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FIG. 2. Schematic description of magnetic induction profiles
during one cycle of the applied ac field. A miniature Hall probe is
located at a distance r from the edge of the sample (r=0). The
profiles 1—6 refer to different times during the ac period; see text.

H„H*—H„=H„si—n( y„)

superimposed on a dc field Hd, . We assume that a miniature
Hall probe is located at a distance r from the nearest edge of
the sample located at r = O. Note that the magnetic induction
profiles are depicted in Fig. 2 as straight lines only for sim-
plicity. %'e start from the moment at which the applied ac
field is zero (point 1 in Fig. 2). As the ac field
h„=H„sin(rp) increases, the magnetic induction at the Hall
probe location follows the field up to the point where the
applied ac field reaches its maximum value at q&

= 7r/2 (point
2 in Fig. 2). At this moment the magnetic induction at the
Hall-probe location is Bp=H„—H*, where H* is the "local
penetration field, " defined as the smallest value of the ac
field for which oscillations of B reach the Hall probe. '

When h„decreases from point 2, the magnetic induction at
the edge of the sample is affected immediately; however, it
takes time for the external field to reach a value required to
affect the induction at the Hall probe location. During this
time period, Bp is not affected by the changes in the external
ac field, however it increases due to magnetic relaxation ef-
fects. At the end of this time period (point 3 in Fig. 2) the
external change in the magnetic field reaches the Hall probe
at a phase value q„corresponding to time t„. In order to
calculate y, , let us assume that between stages 2 and 3,
Bp has relaxed from H„—H* to H„—H„. Then, according
to Fig. 2,

t„i (cut„)x+x 1 ——
rot

from which t, can be calculated:

x (
cut, =

Garo l

4'CO p —1
x /

(4)

where x =H*/H„and x„=H„/H„.
Once the ac field has reached the Hall probe, we assume

that the local induction follows the changes in the external
field until the latter changes its sign (point 4 in Fig. 2). Thus,
in order to calculate the wave form of the local induction
during half a cycle, one needs to calculate t„ from Eq. (2),
and the time dependence of the local induction during the
time period (O,t,)l. Using similar arguments one can calcu-
late the wave form of the local induction during the second
half of the cycle (from point 4 to 5 and back to point 1).
From Eq. (2) it is clear that t„ is a function of x, x„, and the
frequency co. The parameter x, is determined by the relax-
ation law and x. Accordingly, the ac response depends on x,
co, and the relaxation law. This is the main result of our
analysis. It shows that magnetic relaxation affects directly
the ac response by introducing the frequency as an additional
parameter to the model. The frequency affects the response
also indirectly through the parameter x which depends on the
shielding current which itself is a function of frequency.

In order to calculate t, explicitly and the behavior of the
local induction in the time period (O, t„j, one must engage
some analytical form for the relaxation law. At high enough
frequencies (small t„) one may assume a linear dependence
of H„upon time: H„=H*(1—rlro), where to(T, Hd, ) ~r„ is
a characteristic time which depends on temperature and the
applied dc field. Such a simplified time dependence serves as
an illustration, since it allows us to obtain a relatively simple
analytical expression for the local induction. Inserting
x„=x(1—t„/to) in Eq. (2) results in

or For x„and y, one obtains

TABLE I. Magnetic induction B,(q&) at the Hall probe location during one cycle of the ac field.

hac

0—+Hac

H —+H —H* —Hac ac r'

H„sin((p) —H*

y —m/2
H„—H* 1—

0—+m/2

vr/2~ vr —arcsin(1 —x —x„)

H —H* —H ~ —Hac r ac

—H —+ —H —H*+Hac ac r

—H„+H*+H,—+0

H„sin(q&l+H*

cp
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Ct) to
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FIG. 3. Wave forms of the magnetic induction during one cycle,

for x=H*IH„=0.5, with (ceto=5} and without relaxation (solid
and dotted lines, respectively). Numbers correspond to the stages in

Fig. 2.
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(note that in the normal state our definition gives X,'= vr}.
The global harmonic susceptibilities of the entire sample can
be calculated by integration:

X„=— X„(x)dx,
WJp

where 6'=0„/0„ is the parameter of the global response
defined in Ref. 12, (inversely) analogous to our local param-
eter x, and 0„is the field of full penetration up to the center
of a sample. The upper integration limit

1/8 if 8» 1

1 if 6'~ 1

Table I gives the functional form of the local magnetic in-
duction 8, during one cycle, and Fig. 3 illustrates the wave
form of 8, as calculated from this table for x=1/2. For
comparison, the wave form of 8, , ignoring magnetic relax-
ation effects, is also illustrated (dotted curve in Fig. 3). It is
seen that due to relaxation the "cutoff" in the second stage is
not constant but varies with time (linearly in our approxima-
tion). At this stage the time is related to the phase through
~t =

q
—m/2.

Once the wave form of 8, is known, the real part y„',
imaginary part X'„', and magnitude A„= g(X„'} +(X'„'} of
the local harmonic susceptibilities can be calculated:

0.2 0.4
X

0.6 0.8

FIG. 4. Harmonic susceptibilities X„for n = 1 (upper frame) and
n=3 (lower frame), as a function of x=H*/H„, calculated from

Eq. (7) and Table 1; see text.

Analytical expressions for y„can be obtained from Table
I using Eq. (7). Because of the complexity of these expres-
sions we prefer to present the results in a graphical form. We
use these expressions to show, in Figs. 4(a) and 4(b), the
harmonic susceptibilities X„(n= 1,3) as a function of x for
two values of frequency corresponding to ~t0= 5 and 100. It
is seen that the frequency has strong effects on both the peak
height as well as the width of the curves. In order to compare
our theoretical results with experiments, we plot in Fig. 5 the
absolute value of the third harmonic A3 as a function of
temperature. Here we have assumed exponential temperature
dependence of shielding current' and to-(I —TIT,.) . A
comparison between Figs. 1 and 5 shows that the main ex-
perimental observations are satisfactorily described by our
analysis; i.e., the peak height of V3 decreases and the loca-
tion of the peak is shifted towards higher temperature as the
frequency increases. Obviously, a quantitative comparison in
the whole temperature range between the experimental re-
sults and our model can be made knowing the explicit form
of the temperature dependence of the shielding current and
the exact relaxation law in the material.

As a particular application of the above analysis, we out-
line below a method to obtain the short-time relaxation law

j,(tu}. For example, one can measure the third harmonic
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FIG. 5. Third harmonic signal As = g(gs) + (g) as a function

of temperature, calculated from Eq. (7) and Table I for various

frequencies; see text. The qualitative similarity to the experimental
data of Fig. 1 is apparent.

susceptibility y3 as a function of H„at various frequencies

co, at a constant dc magnetic field, and temperature. The
peak height A~s(co) of each curve is a function of the param-

eter toto alone. Thus by fitting A~s(to) to the theoretical pre-

diction one can determine to. The location H „at which the

peak in g3 occurs is a function of both x andcoto. Using the
previously determined value of to and the experimental val-
ues for the location of the peaks, one can determine the x
values, x"(co), corresponding to the peaks. Hence one can
calculate H*(ro) =x"(co)H"„(to), which relates to the shield-

ing current through a numerical factor y, determined by the
sample geometry. ' We note that our simplification of a lin-
ear relaxation does not contradict a situation where the latter

procedure yields a nonlinear j,(co); while the above proce-
dure yields the effective value of H*(co) in a wide frequency
range, the time t„ is short and one can make a linear approxi-
mation for any relaxation law.

CONCLUSIONS

We have analyzed the local ac magnetic response on the
basis of the critical state model, taking into account magnetic
relaxation effects. Our analysis shows that these effects in-
troduce the frequency as an additional parameter to the
model. The exact dependence of the ac response upon fre-
quency depends on the relaxation law of the shielding cur-
rent. Using a simplified linear relaxation law, we have dem-
onstrated the salient features exhibited by the third harmonic
response V3(T) in YBCO crystals; namely the peak height of
V3(T) decreases and its location is shifted towards higher
temperature as the frequency increases. Using our analysis,
one may determine the relaxation of the shielding current
from ac measurements, e.g. , by measuring the frequency de-
pendence of the peak height of the third harmonic response.
This method is particularly useful in the short time limit
(millisecond range and below) where conventional magnetic
techniques for relaxation measurements do not work. A de-
tailed description of this technique and analysis of experi-
mental data will be given elsewhere.
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