the quasiclassical kinetic equa-
tions for nonequilibrium Green's function G of the
electrodes. ' ' Green s function G is a triangular matrix in
the Keldysh space,

FIG. 3. Schematic diagram of disordered NIS contact. Darker
region shows the quasi-1D constriction of length d which deter-
mines the resistance R& of the normal electrode. An insulator bar-
rier with normal-state resistance R& is placed at the NS interface in

the constriction.

( R(A) fR(A)
GR(w)

S
I

fR(A) R(A) j

g(e~ iO) —b ( ~ ej
(10)

a( a
G —G =0.

Bx ( 0)x j

V'

The normalization condition on G, G = 1, ' ' implies
that the retarded and advanced components can be param-
etrized as follows

G (" (e) = ~(o.,cosh[U " (e)]+io~sinh[U " (e)]),
(13)

G& = G&(e)n(e) —n(e) G&(e), n(e) = tanh'
I 2T)

(11)

In the 1D constriction (Fig. 3) the Green's functions depend
only on the coordinate x along the constriction, so that the
diffusion equation becomes

In this expression, n is the vector normal to the NS interface,
V'

and G, Gz are the Green's functions on the normal and su-

perconducting sides of the interface, respectively. The coef-
hcient c describes the interface transparency and can be writ-
ten as 2o./g, where o.=2e vW is the conductivity of the

normal metal, and g = e p(nv FD/R) is the normal-state con-
ductance per unit area of the interface. Here D and R are the
transmission and refIection probabilities of the interface, v is
the density of states at the Fermi level, and ( ) denotes
averaging over angles of incidence on the interface.

On a quantitative level, properties of the constriction de-

pend on its specific geometry. In a simple one-dimensional
(1D) model (Fig. 3) considered below, the constriction is
represented as a 1D normal conductor of length d, cross-
section area A, and resistance R)v=d/(Ao. ), and it is as-
sumed that the contribution of the bulk regions to the total
resistance of the structure is much smaller than RN. In this
case we can neglect variations of the order parameter 6 and

V'

Green's function G~ in the superconducting electrode, and

assume that 5 and Gz are equal to their equilibrium values
up to the NS boundary:

where o's are Pauli matrices, and upper and lower signs are
for G and G, respectively. The fact that the retarded and
advanced functions are nondiagonal indicates the proximity
effect in the normal region.

The Green's functions should satisfy the equilibrium
boundary condition at the normal end of the constriction
(x= —d): GR(" =~o. , i.e., U " =0. Equation (12) with
this boundary condition determines U" ": U " (x)
=a "(1+x/d), where a " (e)—= U (X=O,e). Substi-
tuting Eqs. (13) into the boundary condition (9) we reduce it
then to a transcendental equation:

aR(A) fR(A)coshaR(A) gR(A)sinha " (14)
Rz-

Rz

Here g
(") and f (") are components of the equilibrium

Green's functions (10) of the superconductor, and R7 is the
normal-state tunneling resistance of the NS interface,
R~ '=gA.

The next step is to find the Keldysh function G which
can be represented as'
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FIG. 4. I-V characteristics of disordered NIS contact at zero
temperature and several values of the resistance ratio RT/R&. From
top to bottom, RT/R&=0, 1, 3, 10, and 100. The inset shows the
linear conductance G=d//dV~~ 0 as a function of Rr/R~. The
curves illustrate the transition between the tunneling regime
(Rr)R+) characterized by the gap at V(A/e and "metallic" re-
gime ('Rr(R~) characterized by large subgap conductance and ex-
cess current at V&) 6/e.

G =G (e)h(e) —h(e)G"(e),

"(e) =f ) ( e) 1+f,( e) tr, .

(15)

Equation (12) with the retarded and advanced components
(13) gives the following equations for the distribution func-
tions f) «)

'. [1+cosh(U ~ U")]Bf&«)/Bx=const—=8 )«) /d.
Combining these equations with the boundary condition
(9) at x=0 and equilibrium boundary condition at x= —d,
f) (,)( —d, e) =[n(e —eV) ~n(e+e V)]/2, we find the func-
tions B, , which determine currents across the NS interface:

FIG. 5. Heat current J in the disordered NIS contact versus bias
voltage V for several ratios of the normal electrode resistance Rz to
the resistance RT of the insulator brier. As in the clean contacts,
the heat current is maximized at V=A/e.

ishing temperature. At large tunnel resistances RT the I-V
characteristic exhibits the gap at V~A/e and singularity at
V=6/e. At smaller RT the gap is closed by the increasing
contribution to the current from Andreev reAection, but the
I Vcharacte-ristic still has the singularity (logarithmic diver-
gence of the differential conductance) at V= 5/e. Transition
between the two regimes is clearly visible in the zero-bias
linear conductance shown in the inset in Fig. 4. At RT~Rz
the conductance with a good accuracy equals simply
(Rr+Rz) ', while at Rr~R/v it decreases as R~/Rr.

Recalling the definition of the heat current used in the
previous section and Eq. (17) for the electric current, we can
write the following expression for the heat flow out of the
normal electrode in the disordered NIS junction:

A, (e)
8&(e)= [2n(e) —n(e eV) —n(e+e—V)], (16)

1

+ oo

J= 2 de(e —eV)[8((e)+8,(e)] . (18)2e R/v

where

A, (e)
B,(e) = [n(e —eV) —n(e+eV)],

As can be seen from Eqs. (14) and (16), the currents 8, ,
have the property 8,«)( —e) = ~B,«)(e). With these rela-
tions, Eq. (18) can be rewritten as follows:

A ((,) = (g —g") (cosha + cosha")

—(f ~f")(sinha ~sinha"),

f
oo

J= —IV+ 2 deeB, (e) .
e ~)0 (19)

tanh[(a -+ a")/2]
2(a~ ~a")

RT
D)(,)=4 +A(,t)( )e

IV

e vs +"I=, de tr(cr, [GV'G] (e))2 J —~

f +oo

deB, (e) .
2eR~&

(17)

Figure 4 shows the current I (17) as a function of the bias
voltage V at several ratios of the resistances RT/Rz and van-

Equations (14) and (16) enable us to find electric current
and heat current in the NS junction. The electric current can
be written as follows:

At Rr)&R)v, both Eq. (17) for the electric current and Eqs.
(18) and (19) for the heat current are reduced to the form
given by the tunnel Hamiltonian approach. In particular, the
heat current J is again given by Eq. (6).

Some results of the numerical calculation of the heat cur-
rent from Eqs. (14), (16), and (19) are shown in Figs. 5 and
6. We see that the properties of the heat current in disordered
contacts are qualitatively similar to those for clean contacts.
The heat current density grows with increasing transparency
of the tunneling barrier in the regime of small transparencies
(large tunnel resistances Rr) and is gradually suppressed at
large transparencies. The main difference with the clean case
is that the scale of transparencies (in particular, the optimum
transparency) is shifted downwards by a small factor 8/d,
which decreases with increasing resistance of the normal
electrode. The physical reason for this shift is that disorder in
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the normal electrode enhances the contribution of Andreev
reflection to transport and therefore suppresses the heat How
out of the normal metal.

IV. CONCLUSION

In conclusion, we have calculated the heat current in clean
and disordered NIS microcontacts which is caused by elec-

FIG. 6. The heat current density in the disordered NIS contact
calculated at the optimum bias voltage as a function of the insulator
barrier resistance RT. The curves are similar to those in Fig. 2 for
clean contacts. Note, however, that the scale of the x axis,
Rz/RT, for disordered contacts corresponds to much smaller trans-

parencies of the tunnel barrier than for clean contacts

[R~ IRr= (did) Dp) Dp]

tric current How across the NS interface. The mechanism of
the heat transfer is analogous to that of the Peltier effect in
normal-metal —semiconductor structures. Results for clean
NIS junctions are obtained by solving the Bogolyubov —de
Gennes equations. Disordered junctions are described with
the quasiclassical equations for nonequilibrium Green's
functions of the electrodes. In both cases the heat current
density exhibits nonmonotonic dependence on the interface
transparency, increasing at small transparencies and decreas-
ing at large transparencies. The transition between the two
regimes takes place at the transparency which is determined

by the interplay of single-particle tunneling and Andreev re-
flection.

At intermediate temperatures, T=6, this transition occurs
at the transparencies which are larger than the barrier trans-
parencies of the typical tunnel junctions between good met-
als. For instance, even quite small specific tunneling resis-
tance on the order of 10 AX p,m corresponds to barrier
transparency =10 . However, as was demonstrated above,
as temperature decreases, the transition point moves rapidly
towards smaller transparencies, and at low temperatures fi-
nite barrier transparency can pose an important limitation on
the refrigeration power of NIS junctions. As follows from
our estimates in Sec. II, in the clean case transparency-
related limitation should become important at T=0.015 in
junctions with specific resistance 10 A X p, m or less.
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