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Statistics of avalanches in martensitic transformations. II. Modeling
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Using a scaling assumption, we propose a phenomenological model aimed to describe the joint probability
distribution of two magnitudes A and T characterizing the spatial and temporal scales of a set of avalanches.
The model also describes the correlation function of a sequence of such avalanches. As an example we study
the joint distribution of amplitudes and durations of the acoustic emission signals observed in martensitic
transformations [Vives et al. , preceding paper, Phys. Rev. B 52, 12 644 (1995)).

I. INTRODUCTION

The study of avalanches has received an increasing atten-
tion during the last years, since the appearance of the ideas
on self-organized criticality. A large number of experiments
has been performed in order to analyze the statistical prop-
erties of avalanches in a great variety of systems ranging
from earth crust to superconducting thin films. Most of the
studies have been devoted to demonstrating the absence of
intrinsic temporal and spatial scales in the systems, rejected
in power-law statistical distributions of different magnitudes.
Concerning the spatial scales, although the size (volume,
area or length) is difficult to measure directly, it has been
possible to measure changes in related magnitudes like mag-
netization (for magnetic materials), ' mass (in sandpiles), '

acoustic emission (related to the avalanche advance), ' re-
sistance (in superconducting films), and capacitance (in hys-
teretic capillary condensation). ' On the other hand, concern-

ing the temporal scales, both the duration of the avalanches
and the waiting times between them have been experimen-
tally investigated. A number of these experiments have also
shown the existence of 1/f-like noise arising from the distri-

bution of the avalanches.
In this paper we provide a general mathematical frame-

work for experiments simultaneously measuring two magni-
tudes of the avalanches, characterizing their spatial scale
(A) and duration (T). The phenomenological model we are
proposing will be applied, as an example, to recent measure-
ments on acoustic emission (AE) in martensitic transforma-
tions (part I). The main goal is to describe the avalanches in

terms of the joint probability distribution p(A, T). This rep-
resents a step forward from the standard analysis of the mar-

ginal distributions p(A)-A and p(T)-T ' allowing the
measurement of the exponents u and ~. Our model for the
joint probability distribution characterizes unambiguously
the relation between A and T which is determined by the
exponent x (A —T'). The model, together with an hypothesis
on the shape of the signal associated with each avalanche,
also enables a correct description of the time correlation
function and its power spectrum. It should be mentioned that
a first model for a joint probability p(A, T) was used in the
study of the Barkhausen effect in ferromagnetic metals, but

it was restricted to find the relation between the marginal
distributions and the power spectrum as proposed by
Christensen et al."

II. DISTRIBUTION FUNCTION MODELING

Let us consider the joint probability density
p(A, T) dA dT describing the probability of having a sig-
nal with an amplitude within A and A+dA and a duration
within T and T+ dT. The two marginal probability densities
are given by

~max

p(A)= p(A, T) dTJr,„

~ max ~max

p(A, T) dA dT=1
"+min "rmin

We are concerned with the study of a joint probability
distribution leading to marginal power-law distributions:

p(A)-A (4)

p(T) —T

We propose the general scaling form

p(A, T)=g(A/T )A~fr(T)

with the function g(Z) being a "well-localized" distribution
function with a maximum around Zo and strongly decaying
for higher or lower values of Z. The scaling with the variable
Z =A) T' provides a precise definition of the exponent x. The
functions g and fr can always be redefined so that

p(A, T) =g*(A/T')fr*(T) In this case, the marginal . distri-
bution for T would be

~~max

p(T) = p(A, T) dA
" ~min

where T „,T;„,A „,and A;„are the upper and lower
cutoffs for T and A imposed by each particular experimental
setup and within which p(A, T) is normalized, i.e.,
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~max

p(T) = p(A, T) dA =
~ ~min ~ ~min

g*(A/T') fr*(T) dA

which, under the change A —&Z=AIT' reads IllaX

(8)

Under the assumption that g(Z) is a well-localized func-
tion, the integral in (8) is a constant, independent of T, pro-
vided that (A;„/Zo)" (& T(&(A,„/Zo)" By .comparison
with the power-law assumption for p(T) [Eq. (5)] one gets

fr*(T)—T ' '. Now, the marginal distribution p(A) can be
calculated as:

~ ~max~max

p(A) = p(A, T) dT= g*(A/T') T ' ' dT

The change of variable T~Z=AIT leads to the desired
power-law dependence p(A)-A, and to the exponent re-
lation

x(n —1)= (r 1)— FIG. 1. Schematic diagram of the behavior of the crest of the
joint distribution inside the experimental window.

r= —x(y+ 1)—6' (12)

Among the three equations (10), (11), and (12), only two
of them are independent. By symmetry arguments, the same
result can be obtained under the assumption
p(A, T) = g(A/T')fz(A)T and imposing (4). Thus, the most
general joint distribution with power-law marginal distribu-
tions that displays a A- T' dependence has been found to be

p(A, T) =g(A/T ) A~ T (13)

where, in principle, there is a degree of freedom in choosing
the function g, and the exponents y and 6. Such freedom
will disappear on choosing a function g depending on a few
parameters, like a Gaussian or a similar shaped function.

A two-dimensional (2D) histogram of such probability
distribution will exhibit a crest between the two lines defined

by Bp/BA=0 and Bp/BT=O giving the two conditions

8 lng(Z)
8 lnZ

(14)

Bp =0
BT

8 lng(Z)
8 lnZ x

In a ln(T) vs ln(A) map, these two last equations corre-
spond to two parallel straight lines with slope x, defined by
AIT =Z& and AIT =Z&. In Fig. 1 we represent a schematic
2D log-log map indicating these two lines defining the crest,
in two different positions inside the experimental window
defined by A;„, A „,T;„,and T „.In the inset we also

Straightforwardly, from the definition of fr~ one gets

fr(T) —T and the following exponent relations:

show the behavior of the function g(Z) in log-log scale and
the position of the values Zo (maximum), Z„(with slope
—y), and Zr (with slope 8/x) for a case x)0) —y~ 8/x.
Note that the position and the smoothness of the crest is
related not only to Zo but also to the exponents y, 6, and x.
We can guess the position of the crest around

Z, =(Z„+Zr)/2. Although Z, does not need to be close to
Zp, once the signs of the exponents y, 8', and x are fixed, the
position of Zo should be compatible with the picture shown
in the inset of Fig. 1, i.e. , for the case x~0~ —y&8'/x the
following inequality holds: Zo&Z~&Z, &Z~.

In order to fit the distribution given by Eq. (13) to the
histograms obtained from experimental data, the first point to
consider is the experimental window. Since we are dealing
with decaying power-law behaviors, the experimental upper
cutoffs at A,„and T „do not usually represent a problem
for the interpretation of the data. In practice, the actual upper
cutoffs will be determined by the lack of statistics. For the
lower cutoffs one should distinguish the two possibilities
shown in Fig. 1. If Z, =Zz—-Zz-&&Z&; with Z&; =A;„/
T,„, the marginal distributions p(A) will not be distorted
by the window, but p(T) will exhibit a bend for
T( (A;„/Z, ) ' '. On the contrary, if Z, =Z„=Zr~& Z~;

p(T) will not be distorted but p(A) will exhibit the bend for

III. DISTRIBUTION FUNCTION FITTING

As an example of the usefulness of the model proposed
above we use it, in this section, to describe the distribution of
acoustic emission signals in thermally induced martensitic
transformations (Part I). We will analyze separately data cor-
responding to the forward (cooling) and reverse (heating)
transformations. As discussed in the previous paper,
the experimental window is defined by A;„=4X10 V,
A „=5X10 V T;„=10 s and T „=5X10 s.
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cooling and heating, respectively. They have been obtained
using logarithmic bins of size 0.1 decades in both magni-
tudes A and T. The behavior of the crests can be estimated
by joining the points of maximum curvature of the contour
levels of the distributions. They roughly follow a line with
slope x —1 and a value Z, -10 V/s for both cooling and
heating. Considering x= 1, the experimental window mar-

gins result in a value of Z&; =A;„/P;„=40 V/s. Therefore,
in this case Z, (Z&; and we could expect an undistorted

p (A) and the occurrence of a bend in p (T) around
(A,„/Z,)" =4X10 s. This value is close to the actual
position of the bend.

As detailed in part I, by least-squares fitting to the mar-
ginal distribution one can obtain u = 3.8 ~ 0.8 and
v.=3,6~0.8 for cooling and m=3.5~0.8 and 7.=3.5~0.8
for heating. These values render [through relation (10)] an
exponent x= 1.0~0.5 for both cooling and heating, consis-
tent with the behavior of the crest observed in the log-log
map of the joint distribution [Figs. 2(a) and 3(a)]. An inde-
pendent method for the estimation of x is to use any of the
conditional mean values of T for a given A or A for a given
T, defined as

FIG. 2. Comparison of the experimental joint distribution map
(a) with the theoretical fit (b) for cooling. The lines in the upper
figure correspond to (A

~
T) and (T~A) defined in Eqs. (16) and (17). (T~A) = ~ T dT-A'

p(A)
(16)

Figures 4 and 5 of part I show the log-log plots of the
histograms corresponding to the marginal distributions p(A)
and p(T) for AE signals recorded during cooling and heat-
ing. Note that the window effect is clearly observed in the
distribution of durations p(T), which shows a bend at
T- 8 X 10 s, a value much higher than T;„expected from
the experimental window. For the sake of comparison to the
present model, in Figs. 2(a) and 3(a) we show the map of the
2D histogram of the experimental data in log-log scale for
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(A~T) = A dA-T
J A.,„p(T) (17)

t ~max ~ Tmax

p(Z)dZ= p(A, T) dA dT . (18)
J Amm J rmin Z=const

These are easy-to-compute alternatives to the two equations
(14) and (15). Usually the estimation of the maximum of a
function is noisier and less accurate than the estimation of
the mean value. The conditional mean values are shown in
Figs. 2(a) and 3(a) on top of the maps of the experimental
joint distributions for cooling and heating, respectively. The
continuous line represents (T~A) while the dashed line rep-
resents (A~T). The results are compatible with the power-
law behaviors in Eqs. (16) and (17). The breakdown of the
power-law behavior of (A

~
T) for small values of T is due the

window effect explained above. A fit to (T~A) renders
x = 1.0~ 0.1 for both heating and cooling. This value is com-
patible with the behavior of (A

~
T) for T) 8 X 10 s s.

After completion of the fit of the marginal distributions,
and given the exponent relations (11) and (12), we should fit
compatibly the function g(A/T') defined in (13). Since the
2D fitting is often difficult and less stable, it is better to use
a 1D projection of the function g. To do so, we calculate the
marginal distribution of Z=A/T defined as

10
10

i

10

A (V)

10

By changing the variables of the joint distribution from
(A, T) to (Z =A / T,T), integrating over T and taking into
account the window effect, one obtains

g(Z) Zr Z' " for Z(Z„
p(Z) dz- (19)

g(Z) Z for Z~Z
&;

FIG. 3. Comparison of the experimental joint distribution map
(a) with the theoretical fit (b) for heating. The lines in the upper
figure correspond to (A

~
T) and (T~A) defined in Eqs. (16) and (17).

Assuming x = 1, we have tried a number of distribution func-
tions for g(Z) (Gaussian, Laplace, extreme-value, etc.) in
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TABLE I. Summary of the exponents characterizing the joint
distribution of AE signals.
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FIG. 4. Distribution p(Z) on a log, o scale as defined in Eq. (18)
for cooling (circles) and heating (squares). Solid lines are best fits

performed using an extreme value distribution defined by Eq. (20)
for Z(Z„=40 V/s (indicated by the arrow).

order to fit the experimental distribution p(Z) shown in Fig.
4 in the region Z(Z&; . All the fitted functions, in addition
to the exponent y, had three parameters, namely the position
of the maximum (Zo), the width c and the height of the
peak. The best fit to lnp(Z), consistent with the model, has
been obtained for an extreme-value distribution of the form:

1
g(Z) = —exp-

c
Z —Z —Z —Zo /c—e (20)

with y= 0.0~ 1.0, 6= —4.7~ 1.0, c = 5.3~ 1.0 V/s, and

Zp = 0.26~ 0.10 V/s for cooling, and y= 0.2~ 1.0,
8'= —4.5~1.0, c=5.2~1.0 V/s, and Zp=3.4~1.0 V/s for
heating. This fit gives values y =0.53 and y =0.57 for
cooling and heating, respectively. The values of Zp are
clearly below Z&; =40 V/s consistent with the values of the
exponents y and 8', as discussed in the previous section. It
should be mentioned that a fit to a Gaussian distribution
rendered smaller values y =0.18 and y =0.3 for cooling
and heating, respectively; nevertheless such a fit is not ac-
ceptable because it provided y=2.3~0, 6'= —7(0 and a
value Zp=55 V/s)Z &; . This value results in a still higher
Z, , in clear disagreement with the position of the crest
(Z,- 10 V/s) in Figs. 2(a) and 3(a). In fact the 2D plot of the
Gaussian fit was quite different from the experimental histo-
gram, but this disagreement was hidden in the 1D projection
p(Z), rendering the small value of y . It is always conve-
nient to directly compare the 2D plots of the model to the
experimental maps. Figures 2(b) and 3(b) show the 2D-maps
of the final joint distributions obtained from the best fits. The
same contour levels have been used for the experimental and
theoretical maps. The agreement is quantitatively satisfactory
for large enough A and T. For low values of A and T, the

experimental 2D map shows the existence of two peaks: the
large one, on the top, is an artifact arising from the experi-
mental window, and the lower one comes from electric noise.

There might be a physical explanation for the extreme
value distribution of the variable Z=A/T, based on the fact
that the amplitude measured in the AE experiments is the
maximum value of the signal (which might well be distorted
by Gaussian Auctuations). These constants c and Zo, and the
exponents y and 6 are related to the most probable A/T
relation of a signal and should depend on the sample prop-
erties. A definite explanation for this point will only be pos-
sible when the connection between the acoustic emission and
the physics of the transformation in the sample is well un-
derstood.

A summary of the fitted exponents consistent with the
analysis of the data is presented in Table I. Although we have
found slightly different values for cooling and heating, the
error bars do not allow to assert that such differences are
physically meaningful.

IV. CORRELATION FUNCTION MODELING

W(t)=g P(A, , T, , t t,)—(21)

where

0 for t(t;,
p(A, , T,. , t —t,.)=& A, for t;&t&t;+T;,

for t~t;+ T;

(22)

being M the total number of signals between t=0 and
t= 3, . The complete train 'P(t) is then characterized by the
set of 3M random variables (A;, T;, t;) At this point, we.

make an independence hypothesis, i.e., we assume that the
probability of a given set of the 3M variables can be factor-
ized like

p(A, ,A2, . AM, T, , T2, TM, t t,tt2, , tM)

(23)

With this assumption, the average (c(t)) over a set of trains
of the correlation function defined by

In this section we study the time correlation function of
signals distributed according to the model presented in Sec.
II. In order to calculate it we need an hypothesis on the shape
of the signals characterizing each avalanche. The simplest
choice is to assume that each AE signal has square shape. "
Thus, the full recorded AE trains are a superposition of
square individual signals, i.e.,
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FIG. 5. Time correlation function for cooling (a) and heating

(b). The lines are fits of Eq. (27).

1 ( I
c(t) = — iIr(u) iIr(t+ u) du — — qr(u) du

A)p (~Jo
(24)

reduces to the average autocorrelation of the individual sig-
nals:

1 (I ta
(c(t))=M — P(u)P(t+u) du — — P(u) du

Agp
(25)

By integration it can easily be shown that, for the square
signals defined by (22), the above equation can be written as

(26)

with M/6 being the mean frequency of the avalanches. Ac-
cording to the model proposed in Sec. II, the second term
(I/A)(A T ) of the correlation function represents an inte-
gral over A and T inside the window limited by A
A „,T;„,and T „.In principle, T „mightbe as large as

rendering a long-time nonvanishing correlation
function. ' Nevertheless, in most cases the lack of statistics
may introduce a cutoff T „(~A which makes the second
term negligible. Thus, neglecting this second term, given the
distribution p(A, T) from Eq. (13) and assuming x= 1 one
gets

FIG. 6. Power spectrum calculated by Fourier transforming data
from Fig. 8. The lines are the Fourier transforms of the correspond-
ing fits.

V. CORRELATION FUNCTION
AND POWER SPECTRUM FITTING

Again, we compare the correlation function (27) obtained
from our model to the AE experiments in martensitic trans-
formations. The available experimental data consist of a set
of 20 long trains recorded at 0.5 MHz and lasting for 16 ms.
The correlation function is obtained by computing numeri-
cally the individual correlation functions corresponding to
each train, and then averaging over the set of trains. By least-
squares fitting expression (27) one obtains the values
= 3.6~ 0.4, T „=0.19~0.2 ms for cooling and
=3.4~0.4, T „=0.17~0.2 ms for heating. The fits are
shown on top of the experimental data in Figs. 5(a) and 5(b),
respectively. The values obtained are estimations of the ex-
ponent v. independent of the previous values obtained from
the marginal distributions, presented in Sec. II. The agree-
ment is excellent. The values obtained for T „are smaller
than those defined in Sec. II, since the statistics in the acqui-
sition of long trains is poorer than the statistics in the acqui-
sition of single AE signals. In fact, this value is of the order
of the length of the largest recorded signals in a train. The
Fourier transforms of the fitted functions are plotted in Figs.
6(a) and 6(b) and compared with the experimental power
spectrum. Both curves show an intermediate region with a
behavior compatible with 5(v)- v ~, with @=0.9~0.1.
Thus, our model also provides a description for the 1lf noise
observed in the experiments.

In order to compare with existing results in the literature"
we have calculated the function A(T), defined as

(c(t)) 4-~ ltl +
(c(0)) 3 —7 T,„3—7 ( T,„ (27) A(T)=T A p(A, T) dA (2g)
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@=1.3~ 0.6 which should be compared with the value from
the experimental power spectrum @=0.9~0.1. The agree-
ment is roughly correct. Nevertheless, the assumption of
Christensen et al. that the behavior of the autocorrelation
function of the individual signals is characterized only by the
exponents of its power behavior at very high and very low
frequencies turns out to be too simplified for AE in marten-
sitic transformations, for which the behavior of the autocor-
relation of each signal at intermediate frequencies plays a
significant role in the power spectrum.

VI. CONCLUSIONS
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FIG. 7. Log-log plot of the function A(T)IT as defined in the

text for cooling (circles) and heating (squares). The lines are power-

law fits with slopes p, —2 = 0.2~ 0.6 and p, —2 = 0.4~ 0.6 respec-
tively.

Figure 7 shows A(T) IT for cooling and heating. By least
squares fitting to the log-log data we have obtained the

slopes p, —2 = —1 8~ 0 6 for cooling and p, —2
= —1.6~0.6 for heating, giving a power-law dependence
A(T) —T" with p, =0.3~0.6. This value is in agreement
with the theoretical value p, =4 —~=0.5~ 0.6 computed us-

ing the fitted p(A, T) from Eq. (13). Christensen et al. "pro-
pose that the exponent of the power spectrum P should sat-

isfy the relation P = p, + 1. This gives an estimation

The first conclusion of the paper is the usefulness of the
description of the statistics of the avalanches by the joint
distribution function. We have designed a phenomenological
model, based on scaling arguments, describing the exponents
characterizing the power-law marginal distribution and the
statistical dependence A- T' found in different experiments
on avalanches.

For the AE signals in martensitic transformations we have
fitted the above model. After correction of the effects due to
the experimental window, we have obtained the full set of
exponents a, 7., x, 6, and y shown in Table I, together with
the constants Zo and c accounting for the most probable
value and the dispersion of the ratio Al T. The model has also
been useful in understanding the correlation function and the
power spectrum of such AE signals. Our results are compat-
ible with the assumption of independence of the individual
signals in a train. We have also found a theoretical function
(27) which reproduces the power spectrum in two decades,
from 3 to 300 kHz. This function gives the llf behavior
observed in an intermediate range (10—100 kHz) of frequen-
cies.
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