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Frequency dependence of the local ac magnetic response in type-II superconductors
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The local ac magnetic response in type-II superconductors is analyzed on the basis of the critical state
model, taking into account magnetic relaxation effects. The results show that the frequency must be introduced
as an independent parameter to the model, in addition to the shielding current which itself is a function of
frequency. Using a simplified model for the relaxation law, the calculated frequency dependence of the third
harmonic response compares well with experimental data obtained in a Y-Ba-Cu-O crystal. Application of this
analysis to ac measurements of magnetic relaxation in the short time limit is discussed.

INTRODUCTION

Magnetic measurements using alternating fields have been
widely employed in the study of superconductors.l‘6 One of
the main advantages offered by this “‘ac’ technique is the
ability to change the effective time window in the experi-
ment, simply by changing the frequency of the driving field.
This feature has found useful applications in the study of
magnetic relaxation effects and flux dynamics.”"'° A compre-
hensive analysis of the ac response was first given by Bean,!!
based on his critical state model. In a recent study, Shatz,
Shaulov, and Yeshurun!? have shown that in the framework
of the Bean model and regardless of the field dependence of
the critical current, the global ac response is determined by a
single parameter which is the ratio between the full penetra-
tion field and the amplitude of the applied alternating field.
This implies that data of the ac response as a function of any
experimental variable (e.g., temperature, dc field, amplitude
of the ac field, etc.), can be reduced to a universal curve that
describes the response as a function of a single parameter. As
a particular result, the peak heights of the harmonic suscep-
tibilities should be universal constants for all type-II super-
conductors. This conclusion is borne out in many
experiments'? in which the variable-parameter is either the
dc field or the amplitude of the ac field. However, recent
results'® on Y-Ba-Cu-O (YBCO) crystals, depicted in Fig. 1,
exhibit a strong dependence of the peak height and the peak
position on frequency. The figure shows a significant reduc-
tion in the third harmonic response, V3, as the frequency
increases in a relatively narrow range (0.17-17.7 kHz). In
addition, the peak of V3 versus temperature becomes nar-
rower and its position shifts toward higher temperatures as
the frequency increases. Similar results were reported by van
der Beek e al.'* who measured the third harmonic transmit-
tivity 7’3 versus temperature in Bi-Sr-Ca-Cu-O crystals in the
frequency range 0.9-2403 Hz. Their data show a monoto-
nous decrease in the peak height of 73 with frequency. It is
thus apparent that the frequency cannot be incorporated in
the single-parameter description.

Effects of frequency on the ac response were previously
analyzed by Gilchrist and Konczykowski'* modeling the su-
perconductor as one or two inductively coupled loops. This
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analysis was particularly aimed toward understanding the re-
sults of ‘“‘screening” experiments in which two coils are
placed on either side of a planar sheet or film to measure the
transmittivity of the sample. Our approach in this paper is to
analyze the local ac response as measured by a miniature
Hall probe placed on the surface of the sample. Our calcula-
tion is based on the Bean model, taking into account mag-
netic relaxation effects. Analyzing the local response rather
than the global response explains the role of frequency in a
most elementary way. We show that magnetic relaxation in-
fluences the ac response not only through the frequency de-
pendence of the shielding current density j,, but also intro-
duces the frequency as an additional parameter to the model.
The single parameter approach‘z’15 becomes valid in the limit
of high frequencies where magnetic relaxation effects can be
neglected.

ANALYSIS

To illustrate our method of calculation we refer to Fig. 2
which describes the evolution of the magnetic induction pro-
files in a sample during one period of an applied ac field,
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FIG. 1. Temperature dependence of the third harmonic response
V4(T) in Y-Ba-Cu-O crystal for the indicated frequencies [after
Wolfus et al. (Ref. 10)]. Note the pronounced frequency depen-
dence of the peak height and the width.
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FIG. 2. Schematic description of magnetic induction profiles
during one cycle of the applied ac field. A miniature Hall probe is
located at a distance r from the edge of the sample (r=0). The
profiles 1-6 refer to different times during the ac period; see text.

superimposed on a dc field Hy.. We assume that a miniature
Hall probe is located at a distance » from the nearest edge of
the sample located at r=0. Note that the magnetic induction
profiles are depicted in Fig. 2 as straight lines only for sim-
plicity. We start from the moment at which the applied ac
field is zero (point 1 in Fig. 2). As the ac field
h,.= H,sin(¢) increases, the magnetic induction at the Hall
probe location follows the field up to the point where the
applied ac field reaches its maximum value at ¢ = 77/2 (point
2 in Fig. 2). At this moment the magnetic induction at the
Hall-probe location is By=H,.— H*, where H* is the “local
penetration field,” defined as the smallest value of the ac
field for which oscillations of B reach the Hall probe.'
When £, decreases from point 2, the magnetic induction at
the edge of the sample is affected immediately; however, it
takes time for the external field to reach a value required to
affect the induction at the Hall probe location. During this
time period, B, is not affected by the changes in the external
ac field, however it increases due to magnetic relaxation ef-
fects. At the end of this time period (point 3 in Fig. 2) the
external change in the magnetic field reaches the Hall probe
at a phase value ¢, corresponding to time ¢,. In order to
calculate ¢,, let us assume that between stages 2 and 3,
B has relaxed from H,,—H* to H,.— H,. Then, according
to Fig. 2,

H,.~H*~H,=H,sin(¢,) (1)

or
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m™

5 + wt,) =cos(wt,), 2)

1—x—x,=sin(

where x=H*/H,. and x,=H,/H,..

Once the ac field has reached the Hall probe, we assume
that the local induction follows the changes in the external
field until the latter changes its sign (point 4 in Fig. 2). Thus,
in order to calculate the wave form of the local induction
during half a cycle, one needs to calculate ¢, from Eq. (2),
and the time dependence of the local induction during the
time period {0,t,}. Using similar arguments one can calcu-
late the wave form of the local induction during the second
half of the cycle (from point 4 to 5 and back to point 1).
From Eq. (2) it is clear that ¢, is a function of x, x,, and the
frequency w. The parameter x, is determined by the relax-
ation law and x. Accordingly, the ac response depends on x,
w, and the relaxation law. This is the main result of our
analysis. It shows that magnetic relaxation affects directly
the ac response by introducing the frequency as an additional
parameter to the model. The frequency affects the response
also indirectly through the parameter x which depends on the
shielding current which itself is a function of frequency.

In order to calculate 7, explicitly and the behavior of the
local induction in the time period {0,z,}, one must engage
some analytical form for the relaxation law. At high enough
frequencies (small 7,) one may assume a linear dependence
of H, upon time: H,=H*(1—1t/ty), where t,(T,Hy)>t, is
a characteristic time which depends on temperature and the
applied dc field. Such a simplified time dependence serves as
an illustration, since it allows us to obtain a relatively simple
analytical expression for the local induction. Inserting
x,=x(1—1t,/ty) in Eq. (2) results in

tr r 2
x+x(1“'t—0')”~“‘—-—“(w;) (3)

from which ¢, can be calculated:

x 4w2t(2)
wt,.='w—t0‘ 1+ p —1]. (4)

For x, and ¢, one obtains

TABLE 1. Magnetic induction B,(¢) at the Hall probe location during one cycle of the ac field.

B B(¢) ¢
O_>Hac Hacsin(zp)—-H* 0—m/2
H,—H,,—H*—H, o— /2 w/2— —arcsin(1 ~x—x,)
H,,—H*| 1—

\ wly
H,—H*—H,——H, H,sin(@)+H* 7 —arcsin(1 —x—x,)—37/2
—-H,,—~—H,~H*+H, =372 3a/2—2ar—arcsin(1 —x—x,)

—Hy+ H*| 1= ———
0

—H,+H*+H,—0

HacSin(¢)_H*

2a—arcsin(l —x—x,)—27
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FIG. 3. Wave forms of the magnetic induction during one cycle,
for x=H*/H,.=0.5, with (wty=15) and without relaxation (solid
and dotted lines, respectively). Numbers correspond to the stages in

Fig. 2.
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Table I gives the functional form of the local magnetic in-
duction B, during one cycle, and Fig. 3 illustrates the wave
form of B, as calculated from this table for x=1/2. For
comparison, the wave form of B, ignoring magnetic relax-
ation effects, is also illustrated (dotted curve in Fig. 3). It is
seen that due to relaxation the “cutoff” in the second stage is
not constant but varies with time (linearly in our approxima-
tion). At this stage the time is related to the phase through
wt=@— /2.

Once the wave form of B, is known, the real part x, ,
imaginary part x, and magnitude A,=+/(x.)?+(x2)?* of
the local harmonic susceptibilities can be calculated:

Xo| 1 fzw sin(n ¢) -
= B d 7
X;: Hac 0 (gO) COS(”QD) ®
(note that in the normal state our definition gives x| = ).

The global harmonic susceptibilities of the entire sample can
be calculated by integration:

S [k
XnZ;jo Xn(x)dx’ (8)

where 6=H,./H, is the parameter of the global response
defined in Ref. 12, (inversely) analogous to our local param-
eter x, and H, is the field of full penetration up to the center
of a sample. The upper integration limit
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FIG. 4. Harmonic susceptibilities x,, for n=1 (upper frame) and
n=3 (lower frame), as a function of x=H*/H ., calculated from
Eq. (7) and Table I; see text.

Analytical expressions for y, can be obtained from Table
I using Eq. (7). Because of the complexity of these expres-
sions we prefer to present the results in a graphical form. We
use these expressions to show, in Figs. 4(a) and 4(b), the
harmonic susceptibilities x, (n=1,3) as a function of x for
two values of frequency corresponding to wto=25 and 100. It
is seen that the frequency has strong effects on both the peak
height as well as the width of the curves. In order to compare
our theoretical results with experiments, we plot in Fig. 5 the
absolute value of the third harmonic A; as a function of
temperature. Here we have assumed exponential temperature
dependence of shielding current'? and #o~(1—7/T.)%. A
comparison between Figs. 1 and 5 shows that the main ex-
perimental observations are satisfactorily described by our
analysis; i.e., the peak height of V3 decreases and the loca-
tion of the peak is shifted towards higher temperature as the
frequency increases. Obviously, a quantitative comparison in
the whole temperature range between the experimental re-
sults and our model can be made knowing the explicit form
of the temperature dependence of the shielding current and
the exact relaxation law in the material.

As a particular application of the above analysis, we out-
line below a method to obtain the short-time relaxation law
Jjs(w). For example, one can measure the third harmonic
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FIG. 5. Third harmonic signal A;=+/(x4)%+ (x3)* as a function
of temperature, calculated from Eq. (7) and Table I for various
frequencies; see text. The qualitative similarity to the experimental
data of Fig. 1 is apparent.

susceptibility y3 as a function of H,. at various frequencies
w, at a constant dc magnetic field, and temperature. The
peak height A4(w) of each curve is a function of the param-
eter wt, alone. Thus by fitting A4(w) to the theoretical pre-
diction one can determine ¢o. The location H”, at which the
peak in x3 occurs is a function of both x andw?y. Using the
previously determined value of 7, and the experimental val-
ues for the location of the peaks, one can determine the x
values, x”(w), corresponding to the peaks. Hence one can
calculate H*(w) = x?(w)H% (), which relates to the shield-
ing current through a numerical factor y, determined by the
sample geometry.15 We note that our simplification of a lin-
ear relaxation does not contradict a situation where the latter
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procedure yields a nonlinear j (w); while the above proce-
dure yields the effective value of H*(w) in a wide frequency
range, the time 7, is short and one can make a linear approxi-
mation for any relaxation law.

CONCLUSIONS

We have analyzed the local ac magnetic response on the
basis of the critical state model, taking into account magnetic
relaxation effects. Our analysis shows that these effects in-
troduce the frequency as an additional parameter to the
model. The exact dependence of the ac response upon fre-
quency depends on the relaxation law of the shielding cur-
rent. Using a simplified linear relaxation law, we have dem-
onstrated the salient features exhibited by the third harmonic
response V3(7T) in YBCO crystals; namely the peak height of
V3(T) decreases and its location is shifted towards higher
temperature as the frequency increases. Using our analysis,
one may determine the relaxation of the shielding current
from ac measurements, e.g., by measuring the frequency de-
pendence of the peak height of the third harmonic response.
This method is particularly useful in the short time limit
(millisecond range and below) where conventional magnetic
techniques for relaxation measurements do not work. A de-
tailed description of this technique and analysis of experi-
mental data will be given elsewhere.
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