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Ginzburg-Landau theory of vortex lattice structure in deformable anisotropic superconductors

P. Miranovic and Lj. Dobrosavljevic-Grujic
Institute of Physics, P 0 B. ox. 57, 11001 Belgrade, Yugoslavia

V. G. Kogan
Ames Laboratory and Physics Department, Iowa State Universty, Ames, Iowa 50011

(Received 17 May 1995)

Correlation between the crystal lattice and the vortex lattice in anisotropic (uniaxial) type-II superconductors

due to magnetoelastic interactions is studied theoretically. Within the strain-dependent Ginzburg-Landau

model, the energy of the magnetoelastic interaction of the vortex lattice is evaluated with the AV effect
(difference of specific volumes of normal and superconducting phase) as the main source of the elastic strain.

For NbSe2 in tilted fields near the upper critical field H, 2, the vortex lattice is the same as obtained within the

London model in fields well below H, 2 with magnetoelastic interactions taken into account.

I. INTRODUCTION
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FIG. 1. If vortices are directed along c axes, the vortex lattice is
hexagonal. When vortices are tilted away from the c axis (being
rotated about y axis over angle 0), the hexagonal lattice is distorted
along the y direction by the factor 1/y and along the x direction by
y, where y =I sin /I+cos 0, and I =m, /m, ~ [the y axis is in
the ab plane, the x axis is in the plane (c,B)].Two distorted struc-
tures, denoted as (A) and (B), are shown.

It is well established that the Ginzburg-Landau (GL) and
London models are valid for describing the mixed state of
layered superconductors, provided the scale of material inho-
mogeneities is much smaller than the coherence length (.'

However, recent studies of the vortex lattice (VL) structure
in NbSe2 by neutron diffraction revealed a discrepancy be-
tween the theory and experiment. Both London and GL
theory ' for uniaxial superconductors predict that when vor-
tices are parallel or perpendicular to the c axes, the VL struc-
tures, (A) and (B) shown in Fig. 1, belong to a set of struc-
tures of the same energy (see Ref. 3 for details) and therefore
have the same chance to be observed. When VL is tilted

away from these orientations, the degeneracy is removed fa-
voring (A). In fact, only the structure (B) has been seen for
all tilt angles at TIT,=0.7. This means that there is a con-
tribution to the vortex interaction which is not included in
the London and GL models.

One such contribution is provided by magnetoelastic
(ME) interactions between vortices, which can play a signifi-
cant role in forming VL. The idea is based on the fact that
the specific volumes of the normal and superconducting
phases are different (so-called b, V effect). The "normal"
vortex core acts as a source of inhomogeneity, producing
local deformations in the surrounding superconducting mate-
rial. Vortices could interact through the elastic field, and the
energy of the ME interaction depends on the VL structure.
Incorporating this interaction in the London theory one can
explain most of the experimental results for NbSe2. Since
the internal stress arises due to the spatial variation of the
order parameter, vortex-vortex ME interaction is sensitive to
the core structure. In the London domain, the intervortex
separation r)) (, the cores can be considered as point sources
of stress, and the problem is treated by analogy with the
thermal expansion of anisotropic bodies subject to point heat
sources. Within this model, ME interaction is zero in isotro-
pic materials. Another feature should be mentioned: the ME
energy increases with magnetic induction as B, the result of
the long-range elastic interactions. Since the London energy
is only linear in B, one may expect the ME contribution to
dominate in high fields approaching 0,2. However, in high
fields where vortex cores overlap, the London model fails,
and one has to take into account the actual order parameter
distribution.

We treat the high field case within the GL theory extended
to include elastic effects, an approach originally developed
for calculation of pinning forces. Within this approach, a
finite ME interaction of vortices is predicted for isotropic
crystals, unlike the result of the point-source model, where
this interaction is absent. This, of course, does not remove
the orientational degeneracy of hexagonal VL's. In aniso-
tropic crystals, however, the ME strain contributes differ-
ently to energies of different VL structures.

In Sec. II, we present the GL theory of anisotropic de-
formable superconductors, and discuss the London limit
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valid for ~&) 1 in fields well below H, 2. In Sec. III, we study
the region near 0,2 and generalize the treatment of Kogan
and Clem" to deformable superconductors to calculate the
free energy for arbitrary field orientation. We discuss briefly
our results in the last section.

II. MAGNETOELASTIC ENERGY

Major properties of anisotropic superconductors near the
critical temperature T, are described by the GL theory with
the mass tensor. ' A new feature in deformable supercon-
ductors is the elastic response of the crystal in the presence
of VL. The free energy is

h'
n/+/'+ —P/~/'+

2 8~

energy is expanded. We note that both n and u; are linear in

(1 —t), whereas n; is T independent; thus the renormalized
n of Eq. (4) is still linear in (1 —t). This means that within
the GL approach we should not retain higher order terms in
the expansion (4). Also, this implies that other material char-
acteristics, P and M,„, should be taken only to the lowest
order in u;, i.e., they are strain independent.

Note that retaining the higher order terms in (1 —t) and
taking the strain dependence of the volume element
d V= (1+u, )d Vp (Ref. 11) one can show that, in addition to
the dominant 5U effect, spatial variations of the free energy
density and a change of the elastic coefficients with respect
to those in the normal phase may also contribute to the ME
energy.

Substituting n of Eqs. (4) and (5) in .A, we obtain the
term responsible for the ME coupling:

1 -1 ** 1
+ M 'j rI 'eH je*+ X 'j«u 'ju«dU 7S'= n;, u;, i'Pi dV. (6)

Here II= —t'AV —(2e/c)A, M is the tensor of mass, u, is
the strain tensor, P;j«are elastic coefficients, and summation
over repeated indices is implied. The coefficients n, P, and

the tensor M ' describe superconducting properties of the
material and as such depend on the strain, the idea intro-
duced by Labusch for describing pinning of vortices by
strain-producing defects.

It should be noted that our situation differs from that dealt
with by Labusch where the strain was not directly related to
superconductivity. Indeed, strains u;j in our case are caused
by vortices in the mixed state and disappear in the normal
phase. Since all terms in the GL energy functional must be
proportional to (1 —TIT,) = (1 —t), we o—btain from Eq.
(1)

u;, ~(1 —t) . (2)

~ aT,.
+ ~ ~ ~Tc Tcp+ uik'

eau;&

Then the coefficient n=fi/2M( (T) [M=(M. ;M2M3)"
and M; are principal values of the mass tensor] reads

A,
2 62 T

lT T, =—T Tco u k2M(pT,
'

2M(pT,p.
with

= A'p+ A', ~u;~+ ' ' ' (4)

fi2 ~ aTc~

2MgpT, p( ~u;j/p.
[the notation ( = gp/(1 —t) is used for the GL coherence
length]. Clearly, one cannot neglect the u; dependence of
n, since the strain shifts T, , the point near which the GL

We now show that, unlike the case considered by La-
busch, only the coefficient a is affected by strain. To this
end, let us turn to the well-established experimental fact: the
critical temperature T, depends on stress. ' For our pur-

pose, it is convenient to present this dependence in terms of
strains:

XV~= n;, u;, ( 'P~ —'Pp)dV. (7)

It is instructive to obtain the London limit for the ME
coupling. In small fields, we model the vortex core by taking
~'P as zero in the core and 9'p= ~np~/Pp, otherwise. Then
one can replace in Eq. (7) ( 8'~ —'Pp) with —'PpS, . B(r)
[S,= ~( (T) is the core area and r= (x,y) for vortices along
z]. We then obtain the ME coupling energy density of VL,

w= —S,n;, Wp u, ,g 6'(r —r, ) = r/, ,u;, g 8'(r —r, );
Iv

the notation y; was adopted in Ref. 7. Noting that strain
derivatives of Tc are measured by applying uniform stress

pEg ~ij&muim ~

aT. aT

au;j ap(m

and using H„p/4'= np/Pp, we obtain2 2

BT ~ H p(0)H p(T)
t, ap) ) 4~Tc

where H,.p(T) =H, p(0)(1 —t). This, in fact, justifies the
choice of y; in Ref. 7 where this quantity has just been
guessed on general symmetry grounds.

To make equations dimensionless, we take (as usual)

+2H, p, and H„p/4n as units of the order parameter,

magnetic field, and energy density, respectively. The average
London penetration depth kL=(Mc /16me 'qj'p)" is taken
as the unit length. In the following, we keep the same nota-
tion for dimensionless quantities and indicate the results

Clearly, this term is of the form which could have been
guessed on general grounds; we, however, have an explicit
expression (5) for n;, in terms of measurable quantities
BT, /Bu; . We further notice that fu; dV over the unit cell of
VL vanishes (due to periodicity, the displacement u; vanishes
at the cell boundary, and integration by parts yields zero).
Therefore, one can write Eq. (6) as
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given in conventional units. In particular, the dimensionless
elastic moduli X in terms of their conventional counterparts
are 4~)ilH, p; n;, of Eq. (5) acquires the dimensionless form

1 BTc
A;j= T Tco Buj

The dimensionless free energy then reads

The stable VL corresponds to the lowest free energy. In
other words, one has to solve three coupled nonlinear differ-
ential equations

I
two GL equations and the equilibrium Eq.

(15)]. This difficult task is simplified in high fields, where
GL equations can be linearized.

III. VORTEX LATTICE STRUCTURES NEAR H, g

( Fp+)i; i u; ui l2+ n, ju;, I%"
I

)dV, (12)

With the help of GL Eq. (14) (modified by the strain), the
free energy can be written as

where (h' —.-'I pl')dv+ 7&~M, . (20)

Fo= —I+I'+ l l+I'+ l p„rr;+11,"+*+/
' (13)

II=(i') 'V —A, Ir=2+2eH, pk~/kc is the GL parameter,
A

and the inverse dimensionless mass tensor p, =MM
Varying the energy with respect to 'Il'* we obtain the first

GL equation, modified in this case by the strain dependence
of cI:

p,,II,II,W=(1+ u, ,u,,)W —IVI'W . (14)

The GL equation for the current density has the standard
form.

The system of GL equations should be complemented
with the condition of elastic equilibrium Bo.;, /Bx, =0, where
o.;j=BF/Bu;, is the stress tensor and I' is the free energy
density, i.e.,

In the vicinity of 0,2 one can evaluate the free energy, as
is done in the absence of strain, i.e., with the help of two
Abrikosov identities. The lineariged GL equations read

(II,2 p, II,2
—1 ) Ij'i = 0, (21)

C

j,= p (O',"II„W,+O', II,',W,"), (22)

where II,2=(i') 'V —A, 2 and O'I, jz are solutions of the
linear equations. The terms with u; are omitted here, be-
cause the vortex induced strain is zero in the normal phase,
and is of the order of I'Ifl or higher in the mixed state.
Within this approximation, the first Abrikosov identity re-
mains the same as in the strain absence

B

Bxj
(X,ji ui + n; I'Pl ) =0. (15)

g2f
V'h =e

We now transform the u-dependent part of M~ in Eq. (12)
using the symmetry of tensors involved

I
e.g. ,

n;Ju;, = n;, (Bu;/Bx, )] and integrating by parts to obtain the
ME energy,

(16)

j2f2

Vh= —e, e=
B-By

I.
2K

KPxx

Here the equilibrium Eq. (15) has been used, L is the length
of vortices directed along z, r=(x, y), and j takes on only
values 1,2 (xi =x, x2=y).

For periodic VL, all quantities can be expanded in Fourier
series. We then have for the average over the VL cell ME
energy density

where Hp is a constant, i~= I~/vp, p„, and fr =I'Il'il . The
macroscopic magnetic induction is given by
8&= Hp (fi )/2'. Slightly below H, 2 we have to include
nonlinear terms. Solutions of the first two GL equations can
be taken in the form O'= 'PI +'Ij'& and A= A 2+ A&. , where
'Ij'i and A& are small corrections. Substituting these in the
first GL equation, we obtain for the corrections

l

~ME =
2 Q

(17) (II,2 p, . II,.~ —1)'If, —u uW~

=(II„p A, +p A, II„)e,—IW, I'e, . (24)
where Q's form the reciprocal lattice, and f is the Fourier
transform of f =IVI . The displ-acement u(Q) is found
from Eq. (15):

Since the operator M~= —,'II,2. p, II,2
—1 is Hermitian, '

j'IJ'i P~"I'i dV= J'Ij'i&WPJ dV=O. Multiplying Eq. (24)
by 0'~ and integrating by parts, we obtain

uk=kG;ku;Jf Q, , G;i = (Q, Qi~, ki)
2(h, (V X A, )) —u/(f~u;, ) + (f~) =0; (25)

We now obtain

(wME) = ——g S,G;/S*, S;= rx;JQ/f .
2 Q

Note that in all formulas above Q, =-O.

here h, is the field created by supercurrents
VXh, =(4~/c)jz and VXA, =Hp+h, —H2. Thus, we
have the second Abrikosov identity:

(26)
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Clearly, this reduces to the result of Ref. 4 in the strain-free
case. Using the Abrikosov identities we find

(27)

where

2.5
x)0-4

2.0

1.5

PA (f2)2 ~ Pl (f2)2 r P2 2 (f2)2

Note that h, „=h, + h and that the strain enters via p2, pro-
portional to (wME) of Eq. (17). Now, the macroscopic free
energy density is

(2'' —I )PA 4lr'(Pt—+ P2)+I
[(21' —1)pA

—4' (P1 p2)+ 1]
(28)

CC
0.5

0.0

30 60

8 (degrees)

90

In the stress-free situation (p2=0), the term in the con-
densation energy F,=(F) Brespon—sible for locking the
VL on the crystal is proportional to

) I' ' (I —1)sin0 cos0~ Q ~f (Q)~

vI sin 0+cos //) Q&o Q ~f~(0)~
(29)

where I = pm, !m,b is the anisotropy parameter. The sum
here is of the order of (pA —1), so that for high-Ir materials

p, (& pA . The parameter p„ is the same for both (A) and (8)
structures:

(30)

i.e., it is the same as in the isotropic case. The Fourier trans-

form fL(Q) is given by'

(31)

where

Q =Qo/2B/2r

for structure (A), and

Q = Qo( /2/2+t/) r (32)

Q.=Qo(/ —e/2)!r, Q, =Qoev3r!2 (33)

for (8). Here p, q=0, ~1,~2, . . . , r =I sin 8+cos 8,
and Qo ——2 m(28/ +3go) ' . Petzinger and Warren have
shown that the maximum of P, , which gives the minimum
free energy, corresponds to the (A) structure [this structure
minimizes also the London energy in fields B«H, 2 (Refs. 3
and 7)].

In deformable superconductors the free energy (28) is af-
fected by strains via parameter p2. To calculate P2, we need
an explicit form of a; and G; which depends on the crystal
symmetry. Hereafter, hexagonal crystal lattice will be consid-
ered as an example; generalization to other symmetries is
straightforward. In the coordinate system rotated by angle
8 around y axis (starting from the situation where the z axis
is along c) the components v,,= (T,o

—T) n;, that enter the

FIG. 2. Relative difference R= [F,.(A) —F,.(B)]/~F, (B)
~

of the
condensation energies for structures (A) and. (B) vs the tilt angle
8 without strain (dashed line) and with strain (full line).

calculation are vxx vabcos 0+ vcs~n ~~ vyy . vab
2 . 2

v„=(v,b v, )sin0c—os', and v,Y= v~, =0. The eigenvalues
of v are

oT BT.
vab (Cl1+ C12) + C13~P.b ~P.

oT BT,
v, = 2C]3 + C33

~Pah ~Pah

where C;j are the elastic moduli in the crystal frame. Tensors

G;, and X;,«are given in the Appendix.
%e illustrate our results on the example of 2H-NbSe2, for

which the elastic moduli are known: C ] ~
= 1.47,

C)2= 0.38, C)3= 0.11, C33 0.53, and C44= 0.174X 10'
erg/cm . The stress derivatives of T,. are known as well: '
BT, Bp,=5.3 X 10 ' K cm /erg, BT, Bp,b

———2.4X 10
K cm /erg, where p, and p, b are "unidirectional pressures"
along the c and ab planes, respectively. The tensor v; in the
crystal frame is given by

v b= —3 875X 10 K, v, =2 28X 10 K;

AC IT,=10 erg cm /K . ' Effective mass anisotropy is
I =10. These data suffice for the evaluation of the free
energy for each particular VL, the task we accomplish nu-
merically.

In Fig. 2 we plot the ratio [F,(A) —F,(8)]/~F, (8)
~

as a
function of the tilt angle 8. For all angles (except 0=0)
structure (8) has a lower energy. For 8=0 the hexagonal
2H-NbSe2 is elastically isotropic in the plane ab; the param-
eter P, =O and

(C„+2C,2) AC„ / BT, 1

Ta l 3r/p)

is the same for all orientations of the hexagonal VL.
Thus, for 2H-NbSe2 in high fields, the ME interaction

causes structure (8) to be preferable, similar to the case of
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lower fields where the London approach is applicable. The
field dependence of the ME interaction responsible for this
situation is given by the prefactor (Ir —8) in the free en-

ergy; recall that in the London case the ME energy density is
oc p2
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IV. DISCUSSION

We have generalized the GL theory of anisotropic super-
conductors near the upper critical field to include magneto-
elastic effects. We have shown that the ME interaction can
change the structure of the VL as compared to the stress-free
case. Also, we have formulated approximations under which
one can use the London approach for the vortex induced
stress in intermediate fields. In so doing we provide justifi-
cation for the results obtained within the London model. In
fact, the form (10) for the tensor z/;k has been guessed in Ref.
7 on the basis of symmetry arguments.

Our results are obtained within local anisotropic GL
theory. ' ' Going beyond the local theory, one would like to
compare the ME effect with nonlocal corrections to the VL
energy. In the London domain, this estimate was possible
since in small fields there exists a microscopic nonlocal re-
lation between the supercurrent and the vector potential. For
clean"'kbSe2 (infinite electron scattering time r), the VL en-

ergy due to the nonlocal terms turned out approximately the
same as the ME contribution. However, this compound is
usually of intermediate purity. ' The nonlocal corrections,
which diminish with decreasing 7., might not be '.hat impor-
tant except for small tilt angles where the nonlocality might
remove the "almost degeneracy" seen in Fig. 2 for
0&20'. Higher order terms in the GL functional such as
anharmonicity may play a similar role.

In high fields, Takanaka and Nagashima's nonlocal GL
theory' for pure superconductors results in replacement of
P~ in the free energy expression with P~+ C2;P2,
(i =1,2,3). Here P„and P2, depend only on the lattice ge-
ometry. To predict the VL structure, one should know at least
the sign of coefficients C2;. ' However, calculation of vari-
ous Fermi surface averages entering C2; does not appear
feasible, and only rough estimates of C2; can be extracted '

from the 0,2 measurements. It is evident from Takanaka and
Nagashima's results that C2; decrease with rising tempera-
ture as (1—T/T, ) or faster. With decreasing r, these coeffi-
cients are expected to diminish further and eventually to van-
ish in the dirty limit, where all nonlocal effects disappear.
Therefore, the inAuence of nonlocality versus that of the ME
strain on VL structure should diminish in impure samples
and with rising temperature (where C2; decrease, whereas

P2 is T independent).

APPENDIX

2 2
Txz = ~xxzxQx+ ~xyzyQy I 2+ 2

Tyy k,y,yQ,
——+ Jx,yyyQ, ,

2 2
Tyz (~xyzy ~yyxz) QxQy I Tzz ~xzxzQx+ ~yzyzQy

The moduli P;,«are obtained by transforming from the
crystal frame, where they are denoted as C;:
X„,=C»cos 0+C33sin 0+2(CI3+2C44)sin 0 cos 0,

kxyxy C66cos 0+ C44sin 0

~xxyy C12cos 0+ C13sin 0&

kxx, =(Ctt —C,3
—2C44)cos 0 sinO

—(C33—Ct3 —2C44)sin 0 cosO,

X,yzy=(C66 —C44)sinO cosO, k = Ctt,

ky„.=(CI2—C&3)stnO cosO,

Xyzyz C44cos 0+ C66sin 0,

(C]t+ C33 2Ct3)sin 0 cos 0+ C44cos 2 0.

For Eq. (19) we need

S G S*= ((v, G„,+2v„v„G„+v„G„)Q,
C

+ vxz vyy Gyz) QxQy)/if (A 1)

for Q 4 0; we have used here H, o/4m= 6 C„T,(1 —t)
The Q=0 term in P2 (i.e., in —a;,(u,,)/2(f )) is estimated
from Labusch's result for the difference of strain in the su-
perconducting and normal phases: (u;, )/(f ) =)x„„In«.

The Fourier transform of the elastic Green function 6;, is
defined as the tensor inverse to T;,=QkQ, X;„,&. For ex.—

ample, G, = (Tyy T„T,)/—/3, where b, = detl T;, l. Further,
the moduli P; «with an odd number of y indices are zero,
and components of T;, are

2 2Txx= ~xxxxQx+ ~xyxyQy I Txy= (~xxyy+ ~xyxy)QxQy I
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