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Monte Carlo simulations have been used to study a version of the XY model without vortex loops for
J/T=0 on simple cubic and face-centered-cubic lattices. Finite-size scaling of data from L X L X L lattices with
L up to 32 is used to obtain values for the order parameter |M| and a 1/L finite-size correction on each lattice.
The order-parameter susceptibility is found to be diverging as L%%, We then study the crossover from three-
dimensional to one-dimensional behavior on L X WX W simple cubic lattices, with W=4 and 8, and L up to

1024.

I. INTRODUCTION

In 1955 Feynman! argued that it should be possible to
analyze the superfluid transition of three-dimensional liquid
helium in terms of the behavior of vortex loops. As is well
known, this phase transition is in the universality class of the
XY model, and its critical properties are believed to be un-
derstood in terms of a renormalization group based on spin-
wave theory.? Despite efforts by several authors,>~’ the con-
nection between the vortex line description and the spin-
wave description remains far from complete.

Halperin4 pointed out that in the absence of vortices the
phase of the order parameter cannot relax, except at the
boundaries. He argued that this implies that the presence of
vortex loops is necessary in order for the spin stiffness to
vanish. This suggestion motivated Kohring, Shrock, and
Wills® (KSW) to perform Monte Carlo calculations on an XY
model with an additional vortex fugacity term. We write the
KSW Hamiltonian as

(ij) plag

where (ij) is a sum over neighbor pairs, each S is a classical
unit length two-component spin, and v is the (quantized)
vorticity of a plaquette.

Denote the direction in spin space defined by each S, to be
6;. Then v is defined on the lattice by the following proce-
dure. Let 6,;= 0,— 6,+2n;;, where n; is the integer which
puts 6,; into the range (—,7]. Now the sum of the 6,;
around a plaquette is defined to be 27v, and v is an integer.
KSW found that in the limit J/T—O0 (where T is tempera-
ture) this model remains ferromagnetic for g/7>0.55. When
vortices were completely removed from the model by mak-
ing g infinite, then an 8 X8X8 simple cubic lattice with
periodic boundary conditions retained a magnetization of
|IM|~0.47 for J/T=0.

Here we will examine this phenomenon in more detail,
using a similar Monte Carlo technique. We perform numeri-
cal simulations of the KSW model in the limit J/T=0 and
g/T=inf on LXLXL simple cubic (sc) and face-centered-
cubic (fcc) lattices with periodic boundary conditions, as a
function of L. We will also study the crossover from three-
dimensional (3D) to one-dimensional (1D) behavior, by us-
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ing LXWXW sc lattices with L>W. Although there is no
critical point for the vortex-free model in three dimensions,
this crossover function takes us from a ferromagnetic state to
a paramagnetic state. A finite-size scaling analysis of the or-
dinary XY model near its critical point has been performed
by Li and Teitel.®

It should be noted that the topological nature of the vortex
fugacity term is not really an essential element of this prob-
lem. Any isotropic interaction between the four spins of each
plaquette of the sc lattice which causes the spins to align
more ferromagnetically than a sum of pairwise exchange in-
teractions, e.g., —J4|S; + S+ S3+ S4|* with J,>0, will have
a similar effect. For the fcc lattice we could use an interac-
tion between the four spins at the corners of each elementary
tetrahedron of the lattice. This is a well-known example of
universality. The fact that for an XY model we have a choice
between analyzing the model in terms of vortices or four-
spin couplings has been discussed in detail for the two-
dimensional case by Jose ef al.,’ and the essentials remain
true in the three-dimensional case.

II. MONTE CARLO PROCEDURE

All lattices were studied using classical planar spins of
unit length and periodic boundary conditions. To improve the
efficiency of the computer program, a Z,s¢ discretization was
used. This means that each spin variable #; was allowed to
take on the values wn/128, with n=0,1, . .. 255, rather than
any value in [0,27). For such a Z, model, the finite p effects
on |M| are of order 1/p2. Thus for p =256 the finite p effects
are negligible compared to out statistical errors. A similar
discretization was used by Li and Teitel.®

The Monte Carlo procedure used in this work was
straightforward. Each lattice was initialized to a fully aligned
state. The program then proceeded through the lattice, at-
tempting to reorient each spin in turn. The proposed new
state of each spin was chosen using a multiplicative linear
congruential random number generator,'® and the new state
was accepted whenever the change did not create a vortex
loop. After discarding the initial part of each run for equili-
bration, the remainder of the data were averaged to obtain
the statistical properties.

Small lattices were run for 163 840 Monte Carlo steps per
spin (MCS), with sampling every 10 MCS. This was in-
creased by a factor of 2 for most of the larger lattices, and by
even more when necessary. It is difficult to characterize the
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FIG. 1. Finite-size scaling of the order parameter for LX L XL
sc and fcc lattices. The axes are scaled logarithmically. The solid
line show Eq. (3), and the dotted line shows Eq. (4). The spiked
symbols show data obtained using the improved random number
generator.

size of the errors precisely, because the algorithm is sensitive
to nonideal behavior of the “‘random” numbers. An exami-
nation of the power spectrum of the magnetization fluctua-
tions showed clear evidence of peaks due to correlations in
the “random” numbers. Some runs were repeated with an
improved random number generator.!! This made the large
peaks in the power spectrum disappear. The differences be-
tween the results for the two different random number gen-
erators are not large, and may be assumed to give the scale of
the errors. The author is reasonably confident that the nu-
merical results given here are accurate to the quoted preci-
sion.

III. THREE-DIMENSIONAL SCALING

The only input parameters in the model are the size, shape
and type of lattice. The order parameter for the model is the
average magnetization per spin, defined on finite lattices by

2 N 27172
+(2 S%> } : @)

i=1

IM|=N""

N
(E S
i=1

where N is the number of sites on the lattice. In Fig. 1 we
display the average of [M|, for LXLXL sc and fcc lattices,
with 4=<L=32. For the sc case the data are well described
by the form

(IM])=0.430+0.30/L, 3)
and for the fcc case (where N=L3/2) we find
(|M])=0.542+0.26/L. 4)

The ( ) brackets indicate a time average. Note that for L=8
on the sc lattice we are in complete agreement with KSW.
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FIG. 2. Size dependence of the second moment of the distribu-
tion for the order parameter for LX L XL sc and fcc lattices. The
axes are scaled logarithmically. The spiked symbols show data ob-
tained using the improved random number generator.

A finite-size effect proportional to L~ ! indicates that the
free energy of long-wavelength spin fluctuations is propor-
tional to the square of the wave number. This means that
hydrodynamic spin-wave theory'? is still a useful approxima-
tion for our model, despite the absence of the usual ferro-
magnetic exchange energy. The helicity modulus'® will, as
usual, be proportional to |M|2. From this we infer that the
net entropy of domain formation of the vortex-free XY
model is negative. This must be true for the model to be
ferromagnetic at all temperatures on three-dimensional lat-
tices. A partial explanation of this effect is that, because the
“coarse-grained” local value of # changes slowly, due to the
absence of vortex loops, the leading order contribution to the
domain-related entropy coming from fluctuations in the po-
sition of localized (topological) defects is absent here. A
similar phenomenon has been found in computer simulations
of an isotropic three-component spin model with exclusion
of hedgehog defects.'* In that case the L—o magnetization
of a sc lattice was estimated to be only 0.15. The reader who
finds these effects bizarre or pathological should recall the
more familiar problem of the hard-sphere system, where, in
the absence of any interaction other than excluded volume, a
crystalline phase is found to be stable over a range of
densities. '’

We characterize the shape of the distribution of |M]| by its
normalized second moment:

wo(IM])=N[(IM|*) —(|M])?]. 5)

Values of u, for the sc and fcc L X L XL lattices are shown
in Fig. 2. From these data it appears that on both lattices
my grows like LO® for large L. The transverse spin fluctua-
tions, on the other hand, grow approximately as N, as ex-
pected for an isotropic ferromagnetic.

As pointed out by Halperin and Hohenberg,'? the hydro-
dynamic behavior of an XY model in the broken symmetry
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phase is essentially similar to that of the two-fluid model of
a Bose liquid. Our vortex-free condition corresponds to the
absence of rotons in the Bose superfluid. In this case, a
physical manifestation of the divergence of wu, as seen in
Fig. 2 would be an anomalous contribution to the damping of
second sound. This anomaly is not large enough to invalidate
the essential correctness of the hydrodynamic description,
however.

The dynamical behavior of M(w) appears to be Debye-
like, with a relaxation time 7 that depends on L, being ap-
proximately proportional to L2, (The reader is reminded that
our results for the dynamical behavior are somewhat unreli-
able, due to the sensitivity of the algorithm to the quality of
the random number generator.) As L grows, the transverse
spin-diffusion time diverges much more rapidly than the re-
laxation time of |M|. For L=232 on the sc lattice, the trans-
verse spin-diffusion time is about 10° MCS, but |M]
achieves its equilibrium value within 100 MCS. The calcu-
lated spectral density function, S(w)=x"(w)/w, for the
L=32 sc lattice is shown in Fig. 3(a). It behaves approxi-
mately as L%/w?, as expected for Debye-like behavior. The
spectral density of |[M(w)|, shown in Fig. 3(b), is almost
independent of w, for fixed L.

The observation that P(w) is Fig. 3(b) is almost indepen-
dent of w is consistent with the predictions of Debye-like
theories. It demonstrates that the growth of w, with L, as
shown in Fig. 2, is not a mean-field spin-wave theory effect.
The possibility of this type of non-mean-field behavior has
been discussed qualitatively in Sec. 10 of the paper by Hal-
perin and Hohenberg,'? and in earlier work cited by them. It
is hoped that these data will stimulate additional quantitative
work, both theoretical and experimental.

IV. 3D TO 1D CROSSOVER SCALING

Working with lattices of size LX WX W, we can study the
crossover from an ordered three-dimensional lattice behavior
to a disordered one-dimensional lattice behavior by varying
the ratio of L and W. Within a spin-wave theory, the spin
stiffness, and therefore the value of |M|, for a finite lattice
can be related to the conductance of an equivalent resistor
network.'®!7 Therefore we should expect the crossover to be
a function of the scaling variable L/W?. Note that this vari-
able is not dimensionless. L and W must be measured in
units of the lattice constant. We are not studying a critical
point, so there is no requirement of scale invariance. For any
fixed value of the aspect ratio, L/W, we will approach the
three-dimensional broken-symmetry fixed point as we let the
size of the system become large.

This geometry was discussed by MacKinnon and
Kramer!® for the Anderson localization problem. For the lo-
calization problem there is an additional length scale, the
mean free path N, which comes from the disorder. The length
scale which has ‘“‘disappeared” from our problem is the dis-
tance between vortex loops. A scaling function similar to the
one found here probably applies to the Anderson localization
problem when W<\,

In Fig. 4 we demonstrate that our scaling hypothesis is
essentially correct for the sc lattice. There are corrections to
scaling for small L and W, as required by Eq. (3). The domi-
nant behavior, however, is seen to be that |M| remains close
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FIG. 3. (a) Spectral density S(w) of M for a 32X32X32 sc
lattice. (b) Spectral density P(w) of |M] for the same data set. The
axes are scaled logarithmically. Data shown were obtained using the
improved random number generator, sampling every 20 MCS.

to its three-dimensional value for L/W?<1, while for
L/W?*>1 it rapidly approaches the form

|M| =0.40W/ L. (6)

The fact that the long-range order is seen to disappear as we
take L to infinity while holding W fixed demonstrates that
the order we find in the three-dimensional thermodynamic
limit is a true equilibrium effect.

Equation (6) means that for a long cylinder the correlation
length for variations in € along the cylinder is proportional to
the cross-sectional area W2. Thus in this limit the Debye
time 7 becomes proportional to W2, and independent of L.
Because the system can now be approximated as a set of
independently fluctuating domains (subject to the constraint
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FIG. 4. Crossover scaling function of the order parameter for
LXWXW sc lattices. The axes are scaled logarithmically. The solid
line shows Eq. (6), and the dotted line shows M., from Eq. (3). The
spiked symbols show data obtained using the improved random
number generator.

that the coarse-grained value of 6 changes smoothly as we
move along the cylinder), the relaxation time for [M] is now
equal to 7.

From this we anticipate that plotting u,/W* versus
L/W? should also exhibit a scaling behavior. The data for
W=4 and 8, and L up to 1024 are shown in Fig. 5. For
L/W?>4, this crossover function is essentially independent
of L, but in the range 2W<L<2W? it is approximately
proportional to L22. This is a reasonable result, since 2.2 is
the difference between 3 and 0.8, as found in Fig. 2.

V. SUMMARY

In this work we have performed a more detailed Monte
Carlo study of the vortex-free three-dimensional XY model,
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FIG. 5. Crossover scaling function for the second moment of the
order-parameter distribution for L X WX W sc lattices. The axes are
scaled logarithmically. The spiked symbols show data obtained us-
ing the improved random number generator.

with the exchange coupling set to zero. On L X L X L lattices
the model behaves like a long-range ordered three-
dimensional XY ferromagnet. The transverse susceptibility
has the usual spin-wave theory divergence, proportional to
L3, while the longitudinal susceptibility diverges like L%8.
We have also studied LXWXW lattices, and calculated
crossover functions between three-dimensional long-range
ordered and one-dimensional short-range ordered behavior.
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