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Pseudopotential ab initio calculations are performed for three high-pressure phases of sulfur (bco, 8-Po, and
bee). These calculations yield a value of around 550 GPa for the transition pressure of the B-Po to bcc
transformation; however, we do not reproduce the reported bco to B-Po phase transition. Ab initio calculations
of the phonon spectrum and the electron-phonon interaction for the bec phase of sulfur are also done using the
frozen phonon method. The results predict that the bce phase of sulfur is a metal with very low resistivity and

a superconducting transition temperature of 15 K.

L. INTRODUCTION

The high-pressure properties of group VIA elements are
currently a subject of renewed experimental research,'~” and
the purpose of this paper is to provide theoretical studies for
comparison and to motivate future work. The high-pressure
behavior of some of these elements, such as Se and Te, is
relatively well established.">* Under pressure both undergo
a number of structural phase transitions and become metallic.
The higher-pressure end of the transition sequence is similar
for both Se and Te. With increasing pressure, these elements
transform from a base-centered orthorhombic phase (bco) to
a (B-Po primitive rhombohedral structure and then to a close-
packed bcc phase. A number of ab initio calculations have
been performed for Se and Te,®~'* which generally give re-
sults in reasonably good agreement with the experimental
data [with a notable exception of the bulk modulus for the
bee phase of Te (Ref. 10)].

Although sulfur is expected to exhibit a similar sequence
of high-pressure phases, because of the much higher pres-
sures required, until recently the experimental determination
of these phases was not possible. The metallic bco phase of
sulfur was first observed in optical studies® and later con-
firmed by x-ray-diffraction experiments.’ This phase be-
comes stable at about 90 GPa. The extension of the pressure
range to 212 GPa (Ref. 7) allowed the observation of the
transition to the B-Po phase at a pressure of 162 GPa. The
bee phase of sulfur has not yet been observed experimentally.

In this paper we present the results of ab initio pseudopo-
tential calculations for high-pressure phases of sulfur. Using
the total-energy formalism'' we predict that the phase tran-
sition from the B-Po to the bcec phase will occur at about 550
GPa. We also find the total energy of the bco phase to be
higher than that of the 8-Po phase; hence our calculations do
not reproduce the reported bco to B-Po transition.

The metallic phases of both Se and Te are known to be
superconducting at low temperatures.'>"'* To explore this
possibility for sulfur, we performed ““frozen phonon” calcu-
lations of the electron-phonon interaction constant for the
hypothetical bcc phase of S. These calculations allow us to
estimate 7. and the high-temperature value of the resistivity
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for this phase. According to our calculations, at high pressure
sulfur is a good metallic conductor with very low resistivity,
and we estimate 7. for the bcc structure at a pressure of 585
GPa to be 15 K. The enhancement of the electron-phonon
interaction near the bcc—to—B-Po structural transition con-
tributes into this value.

This paper is organized as follows. In Sec. II we briefly
outline the theoretical method for the total-energy calcula-
tions and present our results for the structural and electronic
properties of high-pressure phases of sulfur. Sec. III is de-
voted to a calculation of the phonon dispersion curves and
the electron-phonon interaction constants for the bcc phase
of sulfur using the frozen phonon method. A summary is
given in Sec. IV.

II. STRUCTURAL AND ELECTRONIC PROPERTIES
OF SULFUR AT HIGH PRESSURE

A. Method

The structural properties of high-pressure phases of sulfur
are calculated using the standard plane-wave pseudopotential
approach in the local-density approximation (LDA).!' The
sulfur pseudopotential was generated by the Troullier-
Martins'® method with semirelativistic corrections. The
Ceperley-Alder'® form is used for the exchange potential.

Different cutoff energies are used for the different struc-
tures. The three lattice parameters of the bco phase are opti-
mized for a fixed volume using the steepest decent minimi-
zation algorithm. The derivatives of the total energy with
respect to the lattice parameters are found using the calcu-
lated Hellmann-Feynman forces and stresses.!! A cutoff en-
ergy of 35 Ry and 216 special k points!” in the irreducible
part of the Brillouin zone generated using the Monkhorst-
Pack scheme'® are used in this calculation. The total energy
for the optimized lattice parameters is calculated with a cut-
off energy of 60 Ry. For the 8-Po structure, the ¢/a ratio is
optimized for a fixed volume. A cutoff energy of 60 Ry with
280 k points in the irreducible part of the Brillouin zone is
used. Calculations for the bcc structure are performed with a
90-Ry cutoff and 250 irreducible k points. The total energies
obtained are fit to the Murnaghan equation of state.'
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In this section we consider the structural and electronic Sulfur
properties of sulfur in the orthorhombic (bco), rhombohedral L
(B-Po), and bee high-pressure phases. As a model for the ’E‘ - -20.36 [
crystal structure of the high-pressure S-III phase of sulfur we o —195 -
have chosen the puckered layer structure proposed for the € i
orthorhombic (Se-IV) phase of selenium.* In our calculations N L
we assume that the zigzag bonds forming the the puckered & -
layers are of equal length; hence this structure has two atoms 3 —20
per unit cell. The calculations for a more general structure = i
with the zigzag bonds of unequal length were reported for Te -
in Ref. 10. o e
—-20.5

Using energy minimization, we determine the optimized
lattice parameters for the bco structure. The calculated pa-
rameters are within a few percent of the experimental values.
For example, for an atomic volume of 8.817 A3, the calcu-
lated (experimental®®) lattice parameters are a=3.398
(3.309) A, b=4.878 (4.970) A, c=2.128 (2.145) A, u=0.119
(the quantity 2ub gives the width of the puckered layer
which was not determined experimentally). The calculated
pressure using the equation of state for this volume is 148
GPa; the experimental value is 143 GPa.

The B-Po structure can be described as a simple cubic
lattice deformed along the [111] direction keeping the edges
unchanged. The angle a between the edges is not equal to
90° after the deformation. For a=109°28’, the B-Po struc-
ture coincides with the bcc structure. The B-Po structure can
also be considered as a hexagonal lattice with three atoms
per unit cell and ABC stacking.

The agreement of the optimized lattice parameters with
the experimental value is very good for the B-Po structure.
For an atomic volume of 8 A3, the calculated angle minimiz-
ing the total energy of the pB-Po structure is
a=103.99°[ the experimental value is &= 104.03° (Ref. 20)]
at the calculated pressure of 203 GPa (212 GPa in the ex-
periment).

The total energies versus volume curves for the 8-Po and
bce phases of S are given in Fig. 1. According to our calcu-
lations, the transition pressure from the B-Po to the bcc
phase is 545 GPa. The relative change of the cell volume is
less than 1%. This means that the angle « increases with
pressure almost up to the bcc value of 109°28’, and the
transition takes place with small change of the angle. We
note here that the nearly second-order character of the
B-Po—to—bcc phase transition reduces the accuracy of the
calculated transition pressure, since small errors in the calcu-
lated total energies may result in significant changes in the
transition pressure.

The calculated total energy for the bco phase is higher by
approximately 4 mRy/atom than the total energy of the
B-Po structure with the same atomic volume in the region
where the bco phase is reported experimentally. Two of the
calculated total energies for the bco phase of S are presented
in the inset in Fig. 1. The first point corresponds to a pressure
of about 75 GPa and the second corresponds to a pressure of
145 GPa. The position of these two points suggests that the
~ calculated total-energy curve for the bco structure is higher
in energy than the B-Po for the whole range of pressure
where the bco phase is observed in the experiment.

40 60 80 100
v(a.u./atom)

FIG. 1. Total-energy vs volume curves for 8-Po and bcc phases
of S obtained by a fit of the calculated energies to the Murnaghan
equation of state. The triangles correspond to the calculated ener-
gies for the B-Po structure, the squares for the bcc structure. The
inset shows a blowup of the region where the bco phase was found
experimentally. The points in the insert are the total energies for the
bco structure calculated by the minimization procedure.

Since our calculations converge within 1 mRy/atom and
the minimization errors also do not exceed 1 mRy/atom, at
this point we conclude that the LDA total energy of the con-
sidered model for the bco structure is higher then the LDA
total energy of the B-Po phase at all volumes considered.
Using the calculated values for the bulk modulus and the
Debye model for the phonon dispersion, we estimated the
zero-point motion energy to be about 1 mRy/atom for both
structures; hence this contribution cannot change the ob-
tained order of the phases. Thus our calculations do not re-
produce the experimentally observed bco—to—B-Po struc-
tural phase transition for sulfur.

We note here that the deformation of the considered bco
structure with the unequal zigzag bond lengths may have
lower total energy than the structure for which our calcula-
tions were performed. But very thorough theoretical study of
high-pressure phases of Te,'” in which the authors varied the
zigzag bond lengths and performed both pseudopotential and
all-electron LDA calculations resulted in similar conclusions.
The LDA total energy of the bco phase of Te was found to be
about 2 mRy/atom higher that the total energy of the B-Po
phase. The authors attributed these results to the failure of
the LDA to describe the weak bonds correctly.

For the parameter values a=b= \/Ec, u=0.25, the bco
structure coincides with the bcc structure. Hence, we con-
clude that the bco structure has two minima, one, found by
the minimization procedure and the other corresponding to
the bce structure. The total energies of these two phases are
very close: at an atomic volume of 40 a.u.3/atom the differ-
ence of the total energies is only 5 mRy/atom. This differ-
ence increases to 9 mRy as we increase the pressure and
decrease the atomic volume to 28 a.u.>/atom. These results
agree with the fact that the close-packed bcc structure be-
comes energetically more favorable at high pressure. The
small energy difference between the two phases at the con-
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FIG. 2. The calculated LDA densities of states for the bco,
B-Po, and bec phases of sulfur at an atomic volume of 59.5 a.u.3/
atom. The zero of energy corresponds to the Fermi energy. The
broken line represents the density of states for a free electron gas
with the same electron density and an effective mass of 1.11m, .

sidered pressure range is explained by the fact that the bco
phase found by the minimization has lower band energy con-
tribution to the total energy than the bcc phase.

The densities of states for the three structures considered
are given in Fig. 2. These plots demonstrate the free-
electron-like character of the valence electron wave func-
tions for all three structures. The band masses m; obtained
from the density of states graphs are approximately 1.11m,
for all the structures considered. The position of the Fermi
energy at the local minimum of the density of state curve
makes the 8-Po and bco structures favorable from the point
of view of the band-energy contribution to the total energy.
This conclusion agrees with the results of similar calcula-
tions for Te.® At higher pressure the close-packed bcc struc-
ture becomes stable because of its lower Ewald energy.

The important difference between the electronic structures
of the high-pressure phases of S and of the corresponding
phases of Te is that at pressures and atomic separations char-
acteristic of high-pressure phases of S there is no clear dis-
tinction between the bands formed by the s electrons and p
electrons, whereas in the case of Te, these bands are well
separated.’

III. ELECTRON-PHONON INTERACTION IN THE bcc
PHASE OF SULFUR

A. Method

The calculations of the phonon dispersion and of the
electron-phonon coupling constant N\ are based on a fully
self-consistent method,?! which does not require the rigid-ion
approximation.?? This method uses the “frozen phonon” ap-
proach. The calculations are performed for a distorted super-
cell commensurate with the phonon wave vector q for the
phonon mode v. For each phonon mode considered, we cal-
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culate the frequency wg, using the difference of the total
energies for the distorted and undistorted crystals:

2(Edis_EundiS)
(U2 =—, (1)

qv 2
Mug,

where EY (E"%) is the total energy per atom for the dis-
torted (undistorted) crystal, M is the atomic mass, and ufl,, is
the average of the sum of the squares of the frozen phonon
displacements.

The electron-phonon coupling constant A, for coupling

to each phonon mode (q,v) is defined as

((lg(nk,n'K";qv)|?)) '

)\quzN(EF) o
qv

2
Here N(EF) is the density of states per unit cell and per spin
at the Fermi level Ep and ({|g(nk,n'Kk’;qv)|?)) denotes a

double Fermi surface average of the square of the electron-
phonon matrix element g,?* given by the expression
1%

o i) g7 0 0
g(nk,n'k ’qv)—(Zqu,,) <¢nk €ov 3R| Vnrw

X 8(k—k'—gq), 3)

where g is the volume of the Brillouin zone (BZ), €, is
the phonon polarization vector, and 6V/JR is the change in
the self-consistent crystal potential caused by the phonon
distortion. The double average is calculated using the Gauss-
ian broadening method.?! More than 1000 special k points in
the irreducible part of the BZ have been used to compute this
average. We also calculate the geometrical factor
({8(k—k’—q))),*® which depends on the geometry of the
Fermi surface and characterizes the degree of nesting of the
Fermi surface for a given phonon.

The electron-phonon coupling constant A is expressed as
a sum over different phonon modes v of the BZ averages of

Ny

1
- 3
A Q‘BZEV J dghg, - (4)
‘We approximate this integral by taking a spherical average of
the calculated Ay, along the symmetry directions. The pa-
rameter N\ can be used to estimate the superconducting tran-

sition temperature T, by applying the McMillan®”? equa-
tion:
(w) —1.04(1+X\)
Te= gy P\ N —0.6on p* ) 5)

Here (w) is an average phonon frequency defined by the
expression

2gv Ngr@qy

()=~ ®

v gy

and u* is the screened Coulomb interaction coupling con-
stant. Because of the nearly free-electron character of sulfur
at high pressures, we estimate u* using the free-electron gas
screening model.
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TABLE 1. The calculated phonon frequencies, electron-phonon
coupling constants, and Fermi surface nesting factors for sulfur in
the bece structure. The letters L and T denote the longitudinal and
transverse phonons. The polarization vector is along the [1,-1,0]
direction for the 7, phonons and along the [0,0,1] direction for the
T, phonons.

Mode ( q,v) wgq,, (meV) A Geom. factor

av
Li[001] 71.1 0.18 4.2
T4[001] 29.6 0.68
Li[001] 93.5 0.15 3.2
T4[001] 54.6 0.23
L3[001] 98.1 0.08 2.3
T3[001] 72.4 0.15
[001] 93.4 0.06 1.2
Li110] 58.6 0.25 4.6
T,4[110] 25.0 0.36
T,4[110] 21.1 0.68
Li[110] 91.5 0.17 3.0
T,4[110] 355 0.17
T,3[110] 32.9 0.44
L3[110] 111.2 0.12 2.3
T,4[110] 32.2 0.24
T,3[110] 31.6 0.63
L3[110] 131.6 0.11 1.2
T,4[110] 39.5 0.11
T,3[110] 43.4 0.40
Li[111] 98.7 0.12 7.4
T4[111] 46.1 0.27
L3[111] 107.9 0.09 4.4
TH111] 57.9 0.21
111] 86.9 0.15 3.6
L¥111] 40.8 0.28 24
TH111] 99.4 0.14

Approximating the transport electron-phonon coupling
constant A, by \,?*% we also estimate the resistivity of me-
tallic sulfur for temperatures of the order of the Debye tem-
perature O , using the high-temperature limit of Ziman’s re-
sistivity formula:*2

__47TmkaT}\ 7
P=""—m7 M 7

where m,, is a band mass and n is the number of electrons
per unit volume.

B. Results and discussion

Using the frozen phonon method, we calculate the phonon
frequencies and the electron-phonon coupling constants for
the twelve q points in the BZ of the high-pressure bcc phase
of S. The calculations were performed for a lattice constant
of 2.242 A. According to our calculations, this lattice con-
stant corresponds to a pressure of 584 GPa. Under such pres-
sure the bce phase of sulfur becomes stable. We expect that
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FIG. 3. The calculated phonon dispersion and the electron-
phonon coupling constants Ay, for the high-pressure bce phase of
sulfur for an atomic volume of 5.631 A3 and a calculated pressure
of 584 GPa. The circles correspond to the longitudinal modes;
squares and triangle correspond to the transverse modes. The lines
are used as a guide for the eye only. The coupling constants \ 4, are
weighted with a phase space factor ¢2.

in the vicinity of the bcc—to—3-Po transition point there will
be a stronger electron-phonon interaction and thus a larger
coupling constant \.

The results of our calculations are presented in Table I.
The first column of this table specifies the phonon mode. The
two transverse phonon modes for the wave vectors q corre-
sponding to the A and A directions are degenerate because
of the symmetry of the crystal. All three phonon modes are
degenerate at the H and P symmetry points. The calculated
phonon frequencies wg, and the electron-phonon coupling
constants A 4, are given in the second and third columns. The
geometrical factor from the fourth column is defined in the
preceding section. It describes the degree of Fermi surface
nesting for a given phonon wave vector q and does not de-
pend on the polarization of the phonon.

The phonon dispersion curves and the electron-phonon
coupling constants (weighted with a phase space factor g2)
for different phonon modes along the symmetry directions
are given in Fig. 3. The phonon dispersion has several inter-
esting features, namely, a sharp decrease of the frequency for
the L3(1,1,1) phonon mode, close frequencies for two trans-
verse phonons with wave vectors along the [110] directions
and a noticeable dip for the transverse phonons with 1(1,1,0)
q vector.

The dip in the frequency for the L%(1,1,1) phonon mode
was observed experimentally for several bcc phases of
group-IV metals®® and was attributed to the general weak-
ness of the bcc structure with respect to the so-called w
distortion.”* We will argue that it is not related to the struc-
tural instability of the bcc phase near the bcc—to—3-Po phase
transition.



12 576

Undistorted

T,1(1,1,0
1 (1.1,0)

T,-1(1,1,0
1 (1.1.0)

FIG. 4. The valence charge density for the undistorted (a), T,
%(1,1,0)-distorted (b), and TZ%(I,l,O)—distorted (c) bee structure for
the (101) plane between two planes of atoms. The amplitude of the
distortions is 0.2 a.u. The maxima in the charge density correspond
to the cross sections of the bonds. Both of the considered distortions
lead to the change of the coordination number from eight to six by
the disappearance of some of the bonds in case (c) and by the
formation of new bonds in the previously empty space in case (b).
The distortion (c) results in much larger charge transfer than the
distortion (b).

The small difference between phonon frequencies for two
transverse branches along [110] direction is especially inter-
esting, since the ‘“bare” Ewald frequencies for these two
modes are quite different. For example, at the N point the
Ewald frequency of the 7, mode with [001] polarization is
2.6 times higher than the Ewald frequency of the 71 mode
with [110] polarization. Indeed, the experimental frequency
measurements for group-IV metals approximately reproduce
this ratio for the two transverse modes.?> The fact that the
calculated frequencies ““dressed” with electron-phonon inter-
action are so close for sulfur indicates the existence of the
strong electron-phonon interaction for the 7, branch, in
agreement with our electron-phonon coupling calculations.

a)
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To investigate the connection of 3(1,1,0) transverse pho-
non modes to the phase transition we considered the valence
charge redistribution due to the lattice distortions corre-
sponding to these phonons with relatively large amplitude,
which we have chosen to be 0.2 a.u. (approximately 7% of
the bond length). Figure 4 shows that both of these distor-
tions produce a charge redistribution consistent with the
change of the coordination number from eight to six during
the bcc—to—B-Po phase transition. The charge transfer for
the 7, mode for which we observe complete disappearance
of one of the bonds is much larger than for the 7, mode.
Using the notion of bonds we can explain this difference
between two polarizations in the following way. The distor-
tions corresponding to the 7| phonons are perpendicular to
the bonds of the bce structure and thus result in bond bend-
ing with some charge transfer to the empty space between
the bonds, whereas the 7, phononlike distortions result in
compression of some bonds and stretching of others with
significant charge transfer from the stretched bonds to the
compressed ones.

This change of the coordination number is further illus-
trated in Fig. 5. Cases (a) and (b) correspond to the
T,34(1,1,0) and T,%(1,1,0) distortions. We see that the dis-
torted structures are not exactly the 8-Po phase, and we need
some additional relaxation of the bond lengths and the bond
angles to obtain the B-Po structure. The distortion (a) makes
two of the three bond angles smaller. We recall here that
during the bcc—to—B-Po phase transition all three bond
angles become smaller.

The calculated pressure dependence of the frequency and
the electron-phonon coupling constant for T,%(1,1,0) and
L3(1,1,1) is given in Fig. 6. The increase in the electron-
phonon interaction for the L(1,1,1) with pressure leads us to
the conclusion that the strong electron-phonon interaction for
this phonon mode is not related to the bcc—to—B-Po struc-
tural phase transition. The fast decrease of the electron-
phonon interaction at higher pressure, where the bcc phase
becomes stable, confirms our conclusion about the enhance-
ment of the electron-phonon interaction for the T,3(1,1,0)
mode near the phase-transition point.

FIG. 5. A schematic picture of
the T,%(1,1,0) (a) and T,%(1,1,0)
(b) phonon distortions. The bonds
are shown as solid lines. Both dis-
tortions lead to a change of the co-
ordination number of the structure
from eight to six. The distortion
(a) results in the disappearance of
one of the bonds, whereas in case
(b) two bonds disappear and one
new bond forms. The displace-
ment of atoms in (b) are perpen-
dicular to the bonds and it does
not result in a significant charge
transfer for small distortions (see
Fig. 4). In (a) the charge transfer
from the stretched into the com-
pressed bond leads to the com-
plete  disappearance of the
stretched bond even for relatively
small distortions (Fig. 4).
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FIG. 6. The pressure dependence of the phonon frequency wg,
and the electron-phonon coupling constant Ag, for L%(l,l,l)
(square) and TZ%(I,I,O) (hexagon) phonon modes. The lines are
used as a guide for the eye.

Using the results of our calculations, we now estimate the
electron-phonon coupling constant A. Knowing \, we are
able to estimate T, using the McMillan equation (5) and the
resistivity using the high-temperature limit of Ziman’s resis-
tivity formula. The average frequency (w) entering the Mc-
Millan equation calculated using the data from Table T is
equal to 51.1 meV and corresponds to a temperature of 593
K. The electron-phonon coupling constant A is evaluated by
calculating the spherical averages of X\, along the con-
sidered high-symmetry directions and then finding their their
average with the weights equal to the number of the corre-
sponding directions in the BZ. According to our calculations,
\ is equal to 0.58.

To calculate T, using the McMillan equation (5) the value
of the Coulomb repulsion parameter w* is needed. Using the
static Thomas-Fermi expression as an approximation for the
dielectric function in S, we estimate w* to be 0.08. The
value of 7, obtained from the McMillan equation using the
parameters A =0.58, u*=0.08, and (w)=593 K is 15 K.

This relatively high value of T is related to the enhance-
ment of electron-phonon interaction near the structural phase
transition, since, as we argued above, the important contri-
bution to the electron-phonon coupling constant A coming
from the T3(1,1,0) phonon modes is related to the vicinity of
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the bcc—to—B-Po structural phase transition. The experimen-
tal study of the pressure dependence of T, for Te (Ref. 14)
showed that T, abruptly increases from 2.5 to 7.4 K during
the B-Po—to—bcc phase transition and than rapidly decreases
to 4.5 K.

Even near the phase-transition point the bcc phase of sul-
fur is a very good conductor. Using the calculated value of
N\ as an approximation for A, we calculate high-temperature
behavior of the electrical resistivity. For the bcc phase at a
pressure of 585 GPa the high-temperature limit of Ziman’s
resistivity formula gives p(7)=3.5X 107°(Q ecm/K)T. For
T=600 K, we obtain p=2.1X10"°  cm, which is com-
parable with the resistivity of silver at room temperature
(p=1.6X10"% Q cm). We expect even lower resistivity for
pressures that are not so close to the transition pressure. For
Te, the resistivity at the B-Po—to—bcc transition point in-
creases by about 15%.14

IV. CONCLUSION

Pseudopotential total-energy calculations are performed
for three-high pressure phases of sulfur. The phase transition
from the B-Po to the bcc phase at a pressure of 545 GPa is
predicted; however, we are not able to reproduce the experi-
mentally observed bco—to—-Po structural phase transition,
since, according to our calculations, the bco phase is higher
in energy than by the B-Po phase.

The frozen phonon calculations of the phonon dispersion
and the phonon-electron coupling for the bce phase of sulfur
indicate that at high pressure sulfur is a very good metal with
low resistivity. We estimate the value of the superconducting
T. for the bce phase of sulfur near the B-Po—to—bcc struc-
tural transition to be 15 K. The effects of the vicinity of the
structural bcc—to—B-Po phase transition on the enhancement
of the electron-phonon interaction are examined.
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