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The evolution and stability of self-localized modes in an inhomogeneous crystal lattice are discussed. After
establishing the basic equations, appropriate time and space scales are introduced, together with a power
threshold. A mathematical stability theory, based upon an averaged Lagrangian analysis, concludes that the

system is stable for any mass defect, if the perturbation is symmetric. For asymmetric perturbations, only
single-peaked stationary states are stable. Finally, numerical simulations are presented that not only support the

theoretical work of the earlier sections but show clearly the evolution of the solutions from a range of input
conditions.

I. INTRODUCTION

Investigations of anharmonic effects on atomic vibrations
in crystals have increased considerably in recent years. Of
particular interest are studies of strongly anharmonic crystals
which demonstrate the existence of localized modes with
frequencies above the maximum frequency of the harmonic
crystal. These modes, which exist in perfect lattices, are
strongly localized about a particular lattice site. This site can
be chosen to be any lattice site because of translational in-
variance. Sievers and Takeno' have used the term intrinsic
localized modes (ILM's) to distinguish them from defect-
induced localized modes. Another term which has been used
is self-localized anharmonic modes (SLAM's).

An early discussion of ILM's was presented by Kosevich
and Kovalev who employed the continuum approximation
to the equations of motion. The latter were assumed to con-
tain cubic and quartic anharmonic terms, in addition to har-
monic terms. Solutions were obtained that correspond to en-
velope solitons whose spatial extent is large compared to the
lattice constant. Somewhat later, Dolgov treated the prob-
lem by solving the equations of motion for a monatomic
linear chain with nearest neighbor harmonic and quartic an-
harmonic interactions. He found ILM's of both even and odd
parity. Further work on the odd-parity ILM's has been re-
ported by Sievers and Takeno' and on the even-parity ILM's
by Page and Takeno. Cubic anharmonicity has been shown
by Bickham, Kiselev, and Sievers to lower the frequency of
an ILM and to be accompanied by amplitude-dependent
static distortions. Diatomic linear chains have been investi-
gated by Kiselev, Bichkham, and Sievers using two-body
potentials, such as those of Morse and Lennard-Jones. An
ILM was found with its frequency in the forbidden gap be-
tween the acoustic and optical branches but no ILM was

found with frequency above the top of the optical branch.
Kivshar has studied an ILM localized at an impurity atom.
When the impurity mass is larger than that of the host atoms,
the ILM has double maxima, otherwise it has a cusped maxi-
mum. In both the cases, when the impurity mass is larger, or
less, than that of the host atoms, the envelope of the ILM has
a discontinuity of slope.

This paper discusses the modes localized at an impurity
atom. The basic dynamical equations, and the route to a
modified nonlinear envelope Schrodinger equation, are
quickly established. The solutions proposed by Kivshar are
then highlighted but useful linear and nonlinear times scales
are introduced to cast the envelope equation into dimension-
less form. In this way, it is easy to see the magnitudes of the
spatial and time scales, over which the localized modes de-
velop. It is also straightforward to produce an amplitude
threshold for the effect.

A perturbation theory, resting upon an averaged Lagrang-
ian technique, is then developed, in which a multiparameter
trial function is introduced. The resulting reduced Lagrang-
ian enables the reduced Hamiltonian to be picked out and
hence an effective potential energy function to be defined.
The second derivative of this function immediately reveals
a mathematical condition for the stability of the nonlinear
system.

Finally, a full numerical simulation is presented which
demonstrates the existence of the single and double peaked
stationary states. The numerical work also completely sup-
ports the mathematical conclusions that were obtained from
the Lagrangian analysis.

II. LATTICE DYNAMICAL EQUATIONS OF MOTION
AND SOLUTIONS

The vibrations of a monatomic linear chain of atoms, with
mass m, are considered. Each atom interacts only with its
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nearest neighbors via an interaction potential consisting of
harmonic and quartic anharmonic terms with force constants
k2 and k4, respectively. The equations of motion are

mu„= k2(u„+ i+ u„ i
—2u„)

+k4[(u„+, —u„) +(u„,—u, ) ],
where u„ is the displacement of the nth atom. Note that here
the cubic force constant, k3, is omitted. The investigations of
Bickham, Kiselev, and Sievers show that self-localized vi-
brational modes are stable, however, even for large cubic
anharmonicities. Hence, although the frequencies of station-
ary modes are actually a function of k3, for a given k4, the
effect of finite k3 on the localized modes studied here is
considered to be small.

In the harmonic approximation, for which k4=0, the so-
lutions to Eq. (1) for an infinite chain can be written as
u„=A exp[i(kan —an't)], where k is the wave number, a is
the lattice constant, and cu is the angular frequency given by
co = cu sin(ka/2). The maximum frequency co is
2(k2/m)" . If quartic anharmonicity is switched on, ILM's
can exist at any lattice site provided the anharmonicity is
sufficiently strong. ' The frequency of the odd-parity ILM is
given, within the rotating wave approximation, by

impurity site. For M&m, however, xo is positive and the
impurity mode has two maxima at x= ~xo.

III. THE MODIFIED NONLINEAR SCHRODINGER
EQUATION AND ITS SOLUTIONS

The lattice displacement u„(t) is assumed to have the
form

1
u„(t) = —( —I )'P,(t)e™+c.c. (7)

BP(x, t) a 8 i/f(x, t)
i=/(x, t) ~a +-

Bx 2 Bx

Note that, in q. (7), the fast time variation is factored as
e'"m', leaving i/t„(t) as a slowly varying function. This, so-
called, slowly varying envelope approximation permits the

neglect of P„, in comparison with P„.For a chain of atoms,
with a site label n and an interatomic distance a, a continu-
ous variable x= na can now be introduced to cast the equa-
tion for P„(t) into an envelope equation for P(x, t). The
transformation from the lattice equations of motion to a dif-
ferentiable equation for P(x, t) can be effected by setting

3 a~ 27k4A' ~

and this must be greater than co . The displacement pattern
is approximated by u„: A(. . . , 0, —

—,', 1, ——,', 0).
If an anisotropic impurity of mass M is introduced at the

lattice site n=0, the equations of motion are Eq. (1) ap-
pended by (m —M)u„8„o, where B„o is the Kronecker delta.
In the harmonic approximation a localized impurity mode
exists' if M (m and has a frequency greater than ~, given
by

M /' M iM 2m)
2 ——

m ( m

(3)

When quartic anharmonicity is included, the frequency of the
localized mode is approximatelyt1113J

co'=2k, ~

—+ + —k4A' 1+
M 2m' 2 i 2' i (4)

A exp(iAt)
cosh[B(~x~ —xo)]

'x, t) =

where B =6k4A /a k2, II=(3/4)ai k4A lk2, and xp
specified by

aB tanh(Bxo) = —2(m —M)/m.

For M(m, xo is negative and the mode profile is similar to
that in the linear case with P(x, t) having a maximum at the

and the displacement pattern
A(. . . , 0, —(M/2m), 1, —(M/2m), 0, . . . ).

Kivshar treated the impurity problem in the continuum
limit and obtained the envelope soliton solution

If an isotopic impurity exists at a lattice site then the Kro-
necker B„o becomes the delta function 8(x) and the final,
modified, form of the nonlinear Schrodinger equation is

8$ ak28 p 12k4
2ico + 2 +

~ P P——aalu p, 6(x) P,Bt m Bx m

where p, =m —M/m is the mass defect parameter.
There are a number of ways now to introduce character-

istic times, or lengths, in order to turn the nonlinear Schro-
dinger into a dimensionless, generic, form. " The method
chosen here introduces characteristic times tD and tNL,
which are defined through the following arguments. The fun-
damental stationary state solution of the homogeneous equa-
tion has a hyperbolic secant form, with respect to the vari-
able x, and ~u~ will remain constant in shape as time, t,
elapses. Any initial condition, such as a Gaussian shape, will,
provided a certain threshold amplitude is exceeded, for a
given half-width, evolve in time to the hyperbolic secant
soliton form. For the lowest initial energies, this is done by
shedding unwanted energy until the stationary state is
achieved. If the nonlinearity is not sufficiently strong to con-
tain the localized mode in the x direction then it will delo-
calize (spread) and will do so with a characteristic time
t D2[D coom]/(a k2), which is roughly twice the time
taken for an initial Gaussian-like pulse with a width Do to
double its size. If the amplitude P is P,„u, where P is
the maximum amplitude, and u is now dimensionless, then
a nonlinear time tNL=(mes )/(3k4$ ) can also be defined.
In the absence of the "spreading" term (a k2/m) P, ,

the solution of Eq. (9) is P= P(x,0)e'4'~"i, where

@(x,t) =2(tlt N„). Hence, tNL/2 is the time that elapses for
the nonlinear phase shift to become 1. If t is now measured
in units of tD, x in units of Do, and P in units of P, then
the nonlinear Schrodinger equation becomes
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(u(x) )
Ak

8 2

H= ——)u['+ 2ub(x) iud'.
Bx

(13b)

/
' Il

/ /

/ /

I
t I

I

/
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I n

2

u(x, t) = posech[po/x/ —Ao]e'~o', (14)

The stationary solution of Eq. (10) is, in a more general
form,

FIG. 1. Sketch of the stationary state solutions. Perturbations
8A and ( are also indicated on the figure.

Bu 8 u tD
i ++—2 ~u~ u=2pB(x)u,

Bt Bx tNL
(10)

where t =
tDt ', x =D px ', p =,(pwu Do l akim) p, and the2

dashes have been dropped for notational simplicity. The ratio

where b, o satisfies potanh(b o) = p, .
Note that here an amplitude p0 has been introduced and

that p0 is also the reciprocal of the half-width, as it is re-
quired to be for a solitonlike, localized, solution. p0=1 re-
duces Eq. (14) to the solution previously discussed. The
single peak solution occurs for 50&0 and the double peak
solution occurs for 50)0. The use of p0 here is to introduce
the amplitude, specifically, and then to determine how this
evolves in time, in response to a perturbation.

If the solution (14) is perturbed it will take the form

l
x&0:u+ = i7qsech[pqx —Az]exp (pox —Az)

2p2

t~ 6Dok4$
a k2

is an interesting quantity, because it must be unity for Eq.
(10) to possess exactly the lowest-order soliton (hyperbolic
secant) solution. The ratio shows that, for a homogeneous
lattice and a given D0, the threshold condition for the lowest
stationary state is

+ 2 (p2x A2) + l pOt
2p2

l
x&0:u = rt, sech[p, x+6, , jexp (p,x+8, , )

P1

iC1 2 ~ 2~(pix+5i) +ipot,
2p1

(15a)

(15b)

m (12)
where the (i z are analogous to velocity and C, z are spatial
phase changes, called chirp in nonlinear optics and radar
physics. The boundary conditions

The solution of Eq. (10), for t D I tNL = 1, is
u = sech(~x~ —xo)e", where xo= tanh '(p) locates the peak
of the function, which is a dimensionless form of the one
derived by Kivshar. The x-dependent part of the solution,

~u~, is sketched in Fig. 1, where the solid curve corresponds
to p,(0, and the two-humped dashed curve corresponds to
p,&0.

The discontinuity in duldx is clearly in evidence at x =0.
The mathematical solutions of the modified nonlinear Schro-
dinger equation are interesting but it remains to be seen
whether they are stable for all p, . It is also important to study
the evolution of these solutions from various input condi-
tions.

IV. STABILITY OF THE SOLUTIONS

For triltNL= 1, Eq. (10), through the application of the
Euler-Lagrange equations, comes from the Lagrangian den-
sity

du +'

-d --0
= 2p, u(0); u(+0) = u( —0)

lead to the relationships

~7zsech(hz) = i7&sech(h, ),

p, tanh(A, )+p, tanh(A, ) = 2iu„

(z Cz gi Ci
2 p2 2 p

$2 C2 ~ $1 C,~+2 2 2 1 2
P2

If the energy conservation is expressed as

(16)

(17a)

(17b)

(17c)

(17d)

l Bu Bu Bu——+
I
u I' —2u ~(x) I

u I'
2 Bt Bt Bx

(13a)

and the corresponding Hamiltonian density is then



52 EVOLUTION AND STABILITY OF SELF-LOCALIZED MODES. . . 12 739

2 2
71 '72—[tanh(A i) + 1]+—[1+tanh(52)] = 2Po[1+ tanh(Ao)]

P1 P2

how the parameters in solutions (15) vary as the localized
excitation develops. The averaged Lagrangian is

=2E. (19)

Following Whitham's method, ' the Lagrangian density L is
averaged, by integrating over x, as a prelude to determining where

Ã'= L dx= &++M~
J —~

l 1 A2 &(2 1 (2 862 1 (262 BP2 1 42 BC2+- +—
2 P2 ot 2 P2 ot 2 P2 ot 2 P2 Bt

C262 852 C242 BP2 2 (2 C2 2 (2C252 2 /2+ g2' —
I 1+tanh(52) ]

P2 Bt P2 Bt 4 P2 P2 ) P2

~~2 C2 ~~2 ~2 ~ 2 C2~2 ~P2 2~2 72+ 2 $2C2+ —2[in cosh(b, 2)+62+ln2]2 Bt P2 Bt P2 Bt p2 Bt P2 ) p2

2

+ C2 —&F(62) — [p2+ 27&][1+tanh (52)]—p, r/@sech (52), (20)

~here (F(42) = fox sech (x b, 2)dx, —and W~ is generated
by replacing A2 by 5 &, (2 by —(i, p2 by pi, g2 by r/i&t,

and C2 by —C

p 1 l 2

3 tanh(b, o) tanh (5) tanh(A) tanh(5o)
(23)

Symmetric perturbation

The aim now is to discover whether solutions are stable
for all p„, or only for one sign of p, . This will be important
information showing whether both the single peak (p, ~0)
and the double peak (p)0) solutions are both stable with
respect to symmetric perturbations. A symmetric perturbation
will be defined as (see Fig. 1)

8 U

8( 1/tanhA )
0

2
p ~~ 0.2

3
(24)

Hence the localized states are stable for all p, .

The stationary point of U is at tanh(A) = tanh(5o) and the
second derivative is

51=52=A = 60+ 8'5, —6=6=( —C1 —C2 —C,
Asymmetric perturbation

P1= P2 P 71 V2 7.

These conditions simplify the conditions (17) and (19) to

4P
2A '

tanh (5) '

For this type of perturbation

(i =(2=( ~i=~o —~~,~2=~o+ ~~

and the relationships (17) simplify to

1+tanh (b, o) p
1+tanh(b ) 1+tanh(4)

E. (21)

2 p, cosh(A, )

sinh(b, &)+sinh(62) ' (25a)

For this symmetric perturbation, M~+ =M =—W~~ so the re-
duced Hamiltonian is

2p, cosh(b, 2)

sinh(A, )+ sinh(b, 2)
' (25b)

1M= p, p[1 —tanh(h)]E —r/ E+ —( y + p )3

2F
X [1—tanh(b, )+ tanh (A)]E+ 2 ( (22)4pk

from which a potential function U can be easily identified. If
the constant E is absorbed into U, then after some labor,

P1 P2
C&=& (, C2=

&1 2
(25c)

These new relationships satisfy both the boundary conditions
and energy conservation. The reduced Hamiltonian, +Y~+

can easily be picked out from (20) and then manipulated by
(25) to
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The potential function is

2-
I

2
I

3
1

4
1

5 6

3

U= —[2 tanh (52) —3 tanh(Az) —1]
3

3

+ —[2 tanh (5, ) —3 tanh(A, ) —1]

+ p, [p z sech ( j!tz) + p, sech (5 t )]. (27)

)0, p, ~o
d(8'5) (0, p,)0 .

p

(29)

FIG. 2. Variation of localized state (soliton) threshold with

(Do /a). The dotted line gives the thermal value of the root mean

square displacement.

d U

d( pg)2
= POP'(Po+ P') (28)

but, p, = potanh(ho) so that (po+ p))0. Hence

The second derivative of U with respect to 6A, evaluated at
Ap, 1s

This result means that, for an antisymmetric perturbation the
single peak solution is stable, while the double peak structure
is unstable. The overall conclusion is that the single
peak bound state is always stable and that the double peak
is only stable with respect to symmetric perturbations. This
conclusion, regarding the double peak case, is a modification
of the conclusion drawn by Kivshar that this stationary
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FIG. 3. Evolution of the nonlinear localized
modes with time, for various input functions at
t=0. The transverse x scale is measured in units
of Dp = 4a = 1.6 nm and the time scale is in units
of (Domcu )l(a k2) =0.16 ps. (a) Evolution to-
wards the sharp, single peak, stationary state,
from a sech(x) input, for p, = —0.89. (h) An at-

tempt to evolve the double peak state from a
sech(x) input, for p, =0.89.

7.0



EVOLUTION AND STABILITY OF SELF-LOCALIZED MODES. . . 12 741

0.16-
0.14-
0.12-
0.10-
0.08-
0.06-
0.04-
0.02-
0.00-
-7 0

-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
-0.00
12.0

FIG. 4. Evolution of an asymmetric pertur-
bation of the single-peak localized mode for the
lattice data of Fig. 3. p, =0.89 and the input
function is [sech(x —xi), x)0], [sech(x —x2),
x~O], where x, =0.95 tanh ' (p) and xz
=1.05 tanh '(p, ).

state is always unstable. The main features of the simple
result quoted by Kivshar can easily be obtained from the
work reported here by setting p] = p2= pp, p, ~—2p, ' and
62= 65,A&= —6A. These assumptions are consistent with

! p, !&&1 and lead to

If the pp terms are absorbed in U then a new potential U'
can be dehned where

2p pp

cosh ( M, )

U= —2P, 'Posech ( M, ) —'-, PPp. (30)
which would lead to the conclusion that the potential is re-
pulsive for p, '(0 (p, )0) and instability always ensues, no
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FIG. 5. (a) Evolution of a symmetric per-
turbation of the double-peak mode for the crystal
data of Fig. 3. p, =0.89 and the input function is
[sech(x —x,), x~O], [sech(x+x, ), x(0], where

x, = 1.1 tanh '(p). (b) Evolution of an asymmet-
ric perturbation of the double-peak mode for the
same crystal data. The input function is
[sech(x —xl) x~O], [sech(x+x2), x~O], where

x, =0.95 tanh '(p), x2 ——1.05 tanh '(p), and

p, =0.89.
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matter what the symmetry is. In the next section, the station-

ary states and stability tests will be produced numerically.

V. NUMERICAL ANALYSIS

1
=2.12X 10

a
'

(Dp/a)
' (32)

This can be compared with the thermal mean square dis-
placement, which is estimated to be (u ) =(ktiT)/k2, where

kz is Boltzmann's constant and T is the absolute tempera-

ture. For T=300 K, for example, g(u )/a=10 . Figure 2
is a plot of P /a against (Dp/a) and it also shows the

estimated value of g(u )/a. This very simple demonstration
of the threshold condition for the localized state reveals that,

The nonlinear envelope equation (10) will now be solved
numerically, not only to check the existence of the single
peak and double peak solutions, but to check the analytical
stability conclusions of the previous section. For numerical

purposes, the delta function is defined as 8'(x)
= ( I/ga ~)exp( —x /e), where a is taken to be as small as is

consistent with numerical convergence, e.g. , typically,
a = 5 X 10 . The modified nonlinear Schrodinger equation

(9) is actually solved, here, using a beam propagation
method, for various types of input conditions.

The data for all the figures are Do/a=4. The transverse
length scale is measured in units of D0=4a=1.6 nm, the
time scale is measured in units of 2Dpmco /(a k2) =0.16
ps, and the modulus of the amplitude is measured in units of

. For each case, P satisfies the threshold condition for
the existence of the solitonlike localized state. The excita-
tions are allowed to evolve sufficiently, in time, for station-
ary states to be assured, or for any perturbations to expose
stability, or instability. The data selected are merely typical,
and possible, for the purposes of illustration.

~(m —M)/m~ =0.1 is used, which means that M/m=0. 9.
This figure could correspond to P in Si, or Mg in Si. From
xp=tanh '(p), the dimensionless ~xp~ used in these calcu-
lations is 1.42.

Using a Lennard-Jones potential, from which the second
and fourth derivatives, evaluated at the minimum position,
yield k2 and k4 leads to

resting upon the estimates given here, the soliton threshold
for Do la =4 lies belo~ the room temperature thermal line.

The single peak and double peak exact solutions propa-
gate without change of shape. On the other hand, Fig. 3
shows the evolution, with time, of an initial state that has the
form sech(x). It is quite interesting, to see how this nonexact
input shape propagates in time. Figure 3(a) shows that, for
p, (0, a sech(x) input evolves to take on the appearance of
the single peak solution. For p,)0, Fig. 3(b) shows that us-

ing a sech(x) input form is rather a severe test. The final

stationary state here ought to be the donble peak structure.
This, clearly, does not appear to be happening and the expla-
nation is that such an input is equivalent to "squashing" the
two peaks together, thereby creating a strong repulsive po-
tential. This repulsion not only forces the peaks apart, but
also imparts "momentum. "Hence, instead of settling onto a
double peak, stationary, state, the two peaks continue to "Ay
apart, " each with a finite velocity.

The next set of computer experiments is devoted to an
investigation of the stability. First, the evolution of the
single-peak mode, subjected to either a symmetric, or anti-
symmetric, perturbation, is studied. In the unperturbed state,
the single peak structure is defined as sech( x~

—xp). The
symmetric perturbed state is created by shifting the value of
xp to l. lxp (larger shifts achieve only the same effect). An
antisymmetric perturbation is achieved by using sech
(x —xi) [x)0] and sech(x+x2) [x~0], with xi =0.95xp
and F2=1.05xo. For both types of perturbation, a good
single peak stationary state evolves after 12 time units have
elapsed but, naturally, an asymmetric perturbation takes
longer to evolve. This is demonstrated by the noise on the
surface plot in Fig. 4. The second set of stability plots con-
cerns the double-peak structure. This double peak structure is
inunune [Fig. 5(a)] to the symmetric perturbation, but Fig.
5(b) shows that it is dramatically broken up by an asymmet-
ric perturbation
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