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The ground-state energy of the large bipolaron is investigated by use of a variational approach and a
canonical transformation, which was introduced in earlier studies of the bound polaron. For the bipolaron the

transformation reproduces both the oscillator-type strong-coupling results and the weak-coupling limit. The
stability region for the bipolaron is compared with existing theories. The main advantage of the present method

is the transparency of the variational results. To the best of our knowledge, the present Ansatz yields the lowest
bounds predicted so far for two dimensions in the case of a~4.5. The theory is analyzed with reference to
materials with high (eo /e„) ratio.

I. INTRODUCTION

An electron in a polar crystal lattice interacting with the
longitudinal optical phonon modes is called a polaron. Since
the effective electron-phonon interaction is attractive, it en-
hances the electron's effective mass. If a second electron in
the phonon bath is taken into account, its interaction with the
phonons might overcome the electron-electron repulsion. If
so, the pair of electrons forms a stable bound state, called
bipolaron. Due to the competition between the opposite
forces, the bipolaron exists only in a small region of
electron-phonon coupling constant n and electron-electron
repulsion U. It is the aim of the present paper to contribute
to the investigation of this stability region.

Our theoretical description is limited to large polarons
described by Frohlich's Hamiltonian. '

Up to now, the model
can not be treated exactly, but a large variety of approximate
methods has been developed. The Feynman path integral
method is superior in the case of intermediate n. With this
method the phonons can be eliminated exactly, and the re-
maining effective electronic system can be studied with
oscillator-based variational principles. For operator methods
the main problem is the exact phonon elimination while si-
multaneously taking an appropriate electronic behavior into
account, i.e., describing the screening of the electron at short
distance by the polarization cloud of the phonons. Especially
the bipolaron must not collapse in one spatial point.

Many researchers propagate variational methods, wherein
wave functions are simulated clearly, but in general phonons
can only be eliminated approximately, except for very weak
and very strong coupling. Because of their simplicity, varia-
tional procedures offer the freedom to choose wave functions
nearly at will. However, a clear and appropriate bipolaron
wave function, accurate for all u, has not yet been found.
The price one has to pay for accurate strong-coupling results
seems to be a less accurate weak-coupling description. An
inadequate consideration of translational invariance or
phonon-phonon correlations might result in a positive u be-
havior of the ground-state energy for small n.

One should also remark that exact results are not known
for n —+~, but the actual estimates ' seem to be almost rig-
orous.

The lowest ground-state energy bounds for the bipolaron

were obtained by the variational calculation, for n~8, and
the path integral formalism, +~8. The lowest reliable criti-
cal n, =6.8, i.e., the onset of the stability region, has been
predicted in Ref. 4.

In the present paper we first present a transparent ansatz,
which is a generalization of the work by Devreese, Evrard,
Kartheuser, and Brosens (hereafter referred to as DEKB), to
estimate the ground-state energy of a system of N electrons
interacting with a longitudinal optical phonon bath. The for-
malism is subsequently applied to the bipolaron. The weak-
and strong-coupling limits are extracted analytically. The
ground-state energy is examined numerically and compared
with already existing bounds. Finally, we interpret our results
also in connection with possible high-T, superconductivity
and experimental data.

II. VARIATIONAL PRINCIPLE

The present work starts from the well known shifted-
harmonic-oscillator transformation

(
U=exp g (V/, pf- ak —H.c.)

which is here applied to the bipolaron formation. The trans-

formed Hamiltonian U, HUI is investigated by use of a
trial wave function of the type proposed in Ref. 6,

(
N

I+)= c+X l
k gj; X e ' fk elk 10)I4")

r

(2)

where fk and gk are variational parameters and c is a nor-
malization constant.

I P, ) represents the electronic part of
the trial function. For the bound polaron this ansatz can
reproduce the ground-state energy both for strong and weak
electron-phonon coupling limit to leading order. In the
present article the method is applied to a system of N po-
larons, whose Hamiltonian is
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with

N

H=H, +g akak+g g (Vk e'" "&ak+H.c.), (3)
k I, j=1

Minimization with respect to fk and g„*- leads to

l

kNV

e2l l

Q2
' ale eo

~=&~.IH. I~,)+ —,

N 2 N

J=1 j,j'=1

eU=— (4)

The electronic part H, of H includes the Coulomb repulsion
between the electrons and takes the form

The resulting energy functional thus splits into two parts. In
fact, the first contribution gives the adiabatic strong-coupling
limit, while y is most important in the intermediate- and
weak-coupling regimes. For the above Hamiltonian (3), y
has to be determined from a transcendental equation

-=- X I
v.-l'

lc

Z (k)

I
F(k)l' ( x~— ( ~, IH, IO, )-I+- z«)

2)
1

2

(6)

( N

H, =H. +X I v.-l' IPk '-X
I v. l' Pk& '"+ H'

k k /

and

Z(k)= y, g e'" ~"-" ~ y,

(
N

F(k) =
j=1

( N ) ( N

&i(k)= 4, Xe ' pk H Xe ' pk
)

Equation (5) is the same as that derived in DEKB apart from an extra parameter F(k), which yields small negative definite
contributions in y and hence lowers the energy. The present energy bound is therefore slightly more accurate than the one of
DEKB.

III. APPLICATION TO THE BIPOLARON

With the ansatz (2) the ground-state energy of the large bipolaron is evaluated. In the asymptotic limits n~O and n —&~

analytical expressions are obtained.
As already known from earlier calculations' ' the oscillator wave function represents a relatively simple, but adequate

description of strong-coupled polaronic problems. Furthermore, the use of center-of-mass and relative coordinates introduces
substantial simplifications. ' We therefore propose two types of trial functions (D=2,3)

4~(R ~)=
D

ab i' ~2R2 1 ( b2,2)
exp —

I exp — Fz

and

Aa(R r) =
2R2 b2 2)

exp l .exp ~Fg .
(
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The resulting expressions can be exploited in two ways. A
numerical evaluation of (5) as a function of n and U allows
us to plot the energy values and to compare them with al-
ready known bounds. From the point of view of exact re-
sults, analytical limits are important, since they allow to
judge the quality of the theory in the weak- and strong-
coupling limits.

Before dealing with the bipolaron, the related results for a
single polaron are briefly presented. Applying the described
ansatz to the Frohlich polaron an upper bound to the ground-
state energy has been calculated. Both the weak- and strong-
coupling limits were obtained, i.e. , E(n) = —n+ 0(u ) for
u~0 and E(n) = —(n /3vr)+O(1) for n —IIIII, where, re-
ferring to Ref. 10, the following scaling relation holds:

E2o( a) = -', E3D[(37r/4) n] Th.e three-dimensional (3D)
ground-state energy is lower than Pekar's result for n(30.
At weak coupling, it turns out that the coefficients of n are
positive. Improvements can be realized, e.g. , by including
the conservation of the total polaron linear momentum, as
was done by Ercelebi and Senger. " Furthermore, consider-
ation of phonon-phonon correlations (cf. also Refs. 12 and

13) in the wave function (2) would lower the bounds in this
regime. However, since the onset of bipolaron stability is
situated at relatively large n, the above mentioned deficiency
for cd~0 does not affect the bipolaron stability region essen-
tially.

By use of the bipolaron Hamiltonian we obtain the fol-
lowing results.

(i) For n —I0 the self-consistent equation (6) takes the
form

X

2

2A ~ —= —2m+ O(n ).
1 ——

2

The interaction between the electrons does not contribute to
first order in n. Two polarons with energy —n result. The
right-hand side of (9) thus gives the standard weak coupling
result. '

(ii) The strong-coupling case, n —+~, reveals large bipo-
laron formation, as is analytically seen from the following
considerations. Since the ground-state energy is expected to
be proportional to n (Ref. 15) the parameters a, b can be
scaled in terms of cv

a= y'u, b= Ba, U~n.

One can show that the leading contributions from y/2 are of
order O(1) and that the dominant contribution to the energy

for strong coupling is therefore given by ( @ l
H,

l P ). This
expectation value is examined here for both electronic wave
functions (7) and (8). The minimization of ( @ l

H,
l P )

leads to a rather complicated set of equations, but after the
transformation

cosO
k=cos0, a=2b . , X ~]0,1[,sin0 '

the energy can be written in terms of b and X for both types
of wave functions. In the case of (7) one obtains (3D case)

3b2 2U b 8n
2(1 —)~')

Minimization with respect to b yields

2
E„=— ( 1 —X ) (4 n )~ —U) .3'

Further minimization results in a factorizable cubic equation
for X from which the optimal X;„can be extracted.

V+ gV + 128
min 16

U
V= —,

(I
(12)

(3 V—gV +128) (64—V —V v'V + 128)

3072 n (13)

7 12.6 V—15.542 27 U

10 222.669—18 V
' a ' (14)

~ ~ I
i

~ I I I
i

I ~ I I I ~ I I

30

20

Var1
E

EL,

For the trial wave function P~, the minimization of

(P, lH, l P,) with respect to X involves the roots of a poly-
nomial of degree 8. An accurate approximation in closed
form can be obtained as follows. Numerical examinations of
this polynomial yields k;„=0.7. Improvements are obtained

by introducing a new parameter u, with k = u+ 0.7. The cor-
responding algebraic equation is then considered to first or-
der in u, leading (in 3D) to

TABLE I. Comparison of some characteristic values for the bi-

polaron stability region.
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3D

Present

8.1

0.131

Ref. 4

6.8
0.079

Ref. 5

7.3
0.14

10 15 20

2D
9c

3.5
0.158

2.9
0.079

FIG. 1, Boundaries of the three-dimensional bipolaron stability

region (compared with Feynman's polaron energies) from (7)
(E „&) as compared with the high coupling limit E and the param-
eter values of La2Cu04, EL,
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FIG. 2. Boundaries of the three-dimensional bipolaron stability
region (compared with Feynman's polaron energies) from (8)
(E, ~) as compared with the high coupling limit E„and the param-

eter values of LazCu04, EL, .
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FIG. 4. The two-dimensional bipolaron ground-state energy:
E, , [by use of (7)], E, z[by use of (8)], compared with: twice
Feynman's polaron energy E„(Ref. 17), path-integral calculation by
Verbist, Peeters, and Devreese Evpo (Ref. 4).

The error corresponding to our last approximation is about
10 in P and much smaller for the ground-state energy.

For the 20 case the procedure explained above leads to
the following results:

E = 2+2 7m X(1—X ) 1 ——+
2 16

(19)

128~
1 +

V

2

Es= (V —320V + V/V + 128 —2048);

(B) X;„=—,'o + 0.924 —0.058V

(16)

(17)

with relative errors of order 10 in the energy.
Another important aspect related to the stability region of

the bipolaron is the existence of a critical Coulomb strength

U, . The bipolaron can only exist for values of U
~ [+2cr, U, ], while U) U, causes the decay into two single
polarons. The system is therefore characterized by a param-
eter y:

—0.996/1 —0.194V+ 3.348x 10 s V~, (18) U Q2

N 1 xj'
yg=

E'p

0
%e denote by rg& the critical values of y as compared to the
Miyake energies, ' and by rg, those obtained from a com-
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FIG. 3. Our results E, , and E, z as derived from (7) and (8),
respectively, compared with other three-dimensional ground-state
energy bounds: twice Feynman's polaron energy Ep, (Ref. 17),
path-integral calculation by Verbist, Peeters, and Devreese Fvpo
(Ref. 4), variational calculation by Adamowski and Bednarek EA
(Ref. 5).

FIG. 5. Boundaries of the two-dimensional bipolaron stability
region (compared with Feynman's polaron energies) from (7)
(E, ,) as compared with the high coupling limit E„and the param-
eter values of LaqCu04, EL, .
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FIG. 6. Boundaries of the two-dimensional bipolaron stability
region (compared with Feynman's polaron energies) from (8)
(E, 2) as compared with the high coupling limit E and the param-
eter values of La2Cu04, EL, .

parison with Feynman's result' for two single polarons. For
n—+~ we obtain the same results as in Ref. 3 (see Table I)
but by analytical methods.

In the intermediate-coupling regime, (5) has to be evalu-
ated numerically. The results are shown in Fig. 3 and Fig. 4.
The ground-state energies according to both types of trial
wave functions (7) and (8) are shown and compared with the

energy for two polarons from Feynman's approach, and with
the results of Ref. 4. The second wave function (8) provides
a lower upper bound than the simpler choice (7). The implied
stability regions are shown in Figs. 1, 2, 5, and 6 for the trial
wave functions (7), (8) in 3D and 2D, respectively. A com-
parison with already predicted bipolaron ground-state ener-
gies illustrates the quality of our method.

The path integral formalism as used in Ref. 4 yields the
lowest-energy bounds in the intermediate-coupling region
and hence the lowest a, . For large u the variational ansatz
results in the lowest bounds (based on a trial wave function
with 55 variational parameters) and therefore predicts the
widest stability area. Our approach turns out to be quite ac-
curate in both regimes, and it improves the path integral
formalism in a wide range of n[n) 10(3D), n) 4.5(2D)].

An alternative variational approach has been investigated
in Ref. 18. It is based on a LLP transformation with space-

dependent displacement amplitudes fk(r), which have been
expanded in partial waves and applied to a wave function of
Coulomb type. However, the extracted values are obtained
by a comparison with polaron energies that are calculated
within the same method. Because of the less accurate de-

scription of the weak coupling behavior of these consistent
polaron self-energies, the results for o., must be handled with
care. Moreover, in Ref. 4 it has been shown that the path-
integral formalism leads to lower upper bounds on the bipo-
laron ground-state energy. As far as we know, the only two-
dimensional predictions for intermediate u are given in Refs.
4 and 18. To the best of our knowledge the present ansatz
yields the lowest bipolaron ground-state energy bounds for
u)4.5.

It might be relevant to interpret the present stability re-
gions in connection with experimental data. For the copper
oxide La2Cu04, measurements' of the normal plane predict
e =4 and so=50. Replacing these parameters in u and U
yields U= 1.53m. The present ansatz then shows critical u of
11.6 and 4.5 in three and two dimensions, respectively. In
fact, experimental measurements do not allow to determine
the bare band mass, so that a is not accurately known in this
system. However, bipolaron formation in La2Cu04 might be
due to LO-phonon effects. The inclusion of acoustical
branches will furthermore decrease the onset of the stability
region.

IV. CONCLUSIONS

We presented a transparent variational ansatz, which is a
generalization of the one introduced by Devreese, Evrard,
Kartheuser, und Brosens. The application to the bipolaron
system led to upper bounds for the ground-state energy. In
comparison with Feynman's polaron self-energies' the bind-
ing energy has been calculated. The implied stability regions
has been compared with earlier predictions (cf. Table I). With
a Gaussian type of electronic trial function (8) we obtained
the following critical parameters:

(3D) 8 1 (3D) 0 131 (2D) 3 5 (2D) 0 158

In summary, our method succeeds in deriving suitable bipo-
laron ground-state energies and analytical limits for weak
and strong coupling. Furthermore, it opens the possibility to
examine different electronic trial wave functions clearly.
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