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Sound transmission phenomena and phase-separation kinetics at the superfluid-normal interface
of liquid He- He mixtures
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The transmission and reAection of sound at the interface between He-dilute and He-concentrated phases of
a liquid He- He mixture are studied. The effect of phase separation on sound phenomena is involved in terms
of the effective growth coefficient calculated under assumptions of the existence of phase equilibrium at the
interface. At low temperatures the phase-separation kinetics is governed by the processes associated with the
excitation and propagation of second sound modes to compensate the difference in He concentration of
adjacent phases. The growth coefficient is found to vanish at the maximum concentration point on the sepa-
ration line of the He-dilute phase. Accordingly, the behavior of the sound transmission coefficient as a
function of separation pressure displays a small smooth maximum at the pressure of the maximum concentra-
tion point and the reAection of the second sound wave from the normal He-concentrated phase reaches its
maximum value at the same pressure.

I. INTRODUCTION

For more than a decade a great deal of experimental and
theoretical interest has been attracted to the macroscopic
quantum tunneling phenomena accompanying the decay of a
metastable system described by a macroscopic parameter. A
noticeable portion of attention has been paid to the low tem-
perature nucleation phenomena in a metastable condensed
medium. As the most typical systems of interest we can men-
tion overpressurized liquid helium, ' supercooled A phase of
superAuid He, cavitation of bubbles in liquid He at nega-
tive pressure, and nucleation of vortices in superAuid
4I-Ie.4

The first systematic studies of the low temperature sepa-
ration kinetics have been recently done down to 0.4 mK in
the two-component metastable system as a supersaturated
liquid He- He mixture, which is apparently the most promi-
nent and unique system for observing the bulk quantum
nucleation in a condensed medium. The decay of the meta-
stable homogeneous state of a supersaturated He- He mix-
ture is supposed to be associated with the formation and
growth of a droplet of an energetically favorable phase en-
riched by He. Essentially the growth of a droplet represents
the surmounting of a certain potential barrier originating
from the positive interfacial tension until the droplet will
reach the critical size and will be capable of converting the
system on the whole into the stable state. At high tempera-
tures, when the nucleation rate is governed by thermal Auc-
tuations, the key parameter determining the nucleation rate is
the height of a potential barrier.

For sufficiently low temperatures, when the thermal acti-
vation should be succeeded by quantum effects related to the
tunneling through a potential barrier, the kinetic or growth
properties of the interfacial boundary begin to play a princi-
pal significance in the determination of the nucleation rate.
Phenomenologically, the growth properties of the interface
and their inhuence on the quantum nucleation rate can be
described by the incorporation of two kinetic terms in addi-

tion to the potential energy in the equation of droplet growth.
One of them is related to the kinetic energy of a droplet and
characterized by the effective mass of a droplet. The other
term, described by a friction coefficient, represents a drag
force hindering the growth of a droplet and is connected with
the energy dissipation resulting from the irreversibility of
relaxation processes associated with disturbing the medium
from the equilibrium state. Essentially the terms represent
the imaginary or reactive part and the real or resistive part in
the reciprocal of the complex response function or general-
ized growth coefficient relating the interface growth rate to
the imbalance between states of phase equilibrium. A knowl-
edge of the effective mass and friction coefficient is of prin-
cipal importance because these quantities, in addition to bar-
rier height, determine the thermal-quantum crossover
temperature, the magnitude, and the temperature dependence
of nucleation rate in the quantum regime.

However, the theoretical calculation of the effective mass
and the friction coefficient for a droplet in superAuid

He- He mixture comes across definite difficulties associ-
ated with the boundary conditions at the interface between

He-dilute and He-concentrated phases. The point is that,
in order to determine the spatial distributions of quid veloci-
ties, He concentration, temperature and pressure in both the

He-dilute and He-concentrated phases and then the fric-
tion coefficient and the effective mass of a droplet, it is not
sufficient to use only the continuity conditions for the Aows
of total mass, He mass, energy, and momentum density
across the interface. As a result, some supplementary as-
sumptions on the boundary conditions are necessary. In par-
ticular, one can suppose the lack of dissipation in the
mixture or the sticking of the normal component of super-
Auid He-dilute phase to the surface of He-concentrated
phase. Accordingly, we will arrive at the different friction
coefficients and effective masses of a droplet, entailing dif-
ferent nucleation rates and thermal-quantum crossover tem-
peratures.

Unfortunately, the accuracy attained in the low tempera-
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ture nucleation experiments, the drastic exponential depen-
dence of nucleation rate on the supersaturation of mixture,
and the lack of microscopic description for nucleation of
small-sized droplets do not allow us to make an undeniable
distinction in favor of any assumption on the boundary con-
ditions at the interface. In such a situation, especially when
realistic microscopic calculations of quantum nucleation in

He- He mixture are absent, any experiments which can de-
termine boundary conditions and elucidate the nature of ki-
netic growth processes at the interfacial region are desirable.

In order to examine the kinetic growth properties of the
interface, we should first disturb it from the state of phase
equilibrium by means of varying temperature, pressure, and
concentration from the equilibrium values separately or in
combination and next observe the response of the interface.
In particular, the deviation from phase equilibrium can be
provoked by an incident acoustic wave which induces modu-
lations of pressure at the interface. Similar experiments were
proposed and performed in the course of studying the kinetic
properties and phase conversion phenomena for the
liquid-solid and vapor-liquid interfaces of helium. The
pressure modulations should cause the processes of phase
separation at the interface between two adjacent phases. The
transmission of a sound wave depends strongly on the inter-
face mobility. Provided the response of the interface on the
pressure modulations is slow, i.e., the interface growth rate is
extremely small and phase conversion from one phase to
another is not so efficient, the sound transmission and reflec-
tion will be the same as for the case of two immiscible liq-
uids. On the contrary, if the interface has a high mobility and
phase conversion between phases occurs at an infinite rate,
the system is able to retain the phase equilibrium state and to
smooth the magnitude of pressure modulations down to zero.
This means that a sound wave incident onto the interface
from one medium should not cause any pressure modulations
at the interface and in the other medium. Hence in this ideal
case the sound transmission into the other phase vanishes.
Thus the coefficients of sound transmission and reAection
may give certain information on the rate of conversion pro-
cesses between two phases.

In the present paper we consider the transmission and
reflection of sound waves at the interface between normal

He-concentrated and superAuid He-dilute phases of liquid
He- He mixture. In addition, we shall discuss the connec-

tion of the above phenomena with the phase separation ki-
netics in liquid He-"He mixture and compare their features
with the single-component system such as the liquid-solid
boundary in pure helium.

II. TRANSMISSION OF SOUND ACROSS THE
SUPERFLUID-NORMAL INTERFACE

So, let us consider the normal incidence of a monochro-
matic acoustic sound wave from the normal He-
concentrated phase onto an infinite flat plane which separates
the normal phase from the superAuid He-dilute phase of a
liquid He- He mixture. In addition to the displacement of
the interface the modulations of pressure can induce the
modulations of temperature and concentration at the inter-
face. Hence, in addition to the rejected and transmitted
acoustic sound waves, a second sound wave will arise propa-

CO
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in the normal x&0 phase, the positive direction of the x axis
being chosen from the normal into the superAuid phase. Here
6'Pp, 6'P, , and BP, are the amplitudes of incident, rejected,
and transmitted acoustic waves. In general, the oscillations
of pressure can give rise to the concentration oscillations
Bc and 8'c' which will propagate in the form of a second
sound wave into the bulk of the superAuid phase and decay
at the diffusion length gculD' into the normal phase. The
coefficients p(co) and p'(t0) determining the connection be-
tween oscillations of pressure and concentration in the sec-
ond sound wave and in the diffusive mode can be approxi-
mated as

0'2 I GVD gp gp
P(co) =

2 ~ =(u2 —i AD) —,
l —(u2 —icoD)lu, &c &c

'

gating into the bulk of the superAuid phase. In the opposite
case of a sound wave incident from the superfiuid phase of
the mixture, an excited second sound wave traveling back
will appear in addition to the rejected and transmitted acous-
tic sound waves. Naturally, this results in a certain asymme-
try for the coefficients of sound transmission through the
super quid-normal interface. Of course, the asymmetry
should not be large since the excitation of second sound by
means of an acoustic pressure wave is not so effective.

As usual, in the treatment of acoustic problems we as-
sume all the quantities, e.g. , as pressure P, concentration c,
and temperature T, differ slightly from their constant equi-
librium values in order to deal with the linearized equations.
For simplicity, we also neglect the dissipative contribution
connected with the coefficients of viscosity. Solving the
equations of motion for the bulk of phases, the plane har-
monic wave solutions should be found. Next, these solutions
are matched at the interface.

To gain further simplifications, we neglect all heat effects
associated with the thermal expansion and with the release of
latent heat during phase conversion. Strictly speaking, the
first condition implies vanishing entropies of both phases and
can be valid only in the limit of temperatures much smaller
than the degeneration temperature of mixture T(& TF, where
the second sound wave is represented mainly by the oscilla-
tions of a . He component and the velocity of second sound
becomes independent of temperature. Thus the amplitudes of
waves can generally be written as
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/3'(~) =— lMD op 8p
l coD1+ l COD /ll BC BC

The quantities D and D ' denote the diffusion coefficients for
He atoms in the superAuid and normal phases, u& and u'

are velocities of acoustic sound waves, and u2 is the second
sound velocity neglecting the entropy term'

P3 P4
m3 m4

(6)

where p, 3 and p, 4 are the chemical potentials of He and
He atoms in mixture and m3 and m& are the masses of

particles. For our purposes, the weak coupling between the
concentration and pressure oscillations in acoustic waves can
be neglected and the corresponding terms proportional to
exp(tkix —isn't) and exp(~ik x —isn't) are omitted in the ex-
pressions for 8c(xr) and Bc'(xt) Note also. that in the ex-
pressions for the first and second sound velocities and in
what follows we neglect terms proportional to the square of
the derivative of density with respect to concentration

(p 'Bp/Bc) compared with unity, but we retain first-order
terms.

With the neglect of viscosity and latent heat effects one
can formulate the following boundary conditions at the inter-
face x=O:

1=/ '(v' g) =i / g q=—/„v„+—/, v„ (7)

Js=/i'c'(V' —()+g'= pc(V„—g)+g,

P'=P or 8P'= BP, (9)

where g is the velocity of the interface and V', V„, and V,
are the Quid velocity of normal phase, normal, and superAuid
velocities of the He-dilute phase. The quantities g and g'
represent the diffusion flows in which the barodiffusion
terms are involved as well,

c pq oZ
Rp=

Pn

Here c is the mass concentration of He atoms and the ther-
modynamic potential Z conjugated to variable c is defined
according to

ation toward equilibrium occurs owing to collisions between
particles of the medium. In the low frequency co~((1 sound
limit, ~ being the collision time, we can assume that the
thickness of the interface is much smaller compared with the
sound wavelength and particles of a medium have many col-
lisions at the distance of wavelength. Under these conditions
one can believe that the relaxation of the interface is much
faster than that in the bulk where the motion toward a state
of phase equilibrium retards due to frequent collisions. In
other words, we may assume that the phase boundary be-
tween He-dilute and He-concentrated phases can be
treated as being in a state of local phase equilibrium in spite
of its disturbance by the pressure modulations of incident
sound waves. This assumption leads to the boundary condi-
tions of equality of chemical potentials for both He and

He components of mixture. In turn, this is completely iden-
tical to the assertion that the oscillations of concentration in
each phase beside the interface will follow the pressure
modulations in exact accordance with the phase-separation
lines c=c(P) and c' =c'(P) on which the conditions of
phase equilibrium are fulfilled precisely,

dc(P)
bc= N, x=+0,

dc'(P)
6C' =

dp
6P', x = —0.

As a final remark, it is to be added that the same hydro-
dynamic boundary conditions of equalities of chemical po-
tentials for He and He atoms were employed before" for
studying processes of the low frequency two-phase sound
propagation in the direction parallel to the superAuid-normal
interface under the acoustic waveguide geometry.

We are now in the position to calculate the unknown am-

plitudes 6P, , 8'P„BC, and Bc' using the boundary condi-
tions Eqs. (7)—(9) and (11). Omitting the algebraic calcula-
tions, let us note only the usefulness of employing the
Clapeyron-Clausius relations valid on the phase equilibrium
surface of binary mixture

Bv BZ dc
u

' —u —(c' —c) = (c' —c)
Bc 8c dP

D Bpl &c
g = —pDVc —pDpV P Dp=

p oIZ/Bc ov o)Z dc
u' —u —(c' —c), =(c' —c)

BC Bc' dP

(12)

D op /ocg'= —p'D'Vc' —p'DpVP', Dp=—

It is obvious that the conditions Eqs. (7)—(9) incorporate
conservation laws of total mass, He mass, and equality of
pressures resulting from the conservation of the momentum
density flow.

In order to determine unknown amplitudes 6P, , 6P„
Bc, and 8'c', the above boundary conditions are insufficient
and should be augmented. It is evident that the incidence of
sound waves onto the interface induces the phase conversion
processes disturbing both the interface and the immediate
bulk adjacent to the interface. In this bulk region the relax-

BP„Y—Y' —YY'(
BPO 7+ Y'+ Yl"$

(13)

which can be derived by differentiating two equalities for
chemical potentials of each component with respect to pres-
sure at fixed temperature. Here v = 1/p and v

' = 1/p
' are the

specific volumes of the phases. Defining acoustic coefficients
of reAection and transmission as ratios of the pressure am-
plitudes of rejected and transmitted waves to the amplitude
of an incident wave, one has for the case of incidence from
normal phase into superAuid phase within an accuracy
02/H' 1

(( 1,2 2
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bp, 2 Y(1 —P(co)dc/d P)
BPD Y+ Y'+ YY'(„ (14)

where the effective kinetic growth coefficient g„ is given by
the relation

BZ ( dc ) BZ' i dc' ~
'

(„=guz —i coD p + g —i cuD ' p'
Bc dP) ~c' ( dP)

(15)

P
i v' —v —(c' —c)Bv/Bc~

C C BZ/Bc

2
aZ ~ dc~'

B2 i QJDp
Bc I dPi

It is to be noted that the effect of separation processes at
the interfacia1 boundary on the sound transmission should
not be large since the second sound velocity is small com-
pared with the first sound velocity. As a function of pressure,
the effective growth coefficient vanishes at the maximum
concentration point P=P of the phase separation line
where dc/dP=O. Hence the sound transmission reaches its
maximum equal to the ordinary acoustic transmission. Ac-
cordingly, the reAection is also given by the ordinary
acoustic-mismatch value.

Such a pressure dependence of acoustic coefficients can
easily be understood. In fact, if the phase conversion occurs
and the interface moves at a certain rate with respect to fluid
velocities, the deficiency or excess of He concentration pro-
portional to the difference (c —c) which inevitably appears
at the interface during phase conversion should be compen-
sated. However, at the maximum concentration point, ac-
cording to Eq. (11), the pressure modulations are not suffi-
cient to induce any variations in He concentration at the
interface, entailing the lack of any process as the second
sound mode or diffusion capable of changing the concentra-

Here for the acoustic impedances of superAuid and normal
phases we introduced notations Y= pui and Y' = p'u',
where ui and u' are the sound velocities of the correspond-
ing phases. The effective growth coefficient expresses
finally the relation J-(„BPbetween the net mass flow J,
Eq. (7), through the interface and the modulations of pres-
sure BP inducing the imbalance between the two phases.

As is seen, in the low frequency cov&&1 sound limit the
effective low temperature growth coefficient of the
superAuid-normal interface in a mixture is determined by a
sum of two terms. The first term, predominant as ~~0, is
associated with the emission of the second sound mode into
the superAuid phase, and the second term is due to the dif-
fusive concentration mode in the normal phase. The smaller
the second sound velocity and diffusion coefficients, the
smaller the mobility of the interface. For the normal-normal
interface, the second sound velocity should be put equal to
zero. Since at low temperatures the He-concentrated phase
in He- He mixture is practically pure He and the pressure
slope dc '/d P ~ [1—c ' (P, T) ], the second term in Eq. (15)
vanishes so that the low temperature dynamics of the Oat

interface is governed by the He propagation processes in
the He-dilute phase alone, i.e.,

tion beside the interface. As a result, no phase conversion
can occur at the interface and the flows of total mass J and

He mass J3 across the interface vanish. Hence the interface
velocity g equals the fluid velocities V', V„, U, and the
sound transmission and reflection are determined by the or-
dinary formulas of acoustic-mismatch theory.

It is interesting to emphasize that such behavior of inter-
face mobility at the maximum concentration point dc/ dP = 0
in a He- He mixture is in contrast to the behavior of the
liquid-solid He interface at the point of the minimum so-
lidification pressure dPldT=O where the liquid-solid He
mobility reaches the maximum value. ' Unlike multicompo-
nent systems, in the single-component system the minimum
pressure point dP/dT=-0 related to zero value of latent heat
corresponds to vanishing difference in the entropies of the
two phases so that in the thermal sense the phases become
indiscernable and the interface has a higher mobility. In mix-
tures a similar situation could be realized at the point of
equal concentrations c'=c where any necessity in the pro-
cesses which change the concentration and therefore lead to
energy dissipation is absent. As regards the excitation of sec-
ond sound, the pressure amplitude in the second sound mode,
obviously, is not large compared with the pressure amplitude
of transmitted sound. Introducing the excitation coefficient
as a ratio of the pressure amplitude in the second sound
mode to the pressure amplitude of the incident wave, one
obtains

BP,„P(co)Bc
y=

6'P0 8'P0

Bp dc 2Y'" ) ac dP 1+1"+11"(
(»)

It is natural that the transmission coefficient of the acoustic
wave in Eq. (14) is reduced by the excitation coefficient of
the second sound mode. In accordance with the above specu-
lations the excitation of second sound by means of the inter-
face oscillation vanishes at the maximum concentration
point.

To gain a further insight, it is worthwhile to give an ex-
pression connecting the flow of total mass across the inter-
face with the pressure modulations. With the aid of Eqs. (1),
(2), and (7) one can find at interface x=0,

V' —j/p Pu&
—i cuD dcJ=, =, p 6P.v' —v c' —c dP (18)

As expected, the total mass How vanishes and changes its
direction with respect to pressure deviations from equilib-
rium value at the maximum concentration point. The distinc-
tion between the factor connecting the mass flow J and pres-
sure modulation BP in Eq. (18) and the effective growth
coefficient g„ involved in sound coefficients Eqs. (13) and
(14) is an additional feature of the binary mixture compared
with a single-component medium. This fact is completely
associated with the necessity to take into account the depen-
dence of the specific volume of the mixture on concentration,
i.e., the term

Bv/&CIAO

cannot be neglected. The difference
between the quid velocity of normal phase and the normal
component velocity of superfluid phase at the interface x = 0
is given by
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( p —p' gu2 —scuD p, cBZIBc i dc
8'P.

(
c c P Pn vugg istsD~ dP

(19)

Eq. (16) as for acoustic sound phenomena. The relative en-

ergy loss in the second sound wave during reAection is given
by

In principle, any two conditions like the above Eqs. (18) and

(19) relating the jumps of mass Iiows and fiuid velocities to
the pressure modulation are sufficient to describe sound phe-
nomena at the interface.

4( Y+ Y') YY' $s
~"'~'=(Y+ Y'+ YY'g, )'+(YY'g, )"

0 =6s+s6. (23)

III. REFLECTION OF A SECOND SOUND WAVE

In a similar way the reAection of a second sound wave
from the superAuid-normal interface of a He-"He mixture
can be analyzed. Let us consider the second sound wave
incident from the superAuid He-dilute phase onto the
boundary with the normal He-concentrated phase. As be-
fore, we assume the low temperature limit T&& TF where the
second sound mode can be treated as modulations of He
concentration alone. In addition, we assume the normal
phase consisting of pure He, i.e., concentration c' = 1. Thus
in the normal phase we can find only the first sound mode

BP'(xt) = BP'e ' ' '"', k'= colu', x(0. (20)

In the superAuid phase we have the incident and reflected
modes of second sound and, in addition, the excited mode of
first sound propagating away from the interface into the (x
)0) bulk of the He-dilute phase. The amplitudes of con-
centration and pressure modulations can be represented as

( t) g
—tk2x —teat+ p tk2x —test+ ( ) pP kt ttcoxt

k2=
gu2 s txsD

pp( t) p( ) pC e tk2x tQJt+ p(~) $C etk2x !cot
(21)

CO

+ PP /klx —1cUf

Ri

The quantity tx(co) which relates the pressure modulations to
the concentration modulations in the first sound mode,

Bc,
f'2 =

6co

Y+ Y' —YY'$
Y+ Y'+ YY'( (22)

The reflection coefficient r2 is defined by the ratio of ampli-
tudes of rejected to incident waves. The effective kinetic
growth coefficient g„ is determined by the same expression

can be neglected in the final result within the accuracy of
ratio of sound velocities uz/u, (&1. The analogous quantity

p(sts) for the second sound mode is defined by expression
Eq. (3).

Using the same boundary conditions of the continuity of
fiows Eqs. (7)—(9) and assumption Eq. (11) on the phase
equilibrium at the interface, we arrive at the coefficient r2 of
second sound reflection from the normal phase

Since the effective growth coefficient („is not large com-
pared with the inverse acoustic impedance Y, the reAec-
tion of second sound from normal phase is close to unity.
Concerning the behavior of the reflection as a function of
phase-separation pressure, one should note that the maxi-
mum value of the reflection reaches at the maximum concen-
tration point P=P where („=0and the refiection reduces
slightly for pressures departing from P=P . The pressure
amplitude BP' of an acoustic sound wave propagating into
the bulk of the normal He-concentrated phase can be ex-
pressed in terms of concentration modulations 8'co in the
incident wave of second sound,

2YY' BZ dc8P' =, , guz —i ttsDp Bco. (24)
CO

Bc dP

IV. SUMMARY

To conclude, we have examined the effect of phase sepa-
ration in a liquid He- He mixture on the transmission and
reAection of low frequency co~(&1 sound modes across the
super' uid-normal interface between He-dilute and

He-concentrated phases in the low temperature T(& TF limit
where the heat effects can be neglected. Provided the sound
wavelength is much larger compared with the interface width
and mean free path of excitations in the medium, we may
assume that the interface mobility is limited mainly by the
energy dissipation processes due to collisions in the bulk
beside the interface and that the intrinsic mobility of the
interface is large enough to suppose the existence of local
phase equilibrium at the interface. Under these conditions the
separation kinetics is governed mostly by the processes of
second sound propagation in the He-dilute phase, which
take care of delivering or removing the concentration differ-
ence (c' —c) released during the phase separation of the
mixture. As sound frequency cu increases, an additional con-
tribution into the effective interface mobility from diffusion
processes enhances. For the normal-normal interface, the ef-
fective growth coefficient is associated with the diffusion
alone and is proportional to v'stsD, D being the diffusion
coefficient. Such an co dependence is also inherent in phase
conversion processes driven by heat conduction.

Certainly, all the above speculations cease to be valid for
transmission and reflection of high frequency co7&) 1 sound
when particles of a medium have no collisions at the dis-
tances compared with the wavelength. In this case the energy
dissipation near the interface can be neglected. The coeffi-
cients of sound refiection Eq. (13) and transmission Eq. (14)
conserve their previous form but, of course, the acoustic im-
pedances should be replaced by the impedances for high fre-
quency sound with the corresponding velocities instead of
acoustic sound velocities. The new kinetic growth coefficient
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will depend on growth properties of the interface alone. In
the absence of a clear picture for the interaction between the

interface and He atoms coupled with a He cloud in the

dilute phase the estimates of the interface growth coefficient
and its pressure dependence are not completely clear. We,
however, believe that the experimental study of the subject

described here will give a more clarified picture of the inter-
facial kinetics in He- He mixtures.
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