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Degenerate helix spin configuration supported by three-site biquadratic exchange
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Inequivalent Bragg peaks in the same direction were observed in the neutron-scattering cross section of
RbMnBr3, a hexagonal antiferromagnet of the ABX3 family. Here we show that a suitable higher-order
exchange interaction, such as a three-site biquadratic exchange, creates significant changes in the phase dia-
gram of a triangular Heisenberg antiferromagnet. Indeed an infinite degeneracy point appears in the neighbor-
hood where two helices coexist characterized by a wave vector in the same direction but with a different turn
angle. In addition a swinging helix characterized by a wave vector changing continuously in magnitude and
direction throughout its stability region is found.

I. INTRODUCTION

A wealth of spin configurations has been found in mag-
netic insulators in addition to the ferromagnetic and antifer-
romagnetic ones. Indeed, helix, cone, longitudinally ordered,
and multiply periodic structures were experimentally ob-
served and theoretically explained on the basis of suitable
exchange interactions and anisotropy terms. '

In spite of the many spin configurations already observed,
an unexplained magnetic structure was found by elastic neu-
tron scattering on RbMnBr3, ' a hexagonal antiferromag-
netic of the ABX3 family where A is an alkali element, 8 a
magnetic ion, and X a halogen. Indeed, two Bragg peaks at
inequivalent wave vectors in the first Brillouin zone were
observed at Q = (-', ~ 8, —',~ 8, —,') with 8=0.0183. ' The
well-known source of helix spin patterns is the exchange
competition and the helix wave vectors Q might corre-
spond to moderate values of in-plane next-nearest-neighbor
(NNN) and third-nearest-neighbor (TNN) competing
interactions, " but two different sets of exchange parameters
must be present in the sample. This hypothesis looks like
very artificial so that we propose here a more realistic model
that supports two different inequivalent Bragg peaks in the
first Brillouin zone.

Here we do not pretend to give a full explanation of the
surprising experimental data concerning RbMnBr3. We sim-

ply investigate a mechanism able to support coexisting heli-
ces characterized by different wave vectors pointing in the
same direction. We have identified as a possible source of
degenerate helices the three-site biquadratic interaction that
couples a spin with two spins of its nearest-neighbor shell.
The effect of such an interaction on collinear spin configu-
ration was studied by a random-phase-approximation (RPA)
approach. Here we consider the effect of that biquadratic
interaction on the helix spin configurations. In particular, we
consider a triangular Heisenberg antiferromagnet with a pos-
sible lattice distortion that accounts for the elastic Bragg
peak observed at Q+=(-', +8, —',+8, —,'). When the biqua-
dratic exchange is introduced we find that incommensurate
helices may occur even without lattice distortion. Indeed, the
competition between the antiferromagnetic exchange cou-
pling on the triangular lattice that leads to a 120 three-

sublattice configuration and the three-site biquadratic ex-
change that supports collinear configurations is sufficient to
yield incormnensurate helices.

II. GROUND-STATE CONFIGURATION

Since the strong antiferromagnetic coupling along the c
axis in a hexagonal structure assures antiferromagnetic order
in this direction we model the system by a triangular lattice
for simplicity reasons. Indeed, the configuration of the three-
dimensional (3D) model is the same layer by layer as that of
the 2D model we consider.

We account for a NN in-plane interaction and a three-site
biquadratic exchange interaction. We will show that this
higher-order exchange interaction recovers some features of
the unusual structure observed in RbMnBr3.

The Hamiltonian we consider reads

M= —g JgS; S;+a g Bra (S, S;+a)(S; S;+a')
i8 i8 8'

(2"1)
where 8 and 8' are vectors joining one spin at site i with
its six NN's at sites (~ a,0,0), (-,'a, ~ (Q3/2)a, O), and

( —
—,'a, ~ (+3/2)a, O). J~ is the exchange coupling and B~~

is the strength of the three-site interaction involving a spin
with two of its NN spins. The infIuence of this kind of
higher-order exchange contribution has been studied only by
a RPA approach for collinear configurations, where the main
effect was found on the order of the phase transition that is
first order for sufficiently large biquadratic interaction.

Here we show that this interaction has dramatic effects on
the minimum-energy configuration. We also account for a
possible lattice distortion along a line of NN spins in order
to account for helical configurations which differ from the
120 three-sublattice configuration one has for J&=J&0 and
B& &

= 0. The distortion we consider concerns the two
spins at (~a,0,0). They are supposed to interact with the
central spin via J' whereas the other four spins at
(+ 2a, ~ (Q3/2)a, O) interact with the central spin via J. The
biquadratic interaction is assumed to be B when 6'and 8' are
vectors joining the central spin at i with the four spins at
(~ ~&a, ~(+3/2)a, O); B' when Band 8' join the site i with
the spins at (~ 2a, ~ (Q3/2)a, O) and the spins at (~ a,0,0),
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respectively, and vice versa; B" when 8 and 6'' are vectors

joining the central spin with spins at ( a,0,0).
The reduced energy eo of the model in classical approxi-

mations (S—&~) reads

Eo
eo=

2 JlNS z
= 2 cosx cosy+ j&cos(2x)

2 I I I I

I

I I I I I I I I

I

I I I I

H,

+b[4cos x cos y+4bicosx cosy cos(2x)

+buncos (2x)], (2.2) Ht'

where x=-,'ag, , y=(+3/2)ag~, j~=J'/J, b=2BS IJ,
b

&

=B 'IB, and bz =B"IB. For an undistorted lattice jz = 1

and b)=bq=1.
The minimum-energy conditions are

—2—0.2 —0.1

b

I I I

0.1 0.2

—2 sinxtcosy+ 2jzcosx

+ 2b[2 cosx cos y+ bicosy cos(2x)

+4b, cos x cosy+2bzcosx cos(2x)])=0,

FIG. 1. Phase diagram at T=O for j&=1 and b=0.35.

with energy

—2 siny cosxtl+2b[2cosx cosy+bicos(2x)])=0. (2.4)
1 (bi —J„)

4b 4b(bg —bi)
(2.11)

The possible solutions are as follows.
(i) The antiferromagnetic configuration (AF) with x=0,

y = m or x = ~, y = 0 with reduced energy

eAF 2+jA+b(4 —4bi+b2) (2 5)

Sbbzcos x+ 12bb icos x+ (2jz+4b —4bbz)cosx+ 1

—2bb] =0. (2.6)

When all roots of Eq. (2.6) are real they correspond to one
saddle point and two minima. The minima correspond to two
helices we call Hi and H,', both characterized by wave vec-
tors pointing along a NN row.

(iii) A helix configuration Hz is a helix characterized by a
wave vector pointing along a NNN row with x=0 and y
such that

(ii) A helix configuration characterized by a wave vector
pointing along a NN row with y = 0 and x the solution of the
equation

It is reasonable to suppose that B=J, B ' =JJ', and
Bv (J/)2

Notice that the SH configuration is present also for the
undistorted model (jz ——1) provided that b) —,'.

Figures 1 and 2 show the zero-temperature phase diagram
for b=0.35, j~=1 and b=0.4, j~=1, respectively. The ori-
gin of the phase diagram where b& =jz, bz= j„corresponds
to an infinitely degenerate ground state as we will show be-
low. As one can see the SH configuration region spreads out
very quickly as the three-site biquadratic exchange coupling
b increases from 0.35 to 0.4.

The SH-H&, SH-H', , and AF-H& phase boundaries are
second order, whereas the H& H

&
and AF-H i phase bound-

aries are first order. On the H&-H,' transition line two in-
equivalent helices coexist. The turn angle characterizing
these two coexisting helices runs from 133.5 and 108.1 in
the neighborhood of the point H

&
-SH-H &, where infinitely

many helices coexist, to 180' and 101.1 at the triple point

1+2bb,
cosy =— (2.7)

2 I I

I

I

with energy
SH

(2.8)2ep= —
4b +j p bi+ b(bp bi)— —

(iv) A swinging helix (SH) configuration where the wave-
vector direction changes continuously throughout its stability
region according to the equations

AF

cosx =
4b(bp b,)'—(2 9)

—2 I

—0.4 —0.2
I I

0 0.2 0.4
b) —

3

1+b i (b i jz)I (bz —b i)—
cosy =

2b U'2+ (b i J'A) lb(b2 —b i)— (2.10)
FIG. 2. Phase diagram at T=O for j„=1 and b=0.4.
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FIG. 3. Phase diagram at T= 0 for jA = 2 and
b = 0.356 44.

FIG. 4. Infinite-degeneracy wave-vector loci for jA= 1 and se-
lected values of b.

H, AF H,' f-or b-=0.35 (see Fig. 1). The analogous values
for b = 0.4 are 148.6' and 98.4 at the point H&-SH-H&, and
180 and 96.7' at the triple point H&-AF-H& .

Figure 3 shows the phase diagram for b=0.35644 and

j„=I/Q2. Notice that for b=0 and j„=I/v2 the ground
state is a commensurate helix with a turn angle of 135, the
high-field phase observed in RbMnBr3. ' The H& and H,'

turn angles for b=0.35644, b, =j„, and b2=j„become2

142.9 and 128.1, respectively. These values correspond to
the Bragg peaks observed at Q in RbMnBrs. Moving along
the H&-H& coexistence line the turn angles of the two phases
become 180' and 119.7 at the triple point H&-AF-H,'.

Let us focus on the point bi =jz and b2= j„ofthe phase
diagram. At this point conditions (2.3) and (2.4) become

III. SPIN WAVES

=Ep+ 5+g Atdkcl'kcl'k,
k

(3 1)

where

In order to get the spin-wave spectrum to test the stability
of various configuratiolis near the infinite-degeneracy point,
we perform the customary steps introduction of a local
quantization axis, spiraling according to a helix of wave vec-
tor Q; transformation from spin operators to boson creation
and destruction operators keeping only the bilinear contribu-
tion; Bogoliubov transformation diagonalizing the bilinear
boson Hamiltonian. So doing, Hamiltonian (2.1) becomes

—2 sinx(cosy+ 2jzcosx)(1+2b[2 cosx cosy+ juncos(2x)])

(2.12)
Ep= —NS J(Q) —NS B(Q,Q) (3.2)

—2 siny cosx(1+ 2b[2 cosx cosy+ jAcos(2x)]) = 0.
(2.13)

is the ground-state energy in the classical approximation [see
for comparison Eq. (2.2)]. The phase diagram discussed in
Sec. II is obtained by minimizing Ep with respect to Q.

As one can see infinitely many wave vectors minimize the
energy. The infinite degeneracy lo-cus in the wave-vector
space is

I+2b[2 cosx cosy+ juncos(2x)]=0. (2.14)

Figures 4 and 5 show the locus of the continuous manifold of
wave vectors that minimize the ground-state energy for
j&=1 and j„=I/v2, respectively. As one can see in Fig. 4
the infinite-degeneracy locus shrinks to a point for b = —,', For
b(3 the infinite degeneracy disappears. The loci become
straight lines for b = —,'. The qualitative features are the same
for j„=1/Q2 as shown in Fig. 5 but the critical value of b is
now b = I/(2+2) . The straight lines occur for b = I/Q2.

In the vicinity of the infinite-degeneracy point H&-SH-

H,' the infinite degeneracy disappears but the two helices
H& and H& remain well-defined minima, one being the
ground-state configuration, the other being a metastable
state.

a5

Cg

V3)

0
0

(1/2)aq„

FIG. 5. Infinite-degeneracy wave-vector loci for jA=2 and
~ —1/2

selected values of b.
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N—SJ(Q) —2NS B(Q,Q)+ —,'g fi, teak
k

(3 3)
0.3

I I I I

j
I I I I

j

I i I I

j

I I I I

j

I I I

is the zero-point-motion energy. cvk is the destruction opera-
tor of a magnon of wave vector k and

0,2

J(k) = g J@os(k @, (3.4)
3

B(k,q) = P B~~ cos(k icos(q 8'), (3.5)
0.1

ft Cuk= JDkSk,

D„=2SQ cos(Q 6)[I —cos(k @]

(3.6)
0.0

0 0.2 0.4
(1,0)

0.6

X J~+2S g Bgg cos(Q 8')

—2S g Bzz sin(Q 6)

Xsin(Q 8'')sin(k @sin(k 8''), (3 7)

S„=2SQ [cos(Q 8) —cos(k 6)]

X J&+2S g Bqq cos(Q 8'') (3.8)

Dk= 8jJjS(/j z+ 2b[2b tX+ bz(2X —I )])

Notice that at the infinite-degeneracy point b, =j„,b2= j„~ 2

the magnon spectrum vanishes because Eq. (3.8) becomes
the product of two factors one of which coincides with the
left side of Eq. (214). In this case one has
Eo= —2j JjNS (1/4b) and 5=0 so that no splitting of the
infinite degeneracy occurs even though the first quantum cor-
rection is accounted for. The fact that the spectrum vanishes
at the infinite-degeneracy point suggests for disorder even
though we expect that the long-range order can be recovered
by higher-order terms in the expansion of Hamiltonian (2.1)
in terms of boson operators.

We are interested in the phases Hi and H,' for which the
magnon spectrum reads

FIG. 6. Spin-wave spectrum along (1,0) direction for b= 0.35,
j~ = 1, b

&

= 1.0314, and b2 = 0.9.

phase boundary. Notice the soft modes at the wave vectors
corresponding to turn angles of 160.3 and 101.8', respec-
tively. The soft modes range from 133.5' and 108.1', in
the vicinity of the point b

&

=jz = 1, b2 =j~ = 1, to 180 and
101.5' at the triple point H t -AF-H I (see Fig. 1).

In Figs. 7 and 8 we give the spectra of the configuration

Hi and Hi for b = 0.4, j~= 1, bi = 1, and b2= 0.95, and for
b=0.4, j&=1, b&=1.04, and b2=1, respectively. Notice
that the former choice of parameters makes the configuration

H,' stable and Hi metastable, whereas the latter choice
makes Hi stable and H,' metastable. As one can see the
magnon spectrum is well defined also in the metastable
phase.

Figure 9 shows the spectra of the configuration Hi and

H,' for b = 0.356 44, jz = 1/Q2, b t
= 0.705, and b 2

=0.475, a
point on the H, H,

'
phase bou-ndary (see Fig. 3). The soft

modes range from 142.9' and 128.1, in the vicinity of
bi =j&=0.707, b2= j&=0.5, to 180' and 119.7 at the triple
point H&-AF-H,'.

In the vicinity of the infinite-degeneracy point the spin-
wave spectrum along the (1,0) direction reduces to

I I I I

j

I l

0.20

/H, '

X (1 —cos x)), (3.9)

X[1—cos x —2X cosx(cosy —cosx)]

+2b(1 —X )[cos y+4btX cosx cosy+4b2X cos x]
CQ

3

0.15

0.10

Sk= 8
j JjS(j„+2b[2b tX+ b2(2X —I )])

X[X —cos x —2X cosx cosy], (3.10)

0.05

where X is the value of the cosx solution of Eq. (2.6), x=
2ak, , and y =(Q3/2)ak

In Fig. 6 we show the spectra of the configuration H& and

H,' along the (1,0) direction for b = 0.35, j„=1,
bi = 1.0314, and b2=0.9, a point on the first-order H&-H,'

0.00
0.2 0.4

I'1,0)
0.6 O.S

FIG. 7. Spin-wave spectrum along (1,0) direction for b=0.4,
j~ = 1, b

&

= 1, and b 2
=0.95.
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FIG. 8. Spin-wave spectrum along (1,0) direction for b=0.4,
j„=1, b, = 1.04, and b 2

= 1.

A &ok ——16~ J~Sb~ sinx(X —cosx)(1+2j&xcosx)
~

$1 —X

—j~(2X —1)+ 2X
1+2 XJw

where

2X —1

1+2 X( '
JA

(3.11)

1 1 1
2+

2Jg 2 J~ bj

for the phase Hi and

(3.12)

X=
1 1 1 1

+ — 2+ ——
2j~ 2 j~ bj„ (3.13)

for the phase H,' .
Notice the existence of the soft modes (Goldstone modes)

at x = 0 and cos 'X and "quasisoft" modes at x = ~ and (for
the Ht phase) at x=cos '( —1/2j„X). The Goldstone modes
are a well-known consequence of the symmetry of the
Hamiltonian. The "quasisoft" modes disappear if we account
for second-order terms in b t

—jA and b2 j„in Eq. (3.11)—. In

particular, for jA = I/Q2 and b = 0.356 44 the Goldstone
modes occur at x = 0 and 0.793 63~ (corresponding to a turn

angle of 142.8') for the phase H, and x=0 and 0.711 707r
(corresponding to a turn angle of 128.1') for the phase

FIG. 9. Spin-wave spectrum along (1,0) direction for
b=0.35644, j&=2 ", b&=0.705, and b2=0.475.

H,'. The "quasisoft" modes occur at x=0.152 72m (corre-
sponding to a turn angle of 27.5') for the phase H, and
x= 7r (zone boundary) for both phases.

IV. SUMMARY

The influence of a three-site biquadratic exchange on the
ground-state configuration and on the spin-wave spectrum of
a triangular Heisenberg antiferromagnet is considered in
Secs. II and III, respectively.

This higher-order exchange interaction was previously
studied in the presence of a collinear spin configuration,
whereas we consider generic helix configurations. We find

the coexistence of different helices H, and H', (see Figs.
1—3) with different magnitude but the same direction of the
helix wave vectors. This could be of interest to explain the
unusual elastic-neutron-scattering data of RbMnBr3 where
inequivalent Bragg peaks in the same direction were ob-
served. Also, we have found a swinging helix characterized
by a helix wave vector that changes continuously in magni-
tude and direction throughout its stability region.

Moreover, the point Hi-SH-H, ' is an infinite-degeneracy
point where infinite inequivalent helices minimize the energy
of the model. In Sec. III we study the spin-wave spectrum
with particular interest in the neighborhood of the H&-H,'

first-order phase boundary. We find that the spin-wave spec-
trum is well defined, so providing that H& can exist as a
metastable configuration where Hi is stable and vice versa.
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